半导体材料概念简介---选修课论文
- 格式:doc
- 大小:40.00 KB
- 文档页数:6
半导体材料介绍摘要:本文主要介绍半导体材料的特征、分类、制备工艺以及半导体材料的一些参数。
半导体在我们的日常生活中应用很广泛,半导体材料的一些结构和参数决定了它的特性。
以二氧化钛为例,它就是一种半导体材料,其结构和性能决定了它在降解有机污染物方面的应用,人们现在研究了有关它的性质,并将进一步研究提高它的光催化效果。
关键词:半导体材料导电能力载流子电阻率电子空穴正文:半导体材料是导电能力介于导体与绝缘体之间的物质。
半导体材料是一类具有半导体性能、可用来制作半导体器件和集成电的电子材料,其电导率在10(U-3)~10(U-9)欧姆/厘米范围内。
半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。
按照这样分类方法可将半导体材料分为元素半导体、无机化合物半导体、有机化合物半导体和非晶态与液态半导体。
制备不同的半导体器件对半导体材料有不同的形态要求,包括单晶的切片、磨片、抛光片、薄膜等。
半导体材料的不同形态要求对应不同的加工工艺。
常用的半导体材料制备工艺有提纯、单晶的制备和薄膜外延生长。
半导体材料虽然种类繁多但有一些固有的特性,称为半导体材料的特性参数。
这些特性参数不仅能反映半导体材料与其他非半导体材料之间的差别,而且更重要的是能反映各种半导体材料之间甚至同一种材料在不同情况下特性上的量的差别。
常用的半导体材料的特性参数有:禁带宽度、电阻率、载流子迁移率(载流子即半导体中参加导电的电子和空穴)、非平衡载流子寿命、位错密度。
禁带宽度由半导体的电子态、原子组态决定,反映组成这种材料的原子中价电子从束缚状态激发到自由状态所需的能量。
电阻率、载流子迁移率反映材料的导电能力。
非平衡载流子寿命反映半导体材料在外界作用(如光或电场)下内部的载流子由非平衡状态向平衡状态过渡的弛豫特性。
位错是晶体中最常见的一类晶体缺陷。
位错密度可以用来衡量半导体单晶材料晶格完整性的程度。
当然,对于非晶态半导体是没有这一反映晶格完整性的特性参数的。
半导体材料的简介一、引言半导体材料是一类特殊的材料,具有介于导体和绝缘体之间的特性。
它在现代电子技术中扮演着重要的角色。
本文将介绍半导体材料的定义、性质、种类以及在各个领域中的应用。
二、定义和性质2.1 定义半导体材料是一种具有能带间隙的固体材料,其导电性介于导体和绝缘体之间。
半导体的导电性主要由载流子(电子和空穴)的运动决定。
2.2 性质1.导电性:半导体的电导率介于导体和绝缘体之间,它能在外加电场或热激发下传导电流。
2.温度特性:半导体的电导率随温度的变化而变化,通常是随温度的升高而增加。
三、半导体材料的种类3.1 元素半导体元素半导体是由单一元素构成的半导体材料,常见的有硅(Si)和锗(Ge)。
3.2 化合物半导体化合物半导体是由两个或更多的元素组合而成的半导体材料,例如砷化镓(GaAs)和磷化氮(GaN)。
3.3 合金半导体合金半导体是由不同元素的合金构成的半导体材料,合金的成分可以调节材料的性质。
四、半导体材料的应用4.1 电子器件半导体材料是制造各种电子器件的重要材料,如晶体管、二极管和集成电路。
这些器件被广泛应用于电子设备、通信系统等领域。
4.2 光电子学半导体材料在光电子学中有重要应用,例如激光器、光电二极管和太阳能电池。
这些器件利用半导体材料的光电转换特性,将光能转化为电能或反之。
4.3 光通信半导体材料广泛应用于光通信领域,如光纤通信和光学传感器。
半导体激光器和光电探测器在光通信中起到关键作用。
4.4 光储存半导体材料在光存储技术中发挥重要作用,如CD、DVD等光盘的制造。
这些光存储介质利用半导体材料的光电转换和可擦写性能来实现信息存储与读取。
五、总结半导体材料是一类具有重要应用价值的材料,广泛应用于电子器件、光电子学、光通信和光存储等领域。
随着科技的不断发展,对新型半导体材料的研究和应用也在不断推进。
通过不断探索和创新,半导体材料有望在未来的科技发展中发挥更加重要的作用。
参考文献1.Bhuyan M., Sarma S., Duarah B. (2018) [Introduction toSemiconductor Materials]( In: Introduction to Materials Science and Engineering. Springer, Singapore.。
半导体技术论文随着对半导体材料的研究,半导体技术成为一种重要的技术,在推动经济发展的过程中,起着重大的作用。
这是店铺为大家整理的半导体技术论文,仅供参考!半导体器件封装技术篇一[摘要]半导体器件封装技术是一种将芯片用绝缘的塑料、陶瓷、金属材料外壳打包的技术。
封装技术对于芯片来说是必须的,也是非常重要的。
[关键词]半导体器件封装技术“半导体器件封装技术”是一种将芯片用绝缘的塑料、陶瓷、金属材料外壳打包的技术。
以大功率晶体三极管为例,实际看到的体积和外观并不是真正的三极管内核的大小和面貌,而是三极管芯片经过封装后的产品。
封装技术对于芯片来说是必须的,也是非常重要的。
因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。
另一方面,封装后的芯片也更便于安装和运输。
由于封装技术的好坏直接影响到芯片自身性能的发挥和与之连接的PCB(印制电路板)的设计和制造,因此它是至关重要。
封装也可以说是指安装半导体芯片用的外壳,它不仅起着安放、固定、密封、保护芯片和增强导热性能的作用,而且还是沟通芯片内部世界与外部电路的桥梁――芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件建立连接。
因此,对于大功率器件产品而言,封装技术是非常关键的一环。
半导体器件有许多封装形式,按封装的外形、尺寸、结构分类可分为引脚插入型、表面贴装型和高级封装三类。
从DIP、SOP、QFP、PGA、BGA到CSP再到SIP,技术指标一代比一代先进。
总体说来,半导体封装经历了三次重大革新:第一次是在上世纪80年代从引脚插入式封装到表面贴片封装,它极大地提高了印刷电路板上的组装密度;第二次是在上世纪90年代球型矩阵封装的出现,满足了市场对高引脚的需求,改善了半导体器件的性能;芯片级封装、系统封装等是现在第三次革新的产物,其目的就是将封装面积减到最小。
高级封装实现封装面积最小化。
一、封装材料封装的基材有陶瓷、金属和塑料三种。
半导体毕业论文半导体:探索未来科技的基石引言:在当今科技发展迅猛的时代,半导体作为一种关键材料,已经成为现代生活和工业生产的基石。
它的应用范围广泛,从电子设备到通讯技术,从能源领域到医疗科学,无不离开半导体的支持。
本文将探讨半导体的基本原理、应用领域以及未来的发展趋势,旨在展示半导体技术对于人类社会的巨大影响和潜力。
一、半导体的基本原理半导体是一种介于导体和绝缘体之间的材料,其电导率介于两者之间。
这种特性源于半导体晶体中的电子能级结构。
通过控制材料中的杂质浓度和制造工艺,可以调节半导体的电导率,从而实现对电流的控制。
半导体的基本原理为现代电子学的发展提供了坚实的基础。
二、半导体的应用领域1. 电子设备半导体是电子设备中最重要的组成部分。
从智能手机到电脑、电视,几乎所有现代电子产品都离不开半导体芯片。
半导体的微小尺寸和高度集成的特点,使得电子设备越来越小型化、高效化和功能强大化。
2. 通讯技术半导体在通讯技术中扮演着重要角色。
无线通信、光纤通信、卫星通信等都依赖于半导体器件。
半导体的高速开关特性和信号放大能力,使得信息传输更加快速和稳定。
3. 能源领域半导体技术在能源领域的应用也日益重要。
太阳能电池板、LED灯、电动汽车等都离不开半导体器件。
半导体的光电转换效率高和能量损耗小的特点,为可再生能源的发展提供了强有力的支持。
4. 医疗科学半导体技术在医疗科学中的应用也日益广泛。
例如,生物芯片可以用于基因检测和疾病诊断,人工智能和机器学习可以应用于医学影像处理和疾病预测。
这些应用将大大提高医疗水平和人类生活质量。
三、半导体的未来发展趋势1. 三维集成电路随着电子设备的不断发展,对于更高性能和更小尺寸的需求也越来越迫切。
三维集成电路技术可以将多个晶体管层叠在一起,大大提高芯片的集成度和性能。
这一技术的发展将推动电子设备的进一步革新。
2. 新型材料除了传统的硅材料,新型半导体材料也在不断涌现。
例如,石墨烯、氮化镓等材料具有优异的电子特性,有望在未来取代硅材料,推动半导体技术的进一步发展。
---文档均为word文档,下载后可直接编辑使用亦可打印---摘要随着半导体器件的飞速发展,第一、二代半导体材料在高温、辐射和高频率下工作特性都不能满足需求,而新型半导体材料——SiC的出现改变了这一局面。
本文主要阐述了碳化硅宽禁带半导体材料的结构性质及重要应用,并分析了制备碳化硅材料的主流方法,最后讨论了我国碳化硅材料和器件的发展现状及其存在的机遇与挑战。
关键词:SiC 第三代半导体引言SiC作为第三代半导体材料,它的禁带宽度高达3.25eV,不仅击穿电场强度高,而且电子饱和速率和热导率都很高,这些优越性质使SiC器件能在高温、高电压、高频率状态下可靠运行,同时在保证高运行能力的情况下消耗最少的电能。
2016年碳化硅的电子市场规模就已经达到近3亿美元,毫无疑问,碳化硅将在5G通信、新能源汽车、产业转型等方面发挥重要作用,占据更广阔的宽禁带半导体市场。
一、碳化硅的结构与性质碳化硅是C和Si组合中唯一稳定的化合物,从晶体化学的角度来看,每个Si(C)原子与周边包围的C(Si)原子通过定向强四面体sp3键结合,并有一定程度的极化,很低的层错形成能量决定了SiC的多型体现象,六角密排4H-SiC、6H-SiC和立方密排的3C-SiC比较常见并且不同的多型体具有不同的电学性能与光学性能。
通过对比硅和碳的电负性确定SiC晶体具有很强的离子共价键,原子化能值达到125okJ/mol,表明SiC的结构、能量稳定。
此外,sic还有高达1200—1430K的德拜温度。
因此,SiC材料对各种外界作用有很高的稳定性,在力学、热学、化学等方面有优越性。
与Si相比,SiC的禁带宽度为其2-3倍,同时具有其4.4倍的热导率,8倍的临界击穿电场,2倍的电子饱和漂移速度,这些优异性能使其成为在航天航空、雷达、环境监测、汽车马达、通讯系统等应用中生产耐高温、高频、抗辐射、大功率半导体器件材料的不二选择,特别是SiC发光二极管的辐射波长广,在光电集成电路中具有广阔的应用前景。
半导体材料的概念半导体是指具有半导体特性的材料,它们在导电性能上介于导体和绝缘体之间。
半导体材料在电子、通信、能源、医疗等领域有着广泛的应用。
本文将介绍半导体材料的几种主要类型,包括元素半导体、化合物半导体、非晶半导体、有机半导体、金属间化合物、氧化物半导体以及合金与固溶体。
1.元素半导体元素半导体是指只由一种元素组成的半导体材料,如硅、锗等。
其中,硅是最常用和最重要的元素半导体之一,它具有高导电性能、高热导率以及稳定的化学性质,因此在微电子、太阳能电池等领域得到广泛应用。
2.化合物半导体化合物半导体是指由两种或两种以上元素组成的半导体材料,如GaAs、InP等。
这些化合物半导体具有较高的电子迁移率和特殊的能带结构,因此在高速电子器件、光电子器件等领域具有广泛的应用前景。
3.非晶半导体非晶半导体是指没有晶体结构的半导体材料,它们通常由化学气相沉积、物理气相沉积等方法制备。
非晶半导体具有较低的晶格缺陷和较高的电子迁移率,因此在太阳能电池、电子器件等领域得到广泛应用。
4.有机半导体有机半导体是指由有机分子组成的半导体材料,如聚合物的分子晶体、共轭分子等。
有机半导体具有较低的制造成本、较高的柔性和可加工性,因此在柔性电子器件、印刷电子等领域具有广阔的应用前景。
5.金属间化合物金属间化合物是指由两种或两种以上金属元素组成的化合物,如Mg3N2、TiS2等。
这些金属间化合物具有特殊的物理和化学性质,因此在电子器件、催化剂等领域具有潜在的应用价值。
6.氧化物半导体氧化物半导体是指由金属元素和非金属元素组成的氧化物,如ZnO、SnO2等。
这些氧化物半导体具有较高的电子迁移率和稳定性,因此在太阳能电池、电子器件等领域得到广泛应用。
7.合金与固溶体合金与固溶体是指由两种或两种以上的金属或非金属元素组成的混合物,如Ag-Cu合金、Zn-S固溶体等。
这些合金与固溶体具有特殊的物理和化学性质,因此在电子器件、催化剂等领域具有潜在的应用价值。
半导体材料论文范文
标题:半导体材料的研究与应用
摘要:
本论文主要介绍半导体材料及其在电子技术中的应用。
首先概述了半导体材料的基本概念和独特的物理性质,然后详细介绍了几种常见的半导体材料,包括硅、锗和化合物半导体等。
接着讨论了半导体材料在电子器件中的应用,如PN结、MOSFET等。
最后对未来半导体材料的发展进行了展望,并提出了一些问题供深入研究。
关键词:半导体材料;物理性质;电子器件;发展趋势
1.引言
2.半导体材料的基本概念和性质
2.1半导体材料的定义和分类
2.2半导体材料的能带结构
2.3半导体材料的载流子类型
2.4半导体材料的禁带宽度
3.常见的半导体材料
3.1硅
3.1.1硅的基本性质
3.1.2硅的制备方法
3.2锗
3.2.1锗的基本性质
3.2.2锗的制备方法
3.3化合物半导体
3.3.1GaAs
3.3.2InP
4.半导体材料在电子器件中的应用
4.1PN结
4.1.1PN结的结构和特点
4.1.2PN结的应用:二极管和锗石榴石激光器4.2MOSFET
4.2.1MOSFET的基本结构和工作原理
4.2.2MOSFET的应用:集成电路和场效应晶体管
5.半导体材料的发展趋势和前景
5.1新材料的研究与应用
5.2高效能源的开发
5.3环境保护和可持续发展
6.结论
本论文全面介绍了半导体材料的基本概念、性质、常见种类以及在电子器件中的应用。
同时,对半导体材料未来的发展趋势进行了展望,并提出了一些问题供深入研究。
第二章1.半导体:电导率介于金属和绝缘体之间的材料称为半导体。
2.本征半导体: 完全纯净的半导体称为本征半导体。
它们是制造半导体器件的基本材料。
3.本征激发: 当T 升高或光线照射时, 产生自由电子空穴对的现象称为本征激发。
4.N 型半导体:本征半导体中掺入少量五价元素构成。
5.N 型半导体:本征半导体中掺入少量三价元素构成。
6.半导体掺杂:本征半导体中载流子数目极少,导电能力仍然很低。
但如果在其中掺入微量的杂质,所形成的杂质半导体的导电性能将大大增强。
由于掺入的杂质不同,杂质半导体可以分为N 型和P 型两大类。
7.内建电场:由于N 型半导体中有富裕的自由电子,而P 型半导体中有富裕的自由的空穴,所以当P 型和N 型半导体接触时,P 型半导体中的空穴就会向N 型中扩散,而N 型半导体中的电子向P 型中扩散,结果是P 型端带负电,而N 型端带正电。
因而会形成内建电场,内建电场的方向从N 型端指向P 型端,从而又阻止电子和空穴的扩散。
最后,依靠电子和空穴浓度梯度的扩散和内建电场的电作用达到平衡,在接触面附近形成一个耗尽层,即p-n 结。
第三章1.自由载流子吸收:毫米波和微波2.杂质吸收: 杂质粒子的跃迁3.声子吸收:晶格振动引起4.激子吸收:激子的形成5.带间吸收:价带到导带的跃迁6.自发辐射:原子在没有外界干预的情况下,电子会由处于激发态的高能级E2自动跃迁至低能级E1,这种跃迁称为自发辐射。
7.受激吸收:当原子中的电子处于低能级时,吸收光子的能量后从低能级跃迁到高能级----光吸收。
8.受激辐射:当原子中的电子处于高能级时,若外来光子的频率恰好满足 时,电子会在外来光子的诱发下向低能级跃迁,并发出与外来光子一样特征的光子----受激辐射。
9. 粒子数反转:10. 泵浦(激励): 闪光灯或另一种激光器以及气体放电激励、化学激励、核能激励。
11. 激光工作物质: 激光器最重要的部分是工作物质,包括激活离子和基质。
氧化锌(zno)半导体材料具有较宽的带隙和较高的激子束缚能,,照明毕业设计摘要纤锌矿结构氧化锌(ZnO)是一种宽禁带的直接带隙氧化物半导体材料,它具有低介电常数、大光电耦合系数、高化学稳定性、高的激子结合能以及优良的光学、电学及压电特性等,因此在许多方面有着潜在的使用价值,可广泛的应用于太阳能电池、压电薄膜、光电器件、气敏器件和紫外探测器等方面。
对于ZnO材料的研究,我们已经取得了很大的成就,但是这些研究主要是集中于其材料的实验制备、功能和电子结构等理论工作。
近年来,过渡金属掺杂ZnO等稀磁半导体材料成为了人们的研究方向,激起了人们的研究欲望。
通过对氧化锌进行过渡金属的掺杂,能改变它的特性,同时也具有铁电性,所以成为了集成光电器件中一种极具潜力的材料。
关键词:1绪论1.1 引言当前,人类社会已经进入了一个全新的信息化时代,信息的传输、处理、存储等过程都是通过电子和光子来参与实现的,光电子在信息技术领域中起到了举足轻重的作用。
上个世纪,人们制备出了红外发光二极管LED和LD,实现了光通信和光信息处理。
随着社会经济的快速发展,人们对于信息技术的要求也越来越高,一直在不断的研究中寻求新的技术。
最近,ZnO材料由于其优越的性能引起了人们的研究热情。
氧化锌( ZnO) 作为一种新型的Ⅱ-Ⅵ族宽禁带化合物半导体材料,具有禁带宽度大(约3.37eV),相比与其他的宽带隙材料,其激子束缚能高达60meV,这使得ZnO在室温下有更高效率的机子发光,是一种在紫外和蓝光发射方面很有前途的新型光电子材料。
ZnO 材料的出现,让人们意识到了这种半导体材料在制备短波长发光器件中的研究潜力。
1.2 掺杂氧化锌的研究背景自从20世纪初透明导电氧化物(TCO)被发现,人们便开始在各种衬底沉积该种薄膜以使其用途多样化,现已在太阳能电池、液晶显示器、气体传感器、紫外半导体激光器以及透明导电薄膜等方面具有广泛的应用。
通过各种不同的掺杂,氧化锌( ZnO)能具有很好的光电性能,是光电器件极具潜力的材料.。
常州信息职业技术学院学生毕业设计(论文)报告系别:电子与电气工程学院专业:微电子技术班号:微电081 学生姓名:学生学号:设计(论文)题目:半导体封装技术分析与研究指导教师:设计地点:常州信息职业技术学院起迄日期:毕业设计(论文)任务书专业微电子技术班级微电081 姓名程增艳一、课题名称:半导体封装技术分析与研究二、主要技术指标:1.封装的工艺流程;2.封装的技术分类;3.封装的形式、材料、设备;4.封装过程中的缺陷分析;5.封装技术发展及未来的前景。
.三、工作内容和要求:1.查阅相关书籍明确半导体封装的概念、作用及性能;2.认真阅读半导体封装技术的资料了解具体封装工艺流程;3.接着围绕封装所实现的性能、封装的技术要素和层次进行有关知识的搜集;4.根据查找的封装技术知识对其进行详细分类;5.然后深入理解有关封装的书籍资料对封装的质量要求与缺陷作进一步分析;6.完成论文初稿;7.经多次修改,完成论文。
四、主要参考文献:[1]李可为.集成电路芯片封装技术[M] .北京:电子工业出版社,2007.19-68[2]周良知.微电子器件封装—封装材料与封装技[M] .北京:化学工业出版社,2006.57-64[3]邱碧秀.微系统封装原理与技术[M] .北京:电子工业出版社,2006.113-124[4]姜岩峰,张常年译.电子制造技术[M] .北京:化学工业出版社,2005.102-108学生(签名)年月日指导教师(签名)年月日教研室主任(签名)年月日系主任(签名)年月日毕业设计(论文)开题报告设计(论文)题目半导体封装技术分析与研究一、选题的背景和意义:半导体IC技术将以高速发展的势态呈现在21世纪。
为了降低生产成本,国际半导体制造商以及封装测试代工企业纷纷将其封装产能转移至中国,从而直接拉动了中国半导体封装产业规模的迅速扩大。
同时,中国芯片制造规模的不断扩大以及巨大且快速成长的终端电子应用市场也极大地推动了中国半导体封装产业的成长。
半导体材料---- GaAs的制备和应用摘要:本文将以GaAs半导体为例介绍介绍有关半导体材料的制备、分类、特征及半导体材料的一些参数。
半导体材料的结构和参数决定了它的特性,而半导体材料的结构和性能同时决定了他的适用范围。
GaAs在生活中也有着广泛的应用,通过对它的讨论希望能有助于对半导体材料的理解和认识。
关键字:半导体材料 GaAs 导电能力载流子电子空穴引言:从半导体材料进入人们的视线以来,在短短的几十年间半导体材料有了飞速的发展,人们对半导体材料的研究越来越来深,半导体的种类越来越到多,应用方面越来越广。
由于半导体学科的飞速发展,其产品涉及到了世界的各个方面,包括了通讯、医疗、军事等等各个领域,使得世界发生了翻天覆地的变化。
正文:首先,简单介绍一下半导体材料的一些特性和发展历史。
导电能力介于道题与绝缘体之间的物质称为半导体。
半导体材料是一类具有半导体性能,可用来制作半导体器件和集成电路的电子材料。
半导体材料的电学性质对光、热、电、磁灯外界因素的变化十分敏感,在半导体材料中掺入少量杂质可以控制这类材料的导电率。
同时也是因为这些因素使得半导体材料可以制成多种多样的元器件,称为现代工业的基础。
现在使用的半导体材料种类非常多,大致可以分为这么几类:1,元素类半导体,包括了硅、鍺、硒等等,大多数是使用硅材料;2,化合物半导体,有两种或两种以上的元素化合而成的半导体材料,包括了砷化镓、磷化铟、碳化硅等等;3,无定形半导体材料,用作半导体的玻璃是一种非晶无定形半导体材料,分为氧化物玻璃和非氧化物玻璃两种,具有良好的开关和记忆特性和很强的抗辐射能力;4,有机增半导体材料,已知的有机半导体材料有几十种,包罗了萘、聚丙烯晴和一些芳香族化合物等等。
下面我选择介绍的是GaAs,这是一种Ⅲ--Ⅴ族化合物半导体材料,到目前为止是一种用来制作微波器件和集成电路的重要材料。
类比于其他种类的半导体材料,GaAs具有Ⅲ--Ⅴ族化合物半导体材料的独特性质:带隙大,制作的期间耐受较大功率,工作温度更高;为直接跃迁型带隙,因而光电转换效率高,适合制作光电器件;电子迁移率高,适合制作高频、高速器件。
半导体毕业论文随着现代科技的不断发展,半导体技术的应用越来越广泛,半导体材料的研究也变得越来越重要。
本文主要探讨半导体材料的结构、性质及其应用。
一、半导体材料的结构半导体材料的晶体结构分为两种:一种是离子晶体结构,另一种是共价晶体结构。
离子晶体是由离子组成的,离子之间的键是离子键。
共价晶体是由原子或离子组成的,原子或离子之间的键是共价键。
在离子晶体结构中,空穴和电子被离子束缚在原子轨道中,所以离子晶体的导电性很差。
而在共价晶体结构中,空穴和电子通过共价键结合,容易激发电子运动,因此具有很强的导电性。
二、半导体材料的性质半导体的电导率随温度变化而变化,当温度升高时,电导率增加。
半导体会在一定温度下发生费米能级跃迁,产生大量的电子空穴对。
这些电子空穴对的数量与温度成指数关系。
当半导体的温度超过某一温度时,电子空穴对的数量趋近于无限大,形成电子气,半导体材料会变成金属材料。
半导体材料的导电性还与材料的掺杂类型有关。
掺杂是通过引入杂质元素来改变半导体材料的导电性。
掺杂分为n型掺杂和p型掺杂。
n型掺杂在半导体中引入电子,p型掺杂在半导体中引入空穴。
对于n型半导体,电子数量多于空穴,所以电流是由电子传导的;而对于p型半导体,空穴数量多于电子,所以电流是由空穴传导的。
三、半导体材料的应用半导体材料广泛应用于电子工业、信息通信、光电子学、生物医药等领域。
以下是几个重要的应用:1. 半导体芯片电子器件的制造离不开半导体芯片,在半导体材料内部加入不同的掺杂物,可以制成具有特殊功能的半导体芯片。
半导体芯片广泛应用于计算机、智能手机、游戏控制台等电子产品。
2. 太阳能电池半导体材料也可以用于太阳能电池的制造。
太阳能电池的主结构是p-n结,也就是p型半导体与n型半导体的结合体,通过光线激发半导体内电子的移动,形成电流,实现太阳能转化为电能。
3. 发光二极管半导体材料通过控制不同的掺杂物,可以制成具有不同颜色的发光二极管(LED)。
半导体材料的探析与应用论文导读:当今,以半导体材料为芯片的各种产品普遍进入人们的生活,如电视机,电子计算机,电子表,半导体收音机等都已经成为我们日常所不可缺少的家用电器。
半导体基片可以实现元器件集中制作在一个芯片上,于是产生了各种规模的集成电路。
1969年超晶格概念的提出和超晶格量子阱的研究成功,使得半导体器件的设计与制造从“杂志工程”发展到“能带工程”,将半导体材料的研究和应用推向了一个新的领域。
90年代以来随着移动通信技术的飞速发展,砷化镓和磷化铟等半导体材料得成为焦点,用于制作高速、高频、大功率及发光电子器件等。
关键词:半导体,超晶格,集成电路,电子器件1.半导体材料的概念与特性当今,以半导体材料为芯片的各种产品普遍进入人们的生活,如电视机,电子计算机,电子表,半导体收音机等都已经成为我们日常所不可缺少的家用电器。
半导体材料为什么在今天拥有如此巨大的作用,这需要我们从了解半导体材料的概念和特性开始。
半导体是导电能力介于导体和绝缘体之间的一类物质,在某些情形下具有导体的性质。
半导体材料广泛的应用源于它们独特的性质。
首先,一般的半导体材料的电导率随温度的升高迅速增大,各种热敏电阻的开发就是利用了这个特性;其次,杂质参入对半导体的性质起着决定性的作用,它们可使半导体的特性多样化,使得PN结形成,进而制作出各种二极管和三极管;再次,半导体的电学性质会因光照引起变化,光敏电阻随之诞生;一些半导体具有较强的温差效应,可以利用它制作半导体制冷器等;半导体基片可以实现元器件集中制作在一个芯片上,于是产生了各种规模的集成电路。
这种种特性使得半导体获得各种各样的用途,在科技的发展和人们的生活中都起到十分重要的作用。
2.半导体材料的发展历程半导体材料从发现到发展,从使用到创新,也拥有着一段长久的历史。
在20世纪初期,就曾出现过点接触矿石检波器。
1930年,氧化亚铜整流器制造成功并得到广泛应用,使半导体材料开始受到重视。
半导体材料介绍,第⼀代、第⼆代、第三代、第四代半导体材料分类在《什么是半导体》⼀⽂中,我们对半导体材料只做了简单的介绍,本篇详细介绍半导体材料。
半导体材料基础半导体材料是制作半导体器件和集成电路的电⼦材料,是半导体⼯业的基础。
利⽤半导体材料制作的各种各样的半导体器件和集成电路,促进了现代信息社会的飞速发展。
图⼀、绝缘体、半导体和导体的典型电导率范围半导体材料的研究始于19世纪初期。
元素半导体是由单⼀种类的原⼦组成的那些,例如硅(Si),元素周期表 IV列中的锗(Ge)和锡(Sn),元素周期表 VI 列中的硒(Se)和碲(Te)。
然⽽,存在许多由两个或更多个元素组成的化合物半导体。
例如,砷化镓(GaAs)是⼆元III-V化合物,它是第三列的镓(Ga)和第五列的砷(As)的组合。
三元化合物可以由三个不同列的元素形成,例如,碲化汞铟(HgIn 2 Te 4),⼀种II-III-VI化合物。
它们也可以由两列中的元素形成,例如砷化铝镓(Al x Ga 1- x As),这是⼀种三元III-V化合物,其中Al和Ga都来⾃第三列,并且下标x相关从100%Al(x = 1)到100%Ga(x = 0)的两种元素的组成。
纯硅是集成电路应⽤中最重要的材料,⽽III-V⼆元和三元化合物对发光最重要。
图⼆、元素周期表在1947年发明双极晶体管之前,半导体仅⽤作两端器件,例如整流器和光电⼆极管。
在1950年代初期,锗是主要的半导体材料。
但是,事实证明,这种材料不适⽤于许多应⽤,因为这种材料制成的设备仅在适度升⾼的温度下才会表现出⾼漏电流。
⾃1960年代初以来,硅已成为迄今为⽌使⽤最⼴泛的半导体,实际上已经取代了锗作为器件制造的材料。
造成这种情况的主要原因有两个:(1)硅器件的漏电流要低得多,(2)⼆氧化硅(SiO 2)是⼀种⾼质量的绝缘体,很容易作为基于硅的器件的⼀部分进⾏整合。
因此,硅技术已经变得⾮常先进和普遍。
半导体材料的发展之路图三、半导体材料发展之路及不同材料的特效⽐较第⼀代的半导体材料:硅(Si)、锗(Ge)在半导体材料的发展历史上,1990年代之前,作为第⼀代的半导体材料以硅材料为主占绝对的统治地位。
半导体材料摘要:目前半导体产品广泛应用于生活生产中,半导体材料及其应用已经成为衡量一个国家经济发展和科技进步的重要标志。
本文对半导体材料的定义、特性性能、材料分类及应用和发展方向作出简要解析。
关键词:半导体材料半导体材料分类半导体特性制备方法半导体材料应用引言:20世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;70年代光纤通讯技术迅速发展并逐步形成高新技术产业,使人类进入信息时代;超晶格概念的提出及其半导体超晶格,量子阱材料的诞生,改变了光电器件的发展,纳米技术的发展与运用使得半导体进入纳米时代。
然而半导体材料的价值仍在于它的光学、电学及其他各种特性,自硅出现在很长时间内,硅仍将是大规模集成电路的主要材料,如在军事领域中应用的抗辐射硅单体、高效太阳能电池用硅单体、红外CCD器件用硅单体等。
随着半导体技术的发展和半导体材料的研究,微电子技术朝着高密度,高可靠性方向发展,各种各样新的半导体材料出现,而 GaAs和InP基材料等还是化合物半导体及器件的主要支柱材料。
与此同时以硅材料为核心的当代微电子技术趋向于纳米级,到达这一尺寸后,一些列来自期间工作原理和工艺技术本身的物理限制以及制造成本大幅度提高等将成为难以克服的问题,为满足人类社会不断增长的对更大信息量的需求,近年来新的半导体材料制备方法出现,新的制备方法的研究与发展极有可能触发当前国际前沿研究热点,从而引起新的技术革命。
中国半导体材料经过40多年的研究与发展,已具备了相当的基础,特别是在改革开放后,中国的半导体材料和半导体技术获得明显发展,除满足国内需求外,一些材料已经进入国际市场,然而综观中国半导体产业链的全局,上端的设计,制造业较弱,尤其凸显的瓶颈部位式设计与材料设备业,但是可以相信整个发展大路上市顺利的,中国半导体材料应该掌握自主知识产权,系统技术的开发人才,规模化产业化生产,尽快在材料设备业发展。
1.半导体材料的定义及性质当今,以半导体材料为芯片的各种产品已广泛进入人们的生活生产中,电视机,电子计算机,电子表等等,半导体材料为什么会拥有如此巨大的应用,我们需要从半导体材料的概念和特性开始了解。
自然界的物质、材料按导电能力大小可分为导体、半导体和绝缘体三大类。
半导体的电阻率在1mΩ·cm~1GΩ·cm范围之间。
在一般情况下,半导体电导率随温度的升高而增大,这与金属导体恰好相反。
凡具有上述两种特征的材料都可归入半导体材料的范围。
反映半导体内在基本性质的却是各种外界因素如光、热、磁、电等作用于半导体而引起的物理效应和现象,这些可统称为半导体材料的半导体性质。
构成固态电子器件的基体材料绝大多数是半导体,正是这些半导体材料的各种半导体性质赋予各种不同类型半导体器件以不同的功能和特性。
半导体的基本化学特征在于原子间存在饱和的共价键。
作为共价键特征的典型是在晶格结构上表现为四面体结构,所以典型的半导体材料具有金刚石或闪锌矿(ZnS)的结构。
由于地球的矿藏多半是化合物,所以最早得到利用的半导体材料都是化合物,例如方铅矿(PbS)很早就用于无线电检波,氧化亚铜(Cu2O)用作固体整流器,闪锌矿(ZnS)是熟知的固体发光材料,碳化硅(SiC)的整流检波作用也较早被利用。
硒(Se)是最早发现并被利用的元素半导体,曾是固体整流器和光电池的重要材料。
元素半导体锗(Ge)放大作用的发现开辟了半导体历史新的一页,从此电子设备开始实现晶体管化。
中国的半导体研究和生产是从1957年首次制备出高纯度(99.999999%~99.9999999%) 的锗开始的。
采用元素半导体硅(Si)以后,不仅使晶体管的类型和品种增加、性能提高,而且迎来了大规模和超大规模集成电路的时代。
以砷化镓(GaAs)为代表的Ⅲ-Ⅴ族化合物的发现促进了微波器件和光电器件的迅速发展。
非晶态半导体虽然在整体上分子排列无序,但是仍具有单晶体的微观结构,因此具有许多特殊的性质。
1975年,英国W.G.斯皮尔在辉光放电分解硅烷法制备的非晶硅薄膜中掺杂成功,使非晶硅薄膜的电阻率变化10个数量级,促进非晶态半导体器件的开发和应用。
同单晶材料相比,非晶态半导体材料制备工艺简单,对衬底结构无特殊要求,易于大面积生长,掺杂后电阻率变化大,可以制成多种器件。
非晶硅太阳能电池吸收系数大,转换效率高,面积大,已应用到计算器、电子表等商品中。
目前无论在理论方面,还是在应用方面,半导体的研究正在很快地发展着。
2.半导体材料的分类与制备2.1半导体材料的分类半导体材料可按化学组成来分,再将结构与性能比较特殊的非晶态与液态半导体单独列为一类。
按照这样分类方法可将半导体材料分为元素半导体、化合物半导体、有机半导体、固溶体半导体和非晶态与液态半导体。
元素半导体大约有十几种,处于ⅢA族—ⅦA族的金属元素与非金属元素交界处,如Ge,Si,Se,Te等;化合物半导体分为二元化合物半导体和多元化合物半导体;有机半导体分为有机分子晶体、有机分子络合物、和高分子聚合物,一般指具有半导体性质的碳-碳双键有机化合物,电导率为10-10~102Ω·cm。
固溶体半导体是由两个或多个晶格结构类似的元素化合物相融合而成,有二元系和三元系之分,如ⅣA-ⅣA组成的Ge-Si固溶体,ⅤA-ⅤA组成的Bi-Sb固溶体。
原子排列短程有序、长程无序的半导体成为非晶态半导体,主要有非晶硅、非晶锗等。
2.2半导体材料的制备2.2.1分子束外延技术(MBE)MBE技术实际上在超高真空条件下,对分支或原子数源和衬底温度加以精密控制的薄膜蒸发技术。
MBE生长过程实际上是一个具有热力学和动力学同时并存,相互关联的系统。
只有在由分子数源产生的分子束不受碰撞地直接喷射到受热的洁净衬底表面,在表面上迁徙,吸附或通过反射或脱附过程离开表面,而在衬底表面与气态分子之间建立一个准平衡区,是晶体生长过程接近于热力学平衡条件,即使每一个结合到晶格中的原子能选择到一个自由能最低的格点位置,才能生长出高质量的材料。
2.2.2金属有机化学汽相淀积技术(MOCVD)MOCVD使用氢气将金属有机化合物蒸汽和气态非金属氢化物经过开关网络送入反应式加热的衬底上,通过热分解反应而最终在其上生长出外延层的技术。
2.2.3半导体微结构材料生长和精细加工相结合的制备技术利用MBE 或MOCVD等技术首先生长半导体微结构材料如AlGaAs/GaAs2DEG 材料等,进而结合高空间分辨电子束曝光直写,湿法或干法刻蚀和聚焦离子束注入隔离制备纳米量子线和量子点,即常说的所谓自上而下的制备技术。
2.2.4应变自组装纳米量子点线结构生长技术应变自组装纳米量子点线结构材料的制备是利用SK生长模式,它主要用于描述具有较大晶格失调而界面能较小的一支结构材料生长行为。
3.半导体材料的发展历程及应用3.1半导体材料的简略发展历程半导体材料从发现到发展,从使用到创新,拥有这一段长久的历史。
宰二十世纪初,就曾出现过点接触矿石检波器。
1930年,氧化亚铜整流器制造成功并得到广泛应用,是半导体材料开始受到重视。
1947年锗点接触三极管制成,成为半导体的研究成果的重大突破。
50年代末,薄膜生长激素的开发和集成电路的发明,是的微电子技术得到进一步发展。
60年代,砷化镓材料制成半导体激光器,固溶体半导体此阿里奥在红外线方面的研究发展,半导体材料的应用得到扩展。
1969年超晶格概念的提出和超晶格量子阱的研制成功,是的半导体器件的设计与制造从杂志工程发展到能带工程,将半导体材料的研究和应用推向了一个新的领域。
90年代以来随着移动通信技术的飞速发展,砷化镓和磷化烟等半导体材料成为焦点,用于制作高速高频大功率激发光电子器件等;近些年,新型半导体材料的研究得到突破,以氮化镓为代表的先进半导体材料开始体现出超强优越性,被称为IT产业的新发动机。
3.2半导体材料的应用3.2.1元素半导体材料硅在当前的应用相当广泛,他不仅是半导体集成电路,半导体器件和硅太阳能电池的基础材料,而且用半导体制作的电子器件和产品已经大范围的进入到人们的生活,人们的家用电器中所用到的电子器件80%以上与案件都离不开硅材料。
锗是稀有元素,地壳中的含量较少,由于锗的特有性质,使得它的应用主要集中与制作各种二极管,三极管等。
而以锗制作的其他钱江如探测器,也具有着许多的优点,广泛的应用于多个领域。
3.2.2有机半导体材料有机半导体材料具有热激活电导率,如萘蒽,聚丙烯和聚二乙烯苯以及碱金属和蒽的络合物,有机半导体材料可分为有机物,聚合物和给体受体络合物三类。
有机半导体芯片等产品的生产能力差,但是拥有加工处理方便,结实耐用,成本低廉,耐磨耐用等特性。
3.2.3非晶半导体材料非晶半导体按键合力的性质分为共价键非晶半导体和离子键非晶半导体两类,可用液相快冷方法和真空蒸汽或溅射的方法制备。
在工业上,非晶半导体材料主要用于制备像传感器,太阳能电池薄膜晶体管等非晶体半导体器件。
3.2.4化合物半导体材料化合物半导体材料种类繁多,按元素在周期表族来分类,分为三五族,二六族,四四族等。
如今化合物半导体材料已经在太阳能电池,光电器件,超高速器件,微波等领域占据重要位置,且不同种类具有不同的应用。
今天,半导体已广泛地用于家电、通讯、工业制造、航空、航天等领域。
1994年,电子工业的世界市场份额为6910亿美元,1998年增加到9358亿美元。
而其中由于美国经济的衰退,导致了半导体市场的下滑,即由1995年的1500多亿美元,下降到1998年的1300多亿美元。
经过几年的徘徊,目前半导体市场已有所回升。
硅单晶及其外延。
现在电子元器件90%以上都是由硅材料制备的,全世界与硅相关的电子工业产值接近一万亿美元。
从整个半导体材料和信息技术发展来看,目前的信息载体主要是电子,即电子的电荷(电流)。
电子还有一个属性,电子的自旋,我们尚未用上。
如果我们再把电子的自旋用上,就增加了一个自由度,这也是人们目前研究的方向之一。
我们从电子材料硅、锗发展到光电子材料GaAs和InP,GaN等,就是电子跟光子可以结合一起使用的材料,光电子材料比电子材料的功能更强大;再下一代的材料很可能是光子材料。
我们现在只用了光子的振幅,而光的偏振和光的位相应用还未开发出来,所以这给我们研究者留下了非常广阔的天地。
从材料的发展来看,从块体材料向薄层、超薄层,低维(纳米)结构材料和功能芯片材料方向发展;功能芯片可能是有机跟无机的结合,也可以是生命与有机和无机的结合,这也为我们提供了一个非常广阔的创新的天地,我相信人们将来能在这个领域大有作为。
总之,半导体材料的发展迅速,应用广泛随着时间的推移和技术的发展,半导体材料的应用将更加重要和关键,半导体技术和半导体材料的发展也将走向更高端的市场。