青岛大学数学分析2009-2017年考研初试真题
- 格式:pdf
- 大小:1.27 MB
- 文档页数:18
科目代码: 827 科目名称: 信号与系统 (共 13 页)请考生写明题号,将答案全部答在答题纸上,答在试卷上无效Ⅰ、填空题(共11题,每空格3分,共33分)1.对冲激偶信号)(t δ',='⎰∞∞-dt t )(δ ,=-'⎰∞∞-dt t f t t )()(0δ 。
2.时间函数)()(t u e t f t -=的傅里叶变换=)(ωF 。
3.已知()()x n nu n =,()()h n u n =,则卷积和序列)()()(n h n x n y *=在2n =点的取值为(2)y = 。
4.象函数2()221(0)F z z z z -=-++<<∞,则原序列=)(n f 。
5.序列()()x n u n =-的z 变换及其收敛域为 。
6.s 平面的实轴映射到z 平面是 。
7.题图7所示因果周期信号的拉氏变换()F s = 。
8.无失真传输网络的频域系统函数()H j ω= 。
9.某因果LTI (线性时不变)离散时间系统的系统函数3()31z H z z =-,则系统对余弦激励序列()cos()()x n n n π=-∞<<∞的响应()y n = 。
10.写出题图10所示流图描述的连续时间系统的微分方程 。
题图7t题图10科目代码: 827 科目名称: 信号与系统 (共 13 页)请考生写明题号,将答案全部答在答题纸上,答在试卷上无效t题图1322Ⅱ、计算题(共8题,117分)(11分)11.描述某线性时不变因果离散时间系统的差分方程为)1()()1(5.0)(--=-+n x n x n y n y已知当)()(n u n x =时,全响应的1)1(=y ,求零输入响应)(n y zi 。
(12分)12.某因果LTI 连续时间系统,其输入、输出用下列微分—积分方程描述()5()()()()d r t r t e f t d e t dtτττ∞-∞+=--⎰其中()()3()t f t e u t t δ-=+,求该系统的单位冲激响应()h t 。
青岛大学2017年硕士研究生入学考试试题科目代码:816科目名称:高等代数(共2页)请考生写明题号,将答案全部答在答题纸上,答在试卷上无效一、(15分)令n n j i n j n i b a b a A ⨯⎪⎪⎭⎫ ⎝⎛--=11,计算行列式A det 。
二、(10分)设)(),(),(),(2121x g x g x f x f 是数域P 上的多项式,并且()2,1,,1)(),(==j i x g x f ji。
证明:()()())(),()(),()()(),()(21212211x g x g x f x f x g x f x g x f =三、(20分)设V 是数域P 上的n 维线性空间,n εεε,,,21是V 的一组基,n m m <,,,,21ααα是V 的一个线性无关向量组。
证明:在n εεε,,,21中存在m n -个向量m n i i i -εεε,,,21,使得m n i i i m -εεεααα,,,,,,,2121构成V 的一组基。
四、(20分)设A 是n 阶非零实对称矩阵,二次型Ax x T 的符号差为零。
证明:存在n 维非零实向量321,,ααα,使得0,0,0332211=<>ααααααA A A TT T 。
五、(20分)设n 元非齐次线性方程组b Ax =有解,令γ是b Ax =的解向量,s ηηη,,,21是其导出组0=Ax 的基础解系。
证明:(1)s ηγηγηγγ+++,,,,21线性无关;(2)b Ax =的任意2+s 个解向量1210,,,,,+s s γγγγγ必线性相关。
六、(15分)设⎪⎪⎭⎫ ⎝⎛=B C C AM T是实矩阵,其中B A ,分别为n m ,阶方阵。
(1)证明:若M 是对称矩阵,则B A ,是对称矩阵。
(2)证明:若M 是正定矩阵,则C A C B B A T 1,,--是正定矩阵。
七、(15分)设B A ,是数域P 上的n 阶方阵,且E AB m =)(,其中E 是n 阶单位矩阵,m 是正整数。
1青岛大学2017年硕士研究生入学考试试题科目代码:877科目名称:常微分方程(共2页)请考生写明题号,将答案全部答在答题纸上,打在试卷上无效
一、填空题(18分)
1.所谓微分方程就是一个或几个联系着之间关系的等式。
2.在微分方程中,必定含有未知函数的导数项,其中出现的就称为该微分方程的阶数。
3.对于n 阶方程0),...,,,,()(='''n y y y y x F ,如果它的解),...,,,(21n c c c x y ϕ=含有常数n c c c ,...,,21,则称这个解为。
4.对于现行微分方程来说,其通解就包含了它的
;对于非线性方程来说其通解并不一定包含其。
二、根据下图建立相应的微分方程(15分)
如图所示,一根弹簧一端固定另一端连接
质量为m 的物体。
设弹簧系数是k,空气
的阻尼系数是n ,并假设物体的空气阻力
与物体的运动速度成正比。
试求物体运动的微分方程。
三、回答下列各题(25分)
1.指出下列方程的阶数并判断是否为线性方程
(1)y x dx dy 32-=,(2)03233=++xy dx
dy y dx y
d 2.什么是常微分方程的特解?何为初值问题?
3.写出齐次和非齐次线性微分方程组的一般形式;叙述叠加原理;若)
(1x ϕx
m
k。