电催化氧化法处理苯胺废水试验研究
- 格式:pdf
- 大小:278.18 KB
- 文档页数:4
电催化氧化技术在废水处理中的应用分析摘要:废水处理往往对技术层面要求相对较高,电催化氧化技术往往具备快速、不会产生二次污染等优势,故现阶段被广泛运用至废水处理相关领域当中,所获取处理效果相对理想。
鉴于此,本文主要围绕着废水处理当中电催化氧化技术应用开展深入的研究和探讨,期望可以为后续更多研究学者对此类课题的实践研究提供有价值的指导或者参考。
关键词:废水处理;电催化;氧化技术;应用;前言:电催化氧化技术,属于现阶段废水处理当中有效性较为突出的一项科学技术,所具备优势较为突出,能够更为高效地处理各种废水,对废水治理各项工作的有效实施来说有着积极作用。
因而,综合分析废水处理当中电催化氧化技术应用,有着一定的实际意义和价值。
1.电催化氧化技术简述1.1在技术原理层面电催化氧化技术,其以电子作为主要的反应机理,催化活性阳极材料的表面位置有着强氧化特性的中间体产生,以间接或者直接氧化方式处理废水当中污染底物,其阴极有着一定还原特性,因而,可对如重金属类离子等可被还原一些污染底物实施有效处理,因其主要为阳极氧化,故通常称其是电催化式氧化。
电催化氧化技术,其能够处于常压及常温环境下产生一定反应,有着极高效率及较广的适应性,且不会有二次污染产生、有着极高自动化的程度,属于绿色环保价值较为突出的一种处理技术。
在直接氧化层面,即直接在阳极当中污染物失去电子致使氧化发生,有机物直接实施电催化的氧化处理,其主要分两类实施。
一种是电化学的转换,难生化部分有机物有效转化为一种易生化物质或有毒物质均转变成无毒物质,对B/C比起到改善作用,促使废水更具可生化性,实现生化处理的进一步落实[1];另外一种是电化学的燃烧处理,直接深度氧化有机物成CO2。
这两种不同电化学的反应试验当中均同步实施。
但因为不同的电极材料,表面位置涂层材料也必然存在差异性,对这两种不同反应主次有着决定作用;在间接氧化层面,间接性电化学的反应,其主要是借助电化学的反应所产生氧化的还原剂,把污染物逐步转化成为相应的无害物,这一过程所产生氧化的还原剂便属于污染物和电极交换的电子中间体,此中间体可为催化剂或者电化学所产生寿命较短的中间体。
苯胺污水处理标题:苯胺污水处理引言概述:苯胺是一种有机化合物,广泛用于染料、药品和农药的生产过程中。
然而,苯胺污水对环境和人类健康造成严重危害。
因此,有效处理苯胺污水至关重要。
一、物理处理方法1.1 沉淀法:通过加入沉淀剂将苯胺沉淀出来,然后进行过滤分离。
1.2 吸附法:利用吸附剂吸附苯胺分子,如活性炭、氧化铁等。
1.3 膜分离法:利用微孔膜或超滤膜将苯胺分离出来。
二、化学处理方法2.1 氧化法:利用氧化剂将苯胺氧化成无害的产物,如过氧化氢、高锰酸盐等。
2.2 还原法:通过还原剂将苯胺还原成无害的产物,如亚硫酸氢钠、亚硫酸钠等。
2.3 中和法:利用酸碱中和将苯胺转化成中性产物,如氢氧化钠、硫酸等。
三、生物处理方法3.1 厌氧处理:利用厌氧菌将苯胺降解为无害的产物,如甲烷、二氧化碳等。
3.2 好氧处理:通过好氧菌将苯胺降解为水和二氧化碳。
3.3 植物修复:利用植物吸收苯胺,将其转化为植物生长所需的养分。
四、高级氧化法4.1 光催化氧化法:通过紫外光或可见光激发催化剂将苯胺氧化为无害产物。
4.2 电化学氧化法:利用电化学方法将苯胺分解为无害的化合物。
4.3 等离子体氧化法:利用高温等离子体将苯胺氧化为无害产物。
五、综合处理方法5.1 聚合物复合材料处理:利用聚合物复合材料吸附和分解苯胺。
5.2 聚合物膜处理:利用聚合物膜将苯胺分离出来。
5.3 光催化生物复合法:结合光催化和生物处理方法,高效降解苯胺污水。
结论:苯胺污水处理是一个复杂的过程,需要综合运用物理、化学、生物和高级氧化等多种方法。
选择合适的处理方法,可以高效减少苯胺对环境的危害,保护人类健康。
希望未来能够研发出更加环保、高效的苯胺污水处理技术。
苯胺污水处理标题:苯胺污水处理引言概述:苯胺是一种有机化合物,常用于染料、药物和农药的生产中。
然而,苯胺污水的排放会对环境造成严重的污染,因此需要采取有效的方法进行处理。
本文将介绍苯胺污水处理的方法和技术。
一、物理处理方法1.1 溶解气浮法:通过将气体溶解在水中,形成弱小气泡,使苯胺污水中的悬浮物质浮起,从而实现固液分离。
1.2 活性炭吸附:将活性炭添加到苯胺污水中,通过吸附作用去除苯胺及其附着的有机物。
1.3 超滤膜分离:利用超滤膜的微孔结构,将苯胺污水中的大份子有机物截留在膜外,实现分离和净化。
二、化学处理方法2.1 氧化法:利用氧化剂如臭氧、过氧化氢等氧化苯胺,将其转化为无毒无害的化合物。
2.2 化学沉淀法:通过加入适当的沉淀剂,使苯胺在水中形成沉淀,然后进行固液分离。
2.3 光催化降解:利用光催化剂催化苯胺分解为无害物质,如二氧化碳和水。
三、生物处理方法3.1 好氧生物处理:利用好氧微生物降解苯胺,将其转化为无害的二氧化碳和水。
3.2 厌氧生物处理:利用厌氧微生物在无氧条件下降解苯胺,产生甲烷和二氧化碳。
3.3 生物滤池处理:将苯胺污水通过生物滤池,利用生物膜中的微生物去除苯胺及其附着的有机物。
四、组合处理方法4.1 生物-物理组合处理:将生物处理和物理处理方法结合,如先通过生物处理去除部份苯胺,再通过物理处理去除残存的有机物。
4.2 化学-生物组合处理:先利用化学方法氧化苯胺,再通过生物处理将其降解为无害物质。
4.3 物理-化学组合处理:先通过物理方法去除苯胺污水中的悬浮物质,再利用化学方法对溶解在水中的苯胺进行处理。
五、综合评价5.1 不同处理方法的适合性:根据苯胺污水的具体情况和处理要求,选择合适的处理方法进行处理。
5.2 处理效果评价:对不同处理方法的处理效果进行评价,包括去除率、处理成本等指标。
5.3 污水处理技术的发展趋势:随着科技的发展,苯胺污水处理技术将不断更新换代,朝着高效、低成本、环保的方向发展。
电催化氧化法降解水中有机物的研究进展[作者:陈繁忠 傅家谟 盛国英 闵育顺 点击数:916 ]到论坛进行讨论[来源:《中国给水排水》1999年 第3期游客选项: 发表评论 收藏此页通过阳极反应直接降解有机物,或通过阳极反应产生羟基自由基(·OH)、臭氧一类的氧化剂降解有机物,这种降解途径使有机物分解更加彻底,不易产生毒害中间产物,更符合环境保护的要求。
这种方法通常被称为有机物的电催化氧化过程[1]。
长期以来,受电极材料的限制,电催化氧化降解有机物过程的电流效率很低、电耗很高,难以实用化。
80年代后,国内外许多研究者从研制高电催化活性电极材料入手,对有机物电催化氧化机理和影响降解效率的各种因素进行了研究,取得了较大突破,并开始应用于特种难生物降解有机废水的处理过程。
1 催化电极及机理研究电催化氧化过程通过阳极反应降解有机物,面临的主要竞争副反应就是阳极氧气的析出。
因而催化电极的一个必要条件是要有较高的析氧超电压。
1991年S.Stucki[2、3]等人研制开发了涂覆二氧化锡-五氧化二锑的钛基电极(SnO 2-Sb 2O 5/Ti),并考察其电化学性能。
结果表明,该电极比Pt/Ti 电极、二氧化铅电极有更高的析氧超电压。
在1mol/LH 2SO 4电解质中,当电流密度为0.1mA/cm 2时,SnO 2-Sb 2O 5/Ti 、Pt/Ti 、二氧化铅电极的析氧电位分别为1.95、1.50、1.65V ;当电流密度为10mA/cm 2时,三者的析氧电位分别为2.39、1.75、1.90V 。
研究者采用SnO 2-Sb 2O 5/Ti 作阳极,进行了各种有机物的电催化氧化降解实验(见表1)[4]。
结果表明,SnO 2-Sb 2O 5/Ti 电极作阳极氧化降解有机物,其电流效率比Pt/Ti 电极高得多。
SnO 2-Sb 2O 5/Ti 电极不仅对有机物降解具有较高的效率,同时也具备良好的导电性能和十分稳定的化学、电化学性能[4、5]。
电催化氧化降解有机污染物技术研究随着工业化进程和城市化的不断加剧,城市化程度和规模日益扩大,工业污染和城市垃圾对环境造成了严重的污染,严重地危害了生态环境和人类健康。
如何有效地降解与处理有机污染物成为了重要的课题。
电催化氧化技术是一种新兴的处理有机物污染的方法,具有高效降解率、无二次污染的优点,在处理有机污染物具有广阔的应用前景。
一、电催化氧化技术原理电催化氧化技术指的是将电能转化为化学能,通过介电质或催化剂加速有机物氧化处理。
其核心原理为电氧化催化反应:电子在电流作用下流经阴阳极表面的催化剂,使之发生氧化还原反应,产生氧化剂,进而加速有机物氧化分解。
二、电催化氧化技术的应用1. 污水处理电催化氧化技术在污水处理中应用最为广泛。
它可以有效地处理纺织、染料、印染、渗透液、化工废水、医药废水等有机物废水,具有高效、节能、环保的特点。
2. 大气治理电催化氧化技术在大气治理中,主要是通过氧化分解车尾气中的甲烷和一氧化碳等有害气体,减少大气污染。
同时,由于电子在极化过程中的功能,与光催化技术联合使用可提高大气治理效果。
3. 化学工艺电催化氧化技术在化工工艺中应用,可以实现低催化剂使用量的有机物合成和贵金属催化反应的高频次电极化,可应用于新能源汽车电池材料的生产工艺改革。
三、电催化氧化技术研究现状及发展方向1. 催化剂研究电催化氧化技术中,催化剂的性能直接影响到反应的效率和稳定性,因此催化剂的研究一直是学术界和产业界关注的焦点。
目前常见的催化剂有金属氧化物、过渡金属、嵌入式金属等,学者们通过各种方法对催化剂的性质进行了深入的研究。
2. 反应机理研究电催化氧化技术反应机理的明确是提高技术性能以及将技术投入实际应用的关键之一,反应动力学和反应机理的研究已成为学术界关注的方向。
目前,电催化氧化技术反应机理的研究方向主要是电化学与物理化学理论模拟、基于质谱谱学和红外等技术的反应机理研究。
3. 智能化运控平台建设随着科技不断发展,智能化运控平台的建设成为产业发展的重要方向。
电催化氧化处理染料废水的研究现状与展望孙亚军(辽宁省环境保护厅后勤服务中心,辽宁沈阳110161)摘要:电催化氧化法能使有机物降解更彻底,不易产生有毒害的中间产物,基本无二次污染,被称为清洁处理法,与现代环保理念吻合,加之管理方便,处理设备简单,在环境净化工作中逐渐显现出独特的优越性,越来越受到环境工程领域的青睐。
系统地介绍了电催化氧化的技术研究成果,全面阐述了该技术的优势与存在的问题,并就该技术的应用前景和研究方向进行了分析和展望。
关键词:电催化氧化;染料废水;应用研究Abstract:The degradation of organic matter can be more thorough by electro-catalytic oxidation method,not easy to produce toxic intermediates,almost no secondary pollution,known as the cleaning treatment,which consistent with the modern concept of environmental protection,combined with easy management,deal with simple equipment,the method gradually appears unique advantages in environmental cleanup work,more and more favored in environmental engineering field.This paper describes the electro-catalytic oxidation technology progress systematically,gives a comprehensive exposition of the advantages of the technology and the problems,and analyzes the application prospects and research directions.Key words:electro-catalytic oxidation;dye wastewater;application research中图分类号:X703文献标识码:B文章编号:1674-1021(2014)12-0053-041引言化工行业产生的工业污水,具有高浓度、强酸碱度、高毒性、难降解等特点,不经过处理任意排放会给水环境带来严重危害,因而对该类化合物的处理一直是人们关注的问题。
电催化氧化法处理含氨氮废水及工艺设计方案文章根据湿法生产车间废水特点,研究了采用电催化氧化法处理含氨氮工业废水的可行性,分别考察了废水中氨氮含量、氧化时间、废水中氯离子含量对处理效果的影响。
试验结果表明:电催化氧化法处理废水中的氨氮工艺路线可行,最佳条件为:进水氨氮浓度小于400mg/L,氧化时间90分钟,废水中氯离子含量1.5g/L,在此条件下,氧化效率能达到90%以上,废水中残留氨氮小于30mg/L。
最后,针对车间废水特点设计了可行的处理方案。
标签:电催化氧化法;吹脱法;氨氮;废水处理;工业废水文章以湿法生产车间废水为例,主要研究了采用电催化氧化法去除工业废水中氨氮的可行性及最佳条件,然后根据试验结果,设计了废水处理工艺流程。
1 电催化氧化法处理氨氮机理化学技术的基本原理就是使污染物在电极上直接发生电化学反应或利用电极表面产生的强氧化性物质使污染物发生氧化还原反应,后者称为间接电化学反应。
如图1所示:电催化氧化(ECO)机理主要是通过电极和催化材料的作用产生超氧自由基(·O2)、H2O2、羟基自由基(·OH)等活性基团来氧化水体中的污染物,若溶液中有Cl-存在,还可能有Cl2、HClO-及ClO-等氧化剂存在,能大大提高降低污染物的能力[1]。
电催化氧化法利用阳极氧化性可直接或间接地将氨氮氧化,具有较高的去除率,该方法操作简便自动化程度高,不需要添加氧化还原剂,避免污泥的二次污染,能量效率高,反应条件温和,常温常压下即可。
其缺点是耗电量大[2]。
2 实验部分2.1 试验过程针对湿法生产车间废水特点,为了研究电催化氧化法去除氨氮最佳条件,做了以下实验:进水来自某湿法生产车间产生的含氨氮废水,初始氨氮含量约为1500mg/L,稀释后作为实验用水,通过调节氧化电流及电压,控制氧化时间,调节进水中氯离子含量,达到去除废水中氨氮的效果。
2.2 试验装置3 结果与讨论3.1 氧化时间对去除效率的影响生产线含氨氮废水经稀释后,氨氮含量329.28mg/L作为实验用水,固定电流(80A)电压(5.0V),进水中氯离子含量小于0.5g/L,PH:8.2,调整循环时间,实验结果见图3。