带电粒子在复合场中的运动(总结)
- 格式:docx
- 大小:107.65 KB
- 文档页数:3
带电粒子在复合场中的运动1、如图所示,在y > 0的空间中存在匀强电场,场强沿y 轴负方向;在y < 0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电量为q 、质量为m 的带正电的运动粒子,经过y 轴上y = h 处的点P1时速率为v0,方向沿x 轴正方向,然后经过x 轴上x = 2h 处的P2点进入磁场,并经过y 轴上y = – 2h 处的P3点.不计粒子的重力,求 (1)电场强度的大小;(2)粒子到达P2时速度的大小和方向; (3)磁感应强度的大小. 2、如图所示的区域中,第二象限为垂直纸面向外的匀强磁场,磁感应强度为B ,第一、第四象限是一个电场强度大小未知的匀强电场,其方向如图。
一个质量为m ,电荷量为+q 的带电粒子从P 孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=30°,粒子恰好从y 轴上的C孔垂直于匀强电场射入匀强电场,经过x 轴的Q 点,已知OQ=OP ,不计粒子的重力,求:(1)粒子从P 运动到C 所用的时间t ; (2)电场强度E 的大小;(3)粒子到达Q 点的动能Ek 。
3、如图所示,半径分别为a 、b 的两同心虚线圆所围空间分别存在电场和磁场,中心O 处固定一个半径很小(可忽略)的金属球,在小圆空间内存在沿半径向内的辐向电场,小圆周与金属球间电势差为U ,两圆之间的空间存在垂直于纸面向里的匀强磁场,设有一个带负电的粒子从金属球表面沿+x 轴方向以很小的初速度逸出,粒子质量为m ,电量为q ,(不计粒子重力,忽略粒子初速度)求:(1)粒子到达小圆周上时的速度为多大?(2)粒子以(1)中的速度进入两圆间的磁场中,当磁感应强度超过某一临界值时,粒子将不能到达大圆周,求此最小值B 。
(3)若磁感应强度取(2)中最小值,且b =(2+1)a ,要粒子恰好第一次沿逸出方向的反方向回到原出发点,粒子需经过多少次回旋?并求粒子在磁场中运动的时间。
带电粒子在复合场中的运动1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O 点4R 处飞越x 轴如图所示(图中电场与磁场均未画出)故有L =2R ,L =2×2R ,L =3×2R 即 R =L /2n ,(n=1、2、3……)…………… ①设粒子静止于y 轴正半轴上,和原点距离为h ,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE (n =l 、2、3……)2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r ,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+(R 1一d/2)2,R 1=5d/4……④ R 22=(2d )2+(R 2一d/2)2,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U.4、解析:如图所示,带电粒子从S 出发,在两筒之间的电场力作用下加速,沿径向穿出a 而进入磁场区,在洛仑兹力作用下做匀速圆周运动。
带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。
当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。
当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。
3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。
常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。
带电粒子在复合场中的运动一 带电粒子在匀强磁场中的匀速圆周运动(1) 圆心的确定:带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点(或某一速度方向的垂线和圆周上两点连线中垂线的交点),如图所示(2) 运动半径大小的确定:一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解半径的大小。
(3) 运动时间的确定:首先利用周期公式T=,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角α,其运动时间t= T 。
(4) 圆心角的确定①带电粒子射出磁场的速度方向与射入磁场的速度方向的夹角φ叫做偏向角。
偏向角等于圆心角即φ=α。
②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2备注:只有当带电粒子以垂直于磁场方向射入匀强磁场中时,带电粒子才能做匀速圆周运动,两个条件缺一不可。
例题1 如图所示,一束电子(电荷量为e )以速度v 垂直边界射入磁感应强度为B ,宽为d 的匀强磁场中,穿过磁场时速度方向与电子原来入射方向的夹角为300。
求:(1)电子的质量;(2)电子穿过磁场所用的时间。
二 “磁偏转”与“电偏转”的区别“磁偏转”和“电偏转”是分别利用磁场和电场对运动电荷施加的洛伦兹力和电场力的作用,从而控制其运动备注:磁偏转中动能不变;电偏转中由于电场力做功,动能改变(常用动能定理)。
例题2 在如图所示宽度范围内,用场强为E的匀强电场可使初速度是v0的某种带正电粒子偏转θ角.在同样宽度范围内,若改用方向垂直于纸面向外的匀强磁场,使该粒子穿过该区域,并使偏转角也为θ(不计粒子的重力),问:(1)匀强磁场的磁感应强度是多大?(2)粒子穿过电场和磁场的时间之比是多大?三质谱仪1 质谱仪是测量带电粒子的质量和分析同位素的重要工具2 质谱仪的工作原理:将质量数不等、电荷数相等的不同带电粒子,经同一电场加速后再经速度选择器进入同一磁场偏转,由于粒子质量不同导致轨道半径不同而达到分离不等质量粒子的目的。
高三物理带电粒子在复合场中的运动知识点总结|带电粒子在电场中的运动知识点一、带点粒子在复合场中的运动本质是力学问题1、带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。
2、分析带电粒子在复合场中的受力时,要注意各力的特点。
如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。
而带电粒子在磁场中只有运动(且速度不与磁场平行)时才会受到洛仑兹力,力的大小随速度大小而变,方向始终与速度垂直,故洛仑兹力对运动电荷不做功.二、带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)1、带电微粒在三个场共同作用下做匀速圆周运动:必然是电场力和重力平衡,而洛伦兹力充当向心力.2、带电微粒在三个场共同作用下做直线运动:重力和电场力是恒力,它们的合力也是恒力。
当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动; 当带电微粒的速度垂直于磁场时,一定做匀速运动。
3、与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度)。
必要时加以讨论。
三、带电粒子在重力场、匀强电场、匀强磁场的复合场中的运动的基本模型有:1、匀速直线运动。
自由的带点粒子在复合场中作的直线运动通常都是匀速直线运动,除非粒子沿磁场方向飞入不受洛仑兹力作用。
因为重力、电场力均为恒力,若两者的合力不能与洛仑兹力平衡,则带点粒子速度的大小和方向将会改变,不能维持直线运动了。
2、匀速圆周运动。
自由的带电粒子在复合场中作匀速圆周运动时,必定满足电场力和重力平衡,则当粒子速度方向与磁场方向垂直时,洛仑兹力提供向心力,使带电粒子作匀速圆周运动。
3、较复杂的曲线运动。
在复合场中,若带电粒子所受合外力不断变化且与粒子速度不在一直线上时,带电粒子作非匀变速曲线运动。
带电粒子在复合场中的运动题型总结一.带电粒子在重力场、电场及磁场混合场中的运动1(2023秋•合肥期末)如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直纸面向里,带电微粒由a 点进入该区域并刚好沿ab 直线向上运动,下列说法正确的是()A.微粒可能做匀变速直线运动B.微粒可能带正电C.微粒的电势能一定减小D.微粒的机械能一定减少2(2024•泉州二模)如图所示,速度选择器MN 两极板间的距离为d ,板间匀强磁场的磁感应强度大小为B ,O 为速度选择器中轴线上的粒子源,可沿OO ′方向发射速度大小不同、带电荷量均为q (q >0)、质量均为m 的带电粒子,经速度选择器后,粒子先后经过真空中两平行边界的匀强磁场区域到达足够大荧光屏;匀强磁场的磁感应强度分别为B 1、B 2,对应边界的宽度分别为d 1、d 2。
调节滑片P 可改变速度选择器M 、N 两极板间的电压,使粒子沿OO ′方向垂直磁场B 1边界进入B 1,经磁场B 1偏转后进入B 2,最后荧光屏恰好未发光,粒子重力不计,则MN 两极板间的电压大小是()A. B.C. D.3(2024•西城区校级开学)如图所示,两平行极板水平放置,两板间有垂直纸面向里的匀强磁场和竖直向下的匀强电场,磁场的磁感应强度为B 。
一束质量均为m 、电荷量均为+q 的粒子,以不同速率沿着两板中轴线PQ 方向进入板间后,速率为v 的甲粒子恰好做匀速直线运动;速率为v 2的乙粒子在板间的运动轨迹如图中曲线所示,A 为乙粒子第一次到达轨迹最低点的位置,乙粒子全程速率在v 2和3v 2之间变化。
研究一般的曲线运动时,可将曲线分割成许多很短的小段,这样质点在每一小段的运动都可以看作圆周运动的一部分,采用圆周运动的分析方法来处理。
不计粒子受到的重力及粒子间的相互作用,下列说法正确的是()A.两板间电场强度的大小为BvB.乙粒子从进入板间运动至A位置的过程中,在水平方向上做匀速运动C.乙粒子偏离中轴线的最远距离为D.乙粒子的运动轨迹在A处对应圆周的半径为4(2024•深圳一模)如图所示,整个空间存在一水平向右的匀强电场和垂直纸面向外的匀强磁场,光滑绝缘斜面固定在水平面上。
专题:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.(1)对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.(2)在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.(3)对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器2.磁流体发电机3.电磁流量计.4.质谱仪5.回旋加速器1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.(不考虑重力作用),离子荷质比q/m(q、m分别是离子的电量与质量)在什么范围内,离子才能打在金属板上?4.如图所示,M 、N 为两块带等量异种电荷的平行金属板,S 1、S 2为板上正对的小孔,N 板右侧有两个宽度均为d 的匀强磁场区域,磁感应强度大小均为B ,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S 1、S 2共线的O 点为原点,向下为正方向建立x 轴.板左侧电子枪发射出的热电子经小孔S 1进入两板间,电子的质量为m ,电荷量为e ,初速度可以忽略.求:(1)当两板间电势差为U 0时,求从小孔S 2射出的电子的速度v 0;(2)两金属板间电势差U 在什么范围内,电子不能穿过磁场区域而打到荧光屏上; (3)电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系.5.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m ,电量+q 的粒子在环中作半径为R 的圆周运动,A 、B 为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A 板时,A 板电势升高为U ,B 板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B 板时,A场一次次加速下动能不断增大,而绕行半径不变. (l )设t=0时粒子静止在A 板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n 圈回到A 板时获得的总动能E n . (2)为使粒子始终保持在半径为R 的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n 圈时的磁感应强度B n .(3)求粒子绕行n 圈所需的总时间t n (设极板间距远小于R ).(4)在(2)图中画出A 板电势U 与时间t 的关系(从t =0起画到粒子第四次离开B 板时即可).(5)在粒子绕行的整个过程中,A 板电势是否可始终保持为+U ?为什么?6.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B =5.0×10-3T 的匀强磁场,方向分别垂直纸面向外和向里.质量为m =6.64×10-27㎏、电荷量为q =+3.2×10-19C 的α粒子(不计α粒子重力),由静止开始经加速电压为U =1205V 的电场(图中未画出)加速后,从坐标点M (-4,2)处平行于x 轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径; (2)你在图中画出α粒子从直线x =-4到直线x =4之间的运动轨迹,并在图中标明轨迹与直线x =4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.7.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N /c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求:(1)小球运动到O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离8.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.9.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C ,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s ,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求:(1)微粒再次经过直线OO´时与O 点的距离; (2)微粒在运动过程中离开直线OO ´的最大高度;(3)水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.-10.如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m.现有一质量m =4×10-20kg ,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B =0.2T 、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:(1)粒子在磁场中做圆周运动的半径; (2)粒子在磁场中运动的时间; (3)圆形磁场区域的最小半径;(4)若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.11.如图所示,在x>0的空间中,存在沿x 轴方向的匀强电场,电场强度E=10N/C ;在x<0的空间中,存在垂直xy 平面方向的匀强磁场,磁感应强度B=0.5T .一带负电的粒子(比荷q/m=160C/kg ),在x=0.06m 处的d 点以8m/s 沿y 轴正方向的初速度v 0开始运动,不计带电粒子的重力.求:(1)带电粒子开始运动后第一次到达y 轴时的坐标. (2)带电粒子进入磁场后经多长时间会返回电场. (3)带电粒子的y 方向分运动的周期.12.如图所示,一绝缘圆环轨道位于竖直平面内,半径为R,空心内径远小于R.以圆环圆心O为原点在环面建立平面直角坐标系xOy,在第四象限加一竖直向下的匀强电场,其他象限加垂直环面向外的匀强磁场.一带电量为+q、质量为m的小球在轨道内从b点由静止释放,小球刚好能顺时针沿圆环轨道做圆周运动.(1)求匀强电场的电场强度E.(2)若第二次到达最高点a,小球对轨道恰好无压力,求磁感应强度B.(3)求小球第三次到达a点时对圆环的压力.13.如图所示的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为B,右边是一个电场强度大小未知的匀强电场,其方向平行于OC且垂直于磁场方向.一个质量为m,电荷量为-q 的带电粒子从P孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=60°,粒子恰好从C孔垂直于OC射入匀强电场,最后打在Q点,已知OQ=2OC,不计粒子的重力,求:(1)粒子从P运动到Q所用的时间t.(2)电场强度E的大小.(3)粒子到达Q点的动能E kQ.14.如图所示,在半径为R的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板问距离为两板与电动势为E的电源连接,一带电量为一质量为-q、质量为m的带电粒子(重力忽略不计),开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出,己知带电粒子与筒壁的碰撞无电荷量的损失,且每次碰撞时间极短,碰后以原速率返回.求:(1)筒内磁场的磁感应强度大小.(2)带电粒子从A点出发至第一次回到A点射出所经历的时间.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L =3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP和TQ,分别作出离子在 T、P、Q三点所受的洛仑兹力,分别延长之后相交于O1、O2点,如图所示,O1和O2分别是TP和TQ的圆心,设 R1和 R2分别为相应的半径.离子经电压U加速,由动能定理得.qU=½mv2………①由洛仑兹力充当向心力得qvB=mv2/R………②由①②式得q/m=2U/B2R2由图直角三角形O1CP和O2CQ可得R12=d2+(R1一d/2)2,R1=5d/4……④R22=(2d)2+(R2一d/2)2,R2=17d/4……⑤依题意R1≤R≤R2……⑥由③④⑤⑥可解得2228932dBU≤mq≤222532dBU.(2)4、解析:(1)根据动能定理,得20012eU mv=解得0v=(2)欲使电子不能穿过磁场区域而打在荧光屏上,应有mvr deB=<而212eU mv=由此即可解得222d eBUm<(3)若电子在磁场区域做圆周运动的轨道半径为r,穿过磁场区B2x r=-注意到mvreB=和212eU mv=所以,电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系为222)2d eBx UeB m=≥(3)5、解析:(1)E n=nqv(2)∵nqU=½mv2n∴v n=mnqU2Rmv n2=qv n B n B n=mv n/qR以v n结果代入,B n=qRmmnqU2=R1qnmv2(3)绕行第n圈需时nvRπ2=2πRqvm2n1∴t n=2πRqvm2(1+21+31+……+n1)(4)如图所示,(对图的要求:越来越近的等幅脉冲)(5)不可以,因为这样粒子在A、B之间飞行时电场对其做功+qv,使之加速,在A、B之外飞行时电场又对其做功-qv使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大。
带电粒子在复合场中的运动
一、带电粒子在复合场中的运动
1、复合场的分类
(1)叠加场:电场、磁场、重力场共存,或其中某两场共存。
(2)组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现。
2、带电粒子在复合场中的运动分类
(1)静止或匀速直线运动
当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动。
(2)匀速圆周运动
当带电粒子所受的重力与电场力大小相等、方向相反时(即:Eq=mg ),带电粒子在洛伦兹力的作
用下,在垂直于匀强磁场的平面内做匀速圆周运动(即:Bqv =2v m r )。
(3)非匀变速曲线运动
当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线。
(4)分阶段运动
带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成。
二、带电粒子在复合场中运动的实例分析
1、速度选择器
(1) 带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B ,即v =E B
(2)平行板中电场强度E 和磁感应强度B 互相垂直.这种装置能把具有一定速
度的粒子选择出来。
只选择速度,与粒子的正负和带电量无关。
2、质谱仪
(1)构造:如图所示,由粒子源、加速电场、速度选择器、偏转磁场
和照相底片等构成。
(2)原理:
①粒子由静止在加速电场中被加速:qU =12
mv 2。
②粒子在速度选择器中,进行速度筛选。
凡是速度满足v =E B ,才O
能顺利进入偏转磁场。
③粒子进入偏转磁场,受洛伦兹力偏转,做匀速圆周运动。
根据牛顿第二定律得关系式qvB =m v 2r 得出:mv r Bq = 由图可知:2mv op =2r =
Bq L = 得出:q 2m v BL
= 3、回旋加速器
(1)构造:如图所示,D 1、D 2是半圆金属盒,D 形盒的缝隙处接交流
电源。
D 形盒处于匀强磁场中。
(2)原理:粒子从D 1型盒中心附近射出。
经过D 形盒缝隙间的电场
加速,获得一定的速度后,进入D 2型盒区域,发生偏转
(半圆)后,再次进入电场,电场反向,粒子再次被加速
后,再次进入D 1型盒区域,发生偏转(半圆)。
此过程交
替进行,粒子最终从D 型盒边界射出。
由q v B =m v 2R 得:mv r Bq
= 当粒子圆周运动的半径为D 型盒半径R 时,速度最大V max
=BqR m
则:E kmax =q 2B 2R 2
2m
, 特点:①交流电的周期和粒子做匀速圆周运动的周期相等。
②粒子获得的最大动能由磁感应强度B 和D 形盒半径R 决定,与加速电压无关。
4、磁流体发电机
(1)等离子体:等离子体是由部分电子被剥夺后的原子及原子团被
电离后产生的正负离子组成的离子化气体状物质。
(2 )根据左手定则,如图中的B 板是发电机正极。
(3) 原理:等离子体中的正、负离子,在洛伦兹力的作用下横向偏转,A 、B 间出现电势差,形成电场。
当正、负离子所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定。
磁流体发电机两极板间的距离为d ,等离子体速度为v ,磁场的磁感应强度为B ,
则由qE =q v B 得:E=Bv
进而得出:两极板间能达到的稳定的电势差U =B v d
5、电磁流量计
工作原理:如图所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体
中的自由电荷(正、负离子),在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电
场,当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定,即:
q v B =qE =q U d ,所以v =U Bd ,因此液体流量Q =S v =πd 24·U Bd =πdU
4B 。