2021年高中数学圆锥曲线问题常用方法
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
FAP HBQ 圆锥曲线常用方法与结论(收藏)1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.【典型例题】例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标为 。
圆锥曲线定点定值问题之定比点差法一:定比点差法原理定比分点:若,MB AM λ=则称点M 为AB 的入定比分点,若()()2211,,,y x B y x A 则⎪⎭⎫ ⎝⎛++++λλλλ1,1:2121y y x x M 若MB AM λ=且NB AN λ-=,则称N M ,调和分割B A ,,根据定义,那么B A ,也调和分割N M ,.1.定理:在椭圆或双曲线中,设A,B 为椭圆或双曲线上的两点。
若存在P ,Q 两点,满足PBAP λ=,QBAQ λ-=,一定有122=±b y y a x x Q P QP 证明:若()()2211,,,y x B y x A , PB AP λ=,则⎪⎭⎫⎝⎛++++λλλλ1,1:2121y y x x P,QB AQ λ-=则⎪⎭⎫⎝⎛----λλλλ1,1:2121y y x x Q ,有2211222222222221x y a b x y a b ①②①—②得:()()()()121212122221.x x x x y y y y a b λλλλλ+-+-±=-即11111112121221212=--•++•±--•++•λλλλλλλλy y y y b x x x x a122=±by y ax x Q P Q P2.在抛物线pxy 22=中,设A,B 为抛物线上的两点。
若存在P ,Q 两点,满足PBAP λ=,QBAQ λ-=,一定有)(Q P Q P x x p y y +=证明:若()()2211,,,y x B y x A , PB AP λ=,则⎪⎭⎫⎝⎛++++λλλλ1,1:2121y y x x P,QB AQ λ-=则⎪⎭⎫ ⎝⎛----λλλλ1,1:2121y y x x Q ,有2112222222y px y px ①②①—②得:22222121122()y y p x x x x λλλ-=+--即22121212121212))()y y y y p x x x x x x x x λλλλλλλλ+-=++-+---(( 12121212))()(1)()(1)(1)(1)(1)(1)(1)(1)y y y y p x x p x x λλλλλλλλλλλλ+-+--+=++--+-+(()(Q P Q P x x p y y +=定比点差的原理谜题解开,就是两个互相调和的定比分点坐标满足圆锥曲线的特征方程。
专题3 圆锥曲线中的定值问题在解析几何中,有些几何量,如斜率、距离、面积、比值、角度等基本量与参变量无关,这类问题统称为定值问题.对学生逻辑思维能力计算能力等要求很高,这些问题重点考查学生方程思想、函数思想、转化与化归思想的应用.探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关; ② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.解答的关键是认真审题,理清问题与题设的关系,建立合理的方程或函数,利用等量关系统一变量,最后消元得出定值。
题型1、与面积有关的定值问题 经典例题:1.(2021·四川成都市·高三三模(理))已知椭圆()2222:10x y C a b a b+=>>的长轴长为,其离心率与双曲线221x y -=的离心率互为倒数.(1)求椭圆C 的方程;(2)将椭圆C 上每一点的横坐标扩大为原来倍,纵坐标不变,得到曲线1C ,若直线:l y kx t =+与曲线1C 交于P 、Q 两个不同的点,O 为坐标原点,M 是曲线1C 上的一点,且四边形OPMQ 是平行四边形,求四边形OPMQ 的面积.【答案】(1)2212x y +=;(2 【分析】(1)根据已知条件求出a 、b 、c 的值,由此可得出椭圆C 的方程;(2)求出曲线1C 的方程,设()11,P x y 、()22,Q x y 、()00,M x y ,将直线l 的方程与曲线1C 的方程联立,列出韦达定理,求出点M 的坐标,代入曲线1C 的方程,可得出22414t k =+,求得PQ 以及点O 到直线PQ 的距离,利用三角形的面积公式可求得结果.【详解】(1)由已知,2a =,所以a =221x y -=,可知,椭圆C 的离心率为c a =即a =,故1c =,进而1b ==,所以椭圆C 的方程为2212x y +=;(2)将椭圆C倍,纵坐标不变,得到曲线1C 的方程为2214x y +=,设()11,P x y 、()22,Q x y 、()00,M x y ,由()2222214844044y kx tk x ktx t x y =+⎧⇒+++-=⎨+=⎩, 由韦达定理可得122814kt x x k -+=+,21224414t x x k-=+, 且()()()2228414440∆=-+->kt kt,即2214<+t k ,由四边形OPMQ 是平行四边形,所以OM OP OQ =+, 则0122814kt x x x k -=+=+,()0121222214t y y y k x x t k =+=++=+, 因为点M 在椭圆上,所以222282141414-⎛⎫⎪+⎛⎫⎝⎭+= ⎪+⎝⎭kt t k k ,整理可得22414t k =+, 所以21222441114-==-+t x x k t , 则PQ ===,O 到直线l 的距离d =OPMQ 的面积为PQ d ⋅=.【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.(2021·安徽高三其他模拟(理))已知椭圆()2222:10x y C a b a b +=>>过点P ⎛ ⎝⎭. (1)求椭圆C 的标准方程;(2)设点A 、B 分别是椭圆C 的左顶点和上顶点,M 、N 为椭圆C 上异于A 、B 的两点,满足//AM BN ,求证:OMN 面积为定值.【答案】(1)2214x y +=;(2)证明见解析.【分析】(1)根据已知条件可得出关于a 、b 、c 的方程组,结合这三个量的值,由此可得出椭圆C 的标准方程;(2)设直线AM 的方程为()2y k x =+,设直线BN 的方程为1y kx =+,将这两条直线分别与椭圆C 的方程联立,求出点M 、N 的坐标,求出OM 以及点N 到直线OM 的距离,利用三角形的面积公式可求得结果.【详解】(1)由已知条件可得2222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪⎪=+⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,即椭圆C 的标准方程为2214x y +=; (2)设()11,M x y 、()22,N x y ,由题意直线AM 、BN 的斜率存在,设直线AM 的方程为()2y k x =+①,设直线BN 的方程为1y kx =+②,由(1)椭圆22:14x C y +=③,联立①③得()222241161640k x k x k +++-=,解得2122841k x k -=+,即222284,4141k k M k k ⎛⎫- ⎪++⎝⎭, 联立②③,得()224180k x kx ++=,所以,22841kx k =-+,即222148,4141k k N k k ⎛⎫- ⎪++⎝⎭-,易知OM =直线OM 的方程为110y x x y -=,点N 到直线OM的距离为d =所以211222222211841222414121411844OMNx y x y k k S OM d k k k k k k --=⋅==⋅-⋅=++++--△, 故OMN 面积为定值1.【点睛】求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.3.(2021年北京高考模拟)已知椭圆C :22221(0)x y a b a b +=>>,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:四边形ABNM 的面积为定值.【解析】(Ⅰ)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab ac 解得1,2==b a .所以椭圆C 的方程为1422=+y x . (Ⅱ)由(Ⅰ)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .因为AN ⊥BM ,所以12ABNM S AN BM =⋅⋅ 1°当00≠x 时,直线PA 的方程为)2(200--=x x y y . 令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M.直线PB 的方程为1100+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以0000211212212ABNM x y S AN BM y x =⋅⋅=⋅+⋅+-- 2200000000000000000044484448811222222x y x y x y x y x y x y x y x y x y ++--+--+==--+--+2=. 2°当00=x 时,10-=y ,,2,2==AN BM 所以四边形ABNM 的面积为定值。
解圆锥曲线问题常用方法+椭圆与双曲线的经典结论+椭圆与双曲线的对偶性质总结解圆锥曲线问题常用以下方法:1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
(2))0,0(12222>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02020=-k b y a x(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.椭圆与双曲线的对偶性质总结椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
高考数学复习考点题型专题讲解专题21 圆锥曲线的基本问题高考定位 圆锥曲线的方程与几何性质是高考的重点,多以选择题、填空题或解答题的一问的形式命题,难度较小.1.(2021·新高考Ⅰ卷)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A.13B.12C.9D.6 答案 C解析 由椭圆C :x 29+y 24=1,得|MF 1|+|MF 2|=2×3=6,则|MF 1|·|MF 2|≤⎝⎛⎭⎪⎫|MF 1|+|MF 2|22=32=9,当且仅当|MF 1|=|MF 2|=3时等号成立.故选C.2.(2022·全国乙卷)设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B (3,0),若|AF |=|BF |,则|AB |=( )A.2B.2 2C.3D.3 2 答案 B解析 法一 由题意可知F (1,0), 抛物线的准线方程为x =-1.设A (y 204,y 0),则由抛物线的定义可知|AF |=y 204+1,又|BF |=3-1=2,故由|AF|=|BF|,可得y24+1=2,解得y0=±2,所以A(1,2)或A(1,-2). 不妨取A(1,2),故|AB|=(1-3)2+(2-0)2=22,故选B.法二由题意可知F(1,0),故|BF|=2,所以|AF|=2.又抛物线通径长为4,所以|AF|=2为通径长的一半,所以AF⊥x轴,所以|AB|=(-2)2+22=22,故选B.3.(2022·全国甲卷)椭圆C:x2a2+y2b2=1(a>b>0)的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为( )A.32B.22C.12D.13答案 A解析设P(m,n)(n≠0),则Q(-m,n),易知A(-a,0),所以k AP·k AQ=nm+a·n-m+a=n2a2-m2=14(*).因为点P在椭圆C上,所以m 2a 2+n 2b 2=1,得n 2=b 2a2(a 2-m 2),代入(*)式,得b 2a 2=14,所以e =ca=1-b 2a 2=32.故选A.4.(2022·北京卷)已知双曲线y 2+x 2m =1的渐近线方程为y =±33x ,则m =________.答案 -3解析法一 依题意得m <0,双曲线的方程化为标准方程为y 2-x 2-m=1,此时双曲线的渐近线的斜率为±1-m=±33,解得m =-3.法二 依题意得m <0,令y 2-x 2-m =0,得y =±1-m x ,则±1-m=±33,解得m =-3.5.(2022·新高考Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),C 的上顶点为A ,两个焦点为F 1,F 2,离心率为12.过F 1且垂直于AF 2的直线与C 交于D ,E 两点,|DE |=6,则△ADE 的周长是________. 答案 13解析 如图,连接AF 1,DF 2,EF 2,因为C 的离心率为12,所以c a =12,所以a =2c ,所以b 2=a 2-c 2=3c 2.因为|AF 1|=|AF 2|=a =2c =|F 1F 2|, 所以△AF 1F 2为等边三角形,又DE ⊥AF 2,所以直线DE 为线段AF 2的垂直平分线, 所以|AD |=|DF 2|,|AE |=|EF 2|,且∠EF 1F 2=30°, 所以直线DE 的方程为y =33(x +c ),代入椭圆C 的方程x 24c 2+y 23c 2=1,得13x 2+8cx -32c 2=0.设D (x 1,y 1),E (x 2,y 2), 则x 1+x 2=-8c 13,x 1x 2=-32c 213,所以|DE |=⎝⎛⎭⎪⎫1+13[(x 1+x 2)2-4x 1x 2]=43⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-8c 132-4×⎝ ⎛⎭⎪⎫-32c 213=48c 13=6, 解得c =138,所以a =2c =134, 所以△ADE 的周长为|AD |+|AE |+|DE |=|DF 2|+|EF 2|+|DE |=4a =13.热点一 圆锥曲线的定义与标准方程1.圆锥曲线的定义(1)椭圆:|PF 1|+|PF 2|=2a (2a >|F 1F 2|).(2)双曲线:||PF 1|-|PF 2||=2a (0<2a <|F 1F 2|).(3)抛物线:|PF |=|PM |,l 为抛物线的准线,点F 不在定直线l 上,PM ⊥l 于点M . 2.求圆锥曲线标准方程“先定型,后计算”所谓“定型”,就是确定曲线焦点所在的坐标轴的位置;所谓“计算”,就是指利用待定系数法求出方程中的a 2,b 2,p 的值.例1 (1)已知A ,B 分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点与虚轴的上端点,F (2,0)是双曲线C 的右焦点,直线AB 与双曲线C 的一条渐近线垂直,则双曲线C 的标准方程为________.(2)(2022·成都二诊)已知抛物线C 以坐标原点O 为顶点,以⎝ ⎛⎭⎪⎫p 2,0为焦点,直线x -my-2p =0与抛物线C 交于两点A ,B ,直线AB 上的点M (1,1)满足OM ⊥AB ,则抛物线C 的方程为________.答案 (1)x 22-y 22=1 (2)y 2=2x解析 (1)由题意得A (a ,0),B (0,b ),双曲线的渐近线方程为y =±ba x ,而k AB =-b a,∴-b 2a2=-1,∴a =b ,又F (2,0),∴c 2=a 2+b 2=2a 2=4, ∴a 2=b 2=2,∴双曲线C 的标准方程为x 22-y 22=1.(2)由已知直线OM 的斜率为1,则AB 的斜率为-1,所以m =-1,又M (1,1)在直线AB 上, ∴1+1-2p =0,∴p =1. ∴抛物线C 的方程为y 2=2x .易错提醒 求圆锥曲线的标准方程时的常见错误:(1)双曲线的定义中忽略“绝对值”致错;(2)椭圆与双曲线中参数的关系式弄混,椭圆中的关系式为a 2=b 2+c 2,双曲线中的关系式为c 2=a 2+b 2;(3)圆锥曲线方程确定时还要注意焦点位置.训练1 (1)(2022·武汉模拟)抛物线y 2=2px (p >0)上一点M (3,y )到焦点F 的距离|MF |=4,则抛物线的方程为( ) A.y 2=8x B.y 2=4x C.y 2=2x D.y 2=x(2)(2022·怀仁二模)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两焦点的距离之差的绝对值为6,且离心率为2,则双曲线C 的标准方程为________. 答案 (1)B (2)x 29-y 227=1解析 (1)由抛物线y 2=2px (p >0)上一点M (3,y )到焦点F 的距离|MF |=4, 可得3+p2=4,解得p =2,所以抛物线的方程为y 2=4x ,故选B.(2)由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)上任意一点到两焦点的距离之差的绝对值为6,可得a =3,离心率为2,所以c =6,则b 2=c 2-a 2=62-32=27.所以双曲线C 的标准方程为x 29-y 227=1.热点二 椭圆、双曲线的几何性质1.求离心率通常有两种方法(1)椭圆的离心率e =ca =1-b 2a 2(0<e <1),双曲线的离心率e =c a =1+b 2a2(e >1). (2)根据条件建立关于a ,b ,c 的齐次式,消去b 后,转化为关于e 的方程或不等式,即可求得e 的值或取值范围.2.与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共渐近线的双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).考向1 离心率问题例2 (1)(2022·济南模拟)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为( ) A.3-1 B.32C.12D.22(2)(2022·浙江卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F ,过F 且斜率为b4a 的直线交双曲线于点A (x 1,y 1),交双曲线的渐近线于点B (x 2,y 2)且x 1<0<x 2.若|FB |=3|FA |,则双曲线的离心率是________. 答案 (1)A (2)364解析 (1)可画出如图所示图形.△MF 1F 2为等边三角形,F 1(-c ,0),F 2(c ,0),QF 1⊥MF 2,∠F 1F 2Q =60°, ∵|F 1F 2|=2c ,∴|QF 2|=c ,|QF 1|=3c , ∴|QF 1|+|QF 2|=(3+1)c =2a ,∴ca=3-1, 即e =3-1.故选A.(2)结合题意作出图形如图所示,由题意知,过左焦点F (-c ,0)且斜率为b 4a 的直线方程为y =b4a(x +c ), 由⎩⎪⎨⎪⎧y =b 4a (x +c ),y =b a x 解得⎩⎪⎨⎪⎧x =c3,y =bc 3a ,所以B ⎝ ⎛⎭⎪⎫c 3,bc 3a .因为|FB |=3|FA |,所以FB →=3FA →, 即⎝ ⎛⎭⎪⎫4c 3,bc 3a =3(x 1+c ,y 1),得⎩⎪⎨⎪⎧x 1=-5c9,y 1=bc9a ,所以A ⎝ ⎛⎭⎪⎫-5c 9,bc 9a .将⎝ ⎛⎭⎪⎫-5c 9,bc 9a 代入双曲线方程x 2a 2-y 2b 2=1,可得⎝ ⎛⎭⎪⎫-5c 92a 2-⎝ ⎛⎭⎪⎫bc 9a 2b 2=1,结合离心率e =c a得e 2=8124, 又e >1,所以双曲线的离心率为364. 考向2 椭圆、双曲线的几何性质例3 (1)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是双曲线C 上一点,PF 2⊥x 轴,tan∠PF 1F 2=34,则双曲线的渐近线方程为( )A.x ±2y =0B.2x ±y =0C.3x ±y =0D.x ±3y =0(2)(2022·南通质检)椭圆C :x 218+y 2b 2=1(b 2<18且b >0)的上、下顶点分别为A ,C ,如图,点B 在椭圆上(异于椭圆顶点),点D 在椭圆内,平面四边形ABCD 满足∠BAD =∠BCD =90°,且S △ABC =2S △ADC ,则该椭圆的短轴长为________.答案 (1)C (2)6解析 (1)因为点P 在双曲线上,且PF 2⊥x 轴,所以点P 的横坐标为c ,代入双曲线的方程可得P ⎝ ⎛⎭⎪⎫c ,±b 2a ,则|PF 2|=b 2a,|F 1F 2|=2c ,所以tan∠PF 1F 2=|PF 2||F 1F 2|=b 2a 2c =b 22ac =34,整理得2b 2=3ac , 所以4⎝ ⎛⎭⎪⎫b a 4-9⎝ ⎛⎭⎪⎫b a 2-9=0,解得ba=3,所以双曲线的渐近线方程为y =±3x ,即3x ±y =0,故选C. (2)根据题意可得A (0,b ),C (0,-b ),设B (x 1,y 1),D (x 2,y 2).连接BD ,由∠BAD =∠BCD =90°可得,点A ,B ,C ,D 均在以BD 为直径的圆E (E 为BD 中点)上,又原点O 为圆E 上的弦AC 的中点,所以圆心E 在AC 的垂直平分线上,即圆心E 在x 轴上, 所以y 1+y 2=0. 又S △ABC =2S △ADC , 所以x 1=-2x 2,故圆心E 的坐标为⎝ ⎛⎭⎪⎫x 14,0,所以圆E 的方程为⎝⎛⎭⎪⎫x -x 142+y 2=916x 21+y 21,将(0,b )代入圆E 的方程,结合x 2118+y 21b 2=1可得b 2=9,所以b =3,短轴长为6.规律方法 1.确定椭圆和双曲线的离心率的值或范围,其关键就是确立一个关于a ,b ,c 的等量关系或不等关系,然后用a ,c 代换b ,进而求ca的值或范围.2.求双曲线渐近线方程的关键在于求b a 或ab 的值,也可将双曲线方程中等号右边的“1”变为“0”,然后因式分解得到.训练2 (1)双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 在y 轴上,且△MF 1F 2为正三角形.若线段MF 2的中点恰好在双曲线E 的渐近线上,则E 的离心率等于( ) A.5B.2 C.3D. 2(2)(2022·张家口一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,过原点O 的直线l交椭圆C 于点A ,B ,且2|FO |=|AB |,若∠BAF =π6,则椭圆C 的离心率是________. 答案 (1)B (2)3-1解析 (1)不妨设M 在y 轴的正半轴上, 设M (0,t ),t >0,由于△MF 1F 2为正三角形,所以t =3c ,故M (0,3c ),则MF 2的中点为N ⎝ ⎛⎭⎪⎫c 2,3c 2, 因为N 在渐近线y =b ax 上,所以3c 2=b a ×c 2,即b a =3,e =ca=1+⎝ ⎛⎭⎪⎫b a 2=2,故选B. (2)因为直线AB 过原点,由椭圆及直线的对称性可得|OA |=|OB |, 所以|AB |=2|OA |,设右焦点F ′,连接BF ′,AF ′, 又因为2|OF |=|AB |=2c , 可得四边形AFBF ′为矩形,在Rt△ABF 中,|AF |=2c ·cos∠BAF =2c ·32=3c , |BF |=2c ·sin∠BAF =2c ·12=c ,∴|AF ′|=|BF |=c ,由椭圆定义|AF |+|AF ′|=3c +c =2a , ∴e =c a=3-1.热点三 抛物线的几何性质抛物线的焦点弦的几个常见结论:设AB 是过抛物线y 2=2px (p >0)的焦点F 的弦,若A (x 1,y 1),B (x 2,y 2),α是弦AB 的倾斜角,则(1)x 1x 2=p 24,y 1y 2=-p 2.(2)|AB |=x 1+x 2+p =2psin 2α. (3)1|FA |+1|FB |=2p.(4)以线段AB 为直径的圆与准线x =-p2相切.例4 (1)(2022·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,点M 在抛物线C 上,射线FM 与y 轴交于点A (0,2),与抛物线C 的准线交于点N ,FM →=55MN →,则p 的值等于( ) A.18B.2 C.14D.4 (2)(多选)已知抛物线C :y 2=2px (p >0)的焦点为F ,直线l 的斜率为3且经过点F ,直线l 与抛物线C 交于A ,B 两点(点A 在第一象限),与抛物线的准线交于点D ,若|AF |=8,则以下结论正确的是( ) A.p =4 B.DF →=FA → C.|BD |=2|BF | D.|BF |=4 答案 (1)B (2)ABC解析 (1)依题意F 点的坐标⎝ ⎛⎭⎪⎫p 2,0,设M 在准线上的射影为K , 由抛物线的定义知|MF |=|MK |, ∵FM →=55MN →,∴|FM ||MN |=55, 可得|MK ||MN |=55, 则|KN |∶|KM |=2∶1, ∴k FN =0-2p 2-0=-4p ,∴-4p=-2,求得p =2.故选B.(2)如图所示,分别过点A ,B 作准线的垂线,垂足分别为E ,M ,连接EF .设抛物线C 的准线交x 轴于点P ,则|PF |=p ,由于直线l 的斜率为3,则其倾斜角为60°.又AE ∥x 轴,∴∠EAF =60°,由抛物线的定义可知,|AE |=|AF |,则△AEF 为等边三角形, ∴∠EFP =∠AEF =60°,则∠PEF =30°,∴|AF |=|EF |=2|PF |=2p =8,解得p =4,故A 正确;∵|AE |=|EF |=2|PF |,PF ∥AE ,∴F 为线段AD 的中点,则DF →=FA →,故B 正确; ∵∠DAE =60°,∴∠ADE =30°,∴|BD|=2|BM|=2|BF|(抛物线定义),故C正确;∵|BD|=2|BF|,∴|BF|=13|DF|=13|AF|=83,故D错误.规律方法利用抛物线的几何性质解题时,要注意利用定义构造与焦半径相关的几何图形(如三角形、直角梯形等)来沟通已知量与p的关系,灵活运用抛物线的焦点弦的特殊结论,使问题简单化且减少数学运算.训练3 (1)(2022·济南模拟)已知抛物线y2=4x的焦点为F,直线l经过F与抛物线交于A,B两点,点P在抛物线的准线上,且PF⊥AB,线段AB的中点为Q.若|PQ|=4,则|AB|=( )A.4B.4 2C.8D.8 2(2)(2022·广州模拟)过抛物线y2=4x焦点F的直线与该抛物线及其准线都相交,交点从左到右依次为A,B,C.若AB→=2BF→,则线段BC的中点到准线的距离为( )A.3B.4C.5D.6答案(1)C (2)B解析(1)由A,B向准线作垂线,垂足分别为C,D,因为PF⊥AB,可知P是线段CD的中点,PQ 是梯形ABDC 的中位线,又由抛物线的定义可知|AB |=2|PQ |=8,故选C. (2)由抛物线的方程可得焦点F (1,0),渐近线的方程为:x =-1, 由AB →=2BF →, 可得|AB ||BF |=2, 如图所示:作BB ′垂直于准线于B ′, 而|BB ′||AB |=22,∴∠ABB ′=45°, 所以直线AB 的斜率为1, 所以直线AB 的方程为x =y +1, 设B (x 1,y 1),C (x 2,y 2),联立⎩⎨⎧y 2=4x ,x =y +1,整理可得:x 2-6x +1=0,可得x 1+x 2=6,所以线段BC 的中点到准线的距离为x 1+x 22+1=4,故选B.一、基本技能练1.(2022·温州模拟)双曲线y 2-2x 2=1的离心率是( )A.52B.62C.3D. 5 答案 B解析 双曲线方程化为y 21-x 212=1,则a 2=1,b 2=12,从而e =1+b 2a 2=62,故选B. 2.设经过点F (1,0)的直线与抛物线y 2=4x 相交于A ,B 两点.若线段AB 中点的横坐标为2,则|AB |=( ) A.4 B.5 C.6 D.7 答案 C解析 因为抛物线为y 2=4x ,所以p =2, 设A ,B 两点横坐标为x 1,x 2, 因为线段AB 中点的横坐标为2, 则x 1+x 22=2,即x 1+x 2=4,故|AB |=x 1+x 2+p =4+2=6,故选C.3.(2022·烟台一模)已知点F 为抛物线y 2=2px (p >0)的焦点,点P 在抛物线上且横坐标为8,O 为坐标原点,若△OFP 的面积为22,则该抛物线的准线方程为( ) A.x =-12B.x =-1C.x =-2D.x =-4 答案 B解析 由抛物线的方程可得F ⎝ ⎛⎭⎪⎫p 2,0,不妨设P 在x 轴上方,则y 2=2p ×8,可得y p =4p , 则S △OFP =12|OF |·y p =12×p2×4p =22,解得p =2,所以准线方程为x =-p2=-1,故选B.4.“1<k <5”是方程“x 2k -1+y 25-k=1表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 答案 B解析 因为k =3时,x 2k -1+y 25-k=1表示圆,故充分性不成立.若x 2k -1+y 25-k=1表示椭圆,则⎩⎨⎧k -1>0,5-k >0,k -1≠5-k ,∴1<k <5且k ≠3,∴必要性成立. 故“1<k <5”是“方程x 2k -1+y 25-k=1表示椭圆”的必要不充分条件.故选B.5.已知双曲线C :y 2a 2-x 2b 2=1(a >0,b >0)的一条渐近线与x 轴正半轴所成夹角为π3,则C的离心率为( )A.233B.2C.3D.3 答案 A解析 双曲线C 的渐近线方程为y =±ab x ,由题意可得a b =tanπ3=3, 则b a =33, 所以e =ca =c 2a 2=1+⎝ ⎛⎭⎪⎫b a 2=233,故选A.6.(2022·西安二模)直线y =kx (k >0)与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)在第一、第三象限分别交于P ,Q 两点,F 2是C 的右焦点,有|PF 2|∶|QF 2|=1∶3,且PF 2⊥QF 2,则C 的离心率是( ) A.3B. 6 C.3+1 D.6+1 答案 C解析 由对称性可知四边形PF 1QF 2为平行四边形, 又由PF 2⊥QF 2得四边形PF 1QF 2为矩形, ∴|PQ |=|F 1F 2|=2c , 又|PF 2|∶|QF 2|=1∶3, ∴|QF 2|-|PF 2|=(3-1)c =2a , ∴e =c a=23-1=3+1,故选C.7.(2022·石家庄模拟)已知椭圆M:x2a2+y2=1(a>1)的中心为O,过焦点F的直线l与M交于A,B两点,线段AF的中点为P,若|OP|=|PF|=32,则M的方程为( )A.x22+y2=1 B.x23+y2=1C.x24+y2=1 D.x25+y2=1答案 B解析不妨设F为椭圆M的右焦点,则其左焦点为F1,连接AF1,∵O为FF1中点,P为AF中点.∴OP为△AFF1的中位线.∴|AF1|=2|OP|=3,|AF|=2|PF|= 3.∴|AF1|+|AF|=23=2a,∴a= 3.∴椭圆M的方程为x23+y2=1,故选B.8.(2022·南京调研)已知F1,F2分别为双曲线x2a2-y2b2=1(a>0,b>0)的左焦点和右焦点,过F2的直线l与双曲线的右支交于A,B两点,△AF1F2的内切圆半径为r1,△BF1F2的内切圆半径为r2,若r1=2r2,则直线l的斜率为( )A.1B. 2C.2D.2 2答案 D解析记△AF1F2的内切圆圆心为C,△BF1F2的内切圆圆心为D,边AF 1,AF 2,F 1F 2上的切点分别为M ,N ,E ,易知C ,E 横坐标相等,|AM |=|AN |,|F 1M |=|F 1E |,|F 2N |=|F 2E |,由|AF 1|-|AF 2|=2a ,即|AM |+|MF 1|-(|AN |+|NF 2|)=2a ,得|MF 1|-|NF 2|=2a , 即|F 1E |-|F 2E |=2a ,记C 的横坐标为x 0,则E (x 0,0), 于是x 0+c -(c -x 0)=2a ,得x 0=a , 同样圆心D 的横坐标也为a ,则有CD ⊥x 轴,设直线l 的倾斜角为θ,则∠OF 2D =θ2,∠CF 2O =90°-θ2,在△CEF 2中,tan∠CF 2O =tan ⎝ ⎛⎭⎪⎫90°-θ2=r 1|EF 2|,在△DEF 2中,tan∠OF 2D =tan θ2=r 2|EF 2|,由r 1=2r 2,可得2tan θ2=tan ⎝⎛⎭⎪⎫90°-θ2=1tanθ2,解得tan θ2=22,则直线l 的斜率为tan θ=2tanθ21-tan 2θ2=21-12=22,故选D.9.(多选)(2022·福州模拟)已知椭圆C :x 24+y 23=1的左、右焦点分别为F 1,F 2,P 为C上一点,则( )A.C 的离心率为22B.△PF 1F 2的周长为5C.∠F 1PF 2<90°D.1≤|PF 1|≤3 答案 CD解析 对于A ,由椭圆方程知:a =2,c =4-3=1,∴离心率e =c a =12,A 错误;对于B ,由椭圆定义知:|PF 1|+|PF 2|=2a =4,|F 1F 2|=2c =2, ∴△PF 1F 2的周长为4+2=6,B 错误;对于C ,当P 为椭圆短轴端点时,tan ∠F 1PF 22=c b =33,∴tan∠F 1PF 2=2tan∠F 1PF 221-tan 2∠F 1PF 22=2331-13=3,∴∠F 1PF 2=60°,即(∠F 1PF 2)max =60°, ∴∠F 1PF 2<90°,C 正确;对于D ,∵|PF 1|min =a -c =1,|PF 1|max =a +c =3, ∴1≤|PF 1|≤3,D 正确. 故选CD.10.(多选)(2022·菏泽模拟)设抛物线C:y2=8x的焦点为F,准线为l,点M为C上一动点,E(3,1)为定点,则下列结论正确的有( )A.准线l的方程是y=-2B.以线段MF为直径的圆与y轴相切C.|ME|+|MF|的最小值为5D.|ME|-|MF|的最大值为2答案BC解析抛物线C:y2=8x的焦点为F(2,0),准线为l:x=-2,故A错误;设M(m,n),MF的中点为N,可得|MF|=m+2=2·m+2 2,即N到y轴的距离是|MF|的一半,则以线段MF为直径的圆与y轴相切,故B正确;设M在准线上的射影为H,由|ME|+|MF|=|ME|+|MH|,当E,M,H三点共线时,|ME|+|MH|取得最小值,为3+2=5,故C正确;由|ME|-|MF|≤|EF|,当M为EF的延长线与抛物线的交点时,取得最大值|EF|,为(3-2)2+(1-0)2=2,故D错误.故选BC.11.已知抛物线y2=2px的准线方程为x=-1,则p=________.答案 2解析 y 2=2px 准线方程为x =-p2,则-p2=-1,∴p =2.12.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为5,且其虚轴长大于1,则双曲线C的一个标准方程可以为________. 答案x 2-y 24=1(答案不唯一)解析 依题意,不妨取b =2,由题意可得⎩⎪⎨⎪⎧c a =5,b =2,c 2=a 2+b 2,解得a =1,b =2,c = 5.所以满足题设的一个标准方程为x 2-y 24=1.二、创新拓展练13.(多选)(2022·南通适考)在平面直角坐标系xOy 中,已知F 1,F 2分别是椭圆C :x 24+y 22=1的左、右焦点,点A ,B 是椭圆C 上异于长轴端点的两点,且满足AF 1→=λF 1B →,则( ) A.△ABF 2的周长为定值B.AB 的长度最小值为1 C.若AB ⊥AF 2,则λ=3D.λ的取值范围是[1,5] 答案 AC解析 AF 1→=λF 1B →,则A ,B ,F 1三点共线,△ABF 2周长=4a =8是定值,A 正确.AB min =2·b 2a=2≠1,B 错误;∵AB ⊥AF 2,则AF 1⊥AF 2,A 在上、下顶点处,不妨设A (0,2),则AB ∶y =x +2,⎩⎨⎧y =x +2,x 24+y 22=1.解得⎩⎨⎧x =0,y =2或⎩⎪⎨⎪⎧x =-423,y =-23,B ⎝ ⎛⎭⎪⎫-423,-23,λ=-2-23=3,C 正确; 令AB :x =my -2,A (x 1,y 1),B (x 2,y 2),⎩⎨⎧x =my -2,x 24+y 22=1消x 可得(m 2+2)y 2-22my -2=0,则y 1+y 2=22mm 2+2, y 1y 2=-2m 2+2,-y 1=λy 2,当m =0时,λ=1,当m ≠0时,λ(1-λ)2=m 2+24m 2>14,∴3-22<λ<3+22,D 错误.故选AC.14.(多选)(2022·济宁模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,左、右顶点分别为A 1,A 2,点P 是双曲线C 上异于顶点的一点,则( ) A.||PA 1|-|PA 2||=2aB.若焦点F 2关于双曲线C 的渐近线的对称点在C 上,则C 的离心率为 5C.若双曲线C 为等轴双曲线,则直线PA 1的斜率与直线PA 2的斜率之积为1D.若双曲线C 为等轴双曲线,且∠A 1PA 2=3∠PA 1A 2,则∠PA 1A 2=π10答案 BCD解析 对于A :在△PA 1A 2中,根据三角形两边之差小于第三边, 故||PA 1|-|PA 2||<|A 1A 2|=2a ,故A 错误; 对于B ,焦点F 2(c ,0),渐近线不妨取y =bax ,即bx -ay =0, 设焦点F 2关于双曲线C 的渐近线的对称点为(m ,n ),则⎩⎪⎨⎪⎧n m -c ×b a =-1,b ×m +c 2-a ×n 2=0,解得⎩⎪⎨⎪⎧m =a 2-b 2c ,n =2abc,即F 2关于双曲线C 的渐近线的对称点为⎝⎛⎭⎪⎫a 2-b 2c ,2ab c , 由题意该对称点在双曲线上,故(a 2-b 2)2a 2c 2-(2ab )2b 2c 2=1,将c 2=a 2+b 2代入,化简整理得b 4-3a 2b 2-4a 4=0,即b 2=4a 2, 所以e =1+b 2a2=5, ∴e =5,故B 正确;对于C :双曲线C 为等轴双曲线, 即C :x 2-y 2=a 2(a >0),设P (x 0,y 0)(y 0≠0),则x 20-y 20=a 2,所以x 20-a 2=y 20, 故k PA 1·k PA 2=y 0x 0+a ·y 0x 0-a =y 20x 20-a2=1,故C 正确;对于D :双曲线为等轴双曲线,即C :x 2-y 2=a 2(a >0), 且∠A 1PA 2=3∠PA 1A 2, 设∠PA 1A 2=θ,∠A 1PA 2=3θ, 则∠PA 2x =4θ,根据C 项中的结论kPA 1·kPA 2=1, 即有tan θ·tan 4θ=1,在三角形中,只有两角互余时,它们的正切值才互为倒数, 故θ+4θ=π2,所以θ=π10,即∠PA 1A 2=π10,故D 正确.故选BCD.15.(多选)(2022·济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)左、右焦点分别为F 1,F 2,点P 为C 上任意一点,△PF 1F 2的内切圆的圆心为I ,圆I 与PF 1的切点为M ,PI 与x 轴的交点为N ,则以下结论正确的有( ) A.PF 1→·PF 2→有最大值a 2 B.内切圆I 面积有最大值πb 2c 2(a +c )2C.若|PM |=12|F 1F 2|,则椭圆C 的离心率为 12D.若∠F 1PF 2=2π3,则1|PF 1|+1|PF 2|=1|PN |答案 BCD解析 对A :PF 1→·PF 2→=PO →2-c 2≤b 2,故A 不正确;对B :由等面积法,内切圆I 的半径r =S △PF 1F 2a +c ≤bca +c ,所以内切圆面积有最大值πb 2c 2(a +c )2,故B 正确;对C :|PM |=12|F 1F 2|=c ,2|PM |+2c =4c =2a ,椭圆C 的离心率为12,故C 正确;对D :若∠F 1PF 2=2π3,由角平分线性质得则1|PF 1|+1|PF 2|=1|PN |,故D 正确.故选BCD. 16.(多选)(2022·无锡模拟)已知双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的一条渐近线的方程为y =3x ,且过点⎝⎛⎭⎪⎫1,32,椭圆C 2:x 2a 2+y 2b 2=1的焦距与双曲线C 1的焦距相同,且椭圆C 2的左、右焦点分别为F 1,F 2,过点F 1的直线交C 2于A ,B 两点,若点A (1,y 1),则下列说法中正确的有( ) A.双曲线C 1的离心率为2 B.双曲线C 1的实轴长为12C.点B 的横坐标的取值范围为(-2,-1)D.点B 的横坐标的取值范围为(-3,-1) 答案 AD解析 双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)的一条渐近线的方程为y =3x ,则可设双曲线C 1的方程为x 2-y 23=λ,∵过点⎝⎛⎭⎪⎫1,32,∴1-34=λ,解得λ=14,∴双曲线C 1方程为4x 2-43y 2=1,即x 214-y234=1,可知双曲线C 1的离心率e =ca=2,实轴的长为1,故选项A 正确,选项B 错误; 由14+34=1,可知椭圆C 2:x 2a 2+y 2b2=1的焦点F 1(-1,0),F 2(1,0), 不妨设A (1,y 1)(y 1>0),代入x 2a 2+y 2b 2=1,得1a 2+y 21b 2=1,∴y 1=b 2a ,直线AB 的方程为y =b 22a(x +1),联立⎩⎪⎨⎪⎧y =b 22a (x +1),x2a 2+y2b 2=1,消去y 并整理得(a 2+3)x 2+2(a 2-1)x -3a 2-1=0, 根据韦达定理可得1·x B =-3a 2+1a 2+3,可得x B =-3a 2+1a 2+3=-3+8a 2+3,又a 2>1,∴a 2+3>4,0<8a 2+3<2, ∴-3<x B <-1,故选项C 错误,选项D 正确,故选AD.17.(2022·北京石景山区一模)设点F 1,F 2分别为椭圆C :x 24+y 2=1的左、右焦点,点P是椭圆C 上任意一点,若使得PF 1→·PF 2→=m 成立的点恰好是4个,则实数m 的一个取值可以为________. 答案 0(答案不唯一)解析 当m =0时,PF 1→·PF 2→=0,则PF 1→⊥PF 2→,由椭圆方程可知a 2=4,b 2=1,c 2=3,因为c >b ,所以以F 1F 2为直径的圆与椭圆有4个交点. 使得PF 1→·PF 2→=0成立的点恰好有4个. 所以实数m 的一个取值可以为0.18.(2022·湖州质检)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,设椭圆、双曲线的离心率分别为e 1,e 2,则e 21+e 22的最小值为________.答案 1+32解析 由题意,可设椭圆长半轴为a 1,双曲线的实半轴为a 2, 不妨设P 为双曲线右支上一点,由椭圆和双曲线的定义可知 ⎩⎨⎧|PF 1|+|PF 2|=2a 1,|PF 1|-|PF 2|=2a 2,则|PF 1|=a 1+a 2,|PF 2|=a 1-a 2, 又∠F 1PF 2=π3,由余弦定理可得(2c )2=(a 1+a 2)2+(a 1-a 2)2-2(a 1+a 2)(a 1-a 2)cosπ3, 整理得4c 2=a 21+3a 22,即1e 21+3e 22=4,则14e 21+34e 22=1, 所以e 21+e 22=⎝ ⎛⎭⎪⎫14e 21+34e 22(e 21+e 22)=1+e 224e 21+3e 214e 22≥1+2e 224e 21·3e 214e 22=1+32. 当且仅当e 224e 21=3e 214e 22,即e 2=43e 1时取等号.。
专题14 圆锥曲线的切线问题一、结论圆锥曲线的切线问题常用方法有几何法,代数法:比如求圆的切线,常用圆心到直线的距离等于半径来解决切线问题,也可以联立直线与圆的方程根据0∆=来求解;比如涉及到椭圆的切线问题,也常常联立直线与椭圆的方程根据0∆=来求解; 对于抛物线的切线问题,可以联立,有时也可以通过求导来求解. 而对于这些圆锥曲线也常常存在一些特殊的求切线公式:1.过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.2.过椭圆22221x y a b+=上一点00(,)P x y 的切线方程为00221x x y ya b +=.3.已知点00(,)M x y ,抛物线C :22(0)y px p =≠和直线l :00()y y p x x =+.(1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线. (2)当点00(,)M x y 在抛物线C 外时,直线l 与抛物线C 相交,其中两交点与点M 的连线分别是抛物线的切线,即直线l 为切点弦所在的直线.(3)当点00(,)M x y 在抛物线C 内时,直线l 与抛物线C 相离.二、典型例题1.(2021·安徽·六安一中高二期末(文))已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b +=>>,则椭圆在其上一点()00,A x y 处的切线方程为00221x x y y a b +=,试运用该性质解决以下问题;椭圆221:12x C y +=,点B 为1C 在第一象限中的任意一点,过B 作1C 的切线l ,l 分别与x 轴和y 轴的正半轴交于,C D 两点,则OCD 面积的最小值为( )A .1 BCD .2【答案】C 【详解】设1111(,),(0,0)B x y x y >>,由题意得,过点B 的切线l 的方程为:1112x xy y +=, 令0y =,可得12(,0)C x ,令0x =,可得11(0,)D y ,所以OCD 面积111112112S x y x y =⨯⨯=,又点B 在椭圆上,所以221112x y +=,所以121111121111122x y S x y x y x x y y +===+≥=当且仅当11112x yy x =,即111,x y = 所以OCD故选:C【反思】过椭圆()222210x y a b a b+=>>上一点()00,A x y 作切线,切线方程为:00221x x y ya b+=,该结论可以在小题中直接使用,但是在解答题中,需先证后用,所以在解答题中不建议直接使用该公式.2.(2020·江西吉安·高二期末(文))已知过圆锥曲线221x y m n+=上一点()00,P x y 的切线方程为001x x y y m n +=.过椭圆221124x y +=上的点()3,1A −作椭圆的切线l ,则过A 点且与直线l 垂直的直线方程为( ) A .30x y −−= B .-20x y += C .2330x y +−= D .3100x y −−=【答案】B 【详解】过椭圆221124x y +=上的点()3, 1A −的切线l 的方程为()31124y x −+=,即40x y −−=,切线l的斜率为1.与直线l 垂直的直线的斜率为-1,过A 点且与直线l 垂直的直线方程为()13y x +=−−,即20x y +−=. 故选:B【反思】根据题中信息,直接代入公式,但是在代入切线方程为001x x y ym n+=注意不要带错,通过对比本题信息,12m =,4n =,03x =,01y =−,将这些数字代入公式,可求出切线l ,再利用直线垂直的性质求解.3.(2022·江苏南通·一模)过点()1,1P 作圆22:2C x y +=的切线交坐标轴于点A 、B ,则PA PB ⋅=_________.【答案】2− 【详解】圆C 的圆心为()0,0C ,10110CP k −==−, 因为22112+=,则点P 在圆C 上,所以,PC AB ⊥,所以,直线AB 的斜率为1AB k =−,故直线AB 的方程为()11y x −=−−,即20x y +−=, 直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.另解:过圆C :222()()x a y b R −+−=上一点00(,)P x y 的切线方程为200()()()()x a x a y b y b R −−+−−=.可知01x =,01y =;0a b ==,22R =,代入计算得到过点()1,1P 作圆22:2C x y +=的切线为:(10)(0)(10)(0)2x y −−+−−=,整理得:20x y +−=,直线20x y +−=交x 轴于点()2,0A ,交y 轴于点()0,2B , 所以,()1,1PA =−,()1,1PB =−,因此,112PA PB ⋅=−−=−. 故答案为:2−.【反思】本题中提供了常规方法和使用二级结论的解法,特别提醒同学们,二级结论的公式代入数字时,最忌讳代入错误,所以需要特别仔细。
2021年全国卷数学圆锥曲线解法最近,随着中国教育改革的不断深入,数学圆锥曲线的解法变的越来越重要。
尤其是2021年全国卷,考题中更加注重这一部分。
那么,今天我们就来详细分析一下数学圆锥曲线的解法。
首先,我们先来了解一下什么是数学圆锥曲线。
数学圆锥曲线是一种特殊的曲线,它是一种螺旋曲线,由一个圆和一条直线相结合而成。
即圆心是圆,圆上一点是直线上一点,直线上一点与圆心连线也是直线。
其次,我们再来看一下数学圆锥曲线的概念,以及它的特点。
数学圆锥曲线的特点是它的曲线半径随着时间的推移而变化,当超过一定的范围时,它会转折成一个圆环。
另外,数学圆锥曲线的曲线面积比它的外围面积要小,这也是数学圆锥曲线的一个特征。
最后,我们分析一下数学圆锥曲线的解法。
数学圆锥曲线的解法是由圆和直线构成,因此,要求出它的解法时,首先要解圆方程,即该圆的标准方程为:x^2+y^2+2gx+2fy+c=0其中,g、f分别代表圆心的横坐标和纵坐标,c为常数。
接下来,该曲线的方程为:y=mx+k其中,m为斜率,k为截距。
以上就是数学圆锥曲线的解法,它们的具体计算方法为:1)先通过圆及其直线的方程,求出圆心坐标以及斜率;2)将得到的圆心坐标及斜率置入圆锥曲线的标准方程中,解出该曲线;3)最后,将解出来的圆锥曲线放置在图表上,作出图形。
以上就是本文关于数学圆锥曲线的解法分析,我们可以看到,数学圆锥曲线的解法结合了圆和直线的解法,结合使用这两个解法可以解出特定的圆锥曲线。
掌握数学圆锥曲线的解法是2021年全国卷数学考试的重点,希望同学们在备考中能够抓住这一点,以达到良好的考试成绩。
2021年高中数学圆锥曲线问题常用方法
解圆锥曲线问题常用以下方法: 1、定义法
(1)椭圆有两种定义。
第一定义中,r1+r2=2a。
第二定义中,r1=ed1 r2=ed2。
(2)双曲线有两种定义。
第一定义中,r1 r2 2a,当r1_gt;r2时,注意r2的最小值为c-a:第二定义中,r1=ed1,r2=ed2,尤其应注意第二定义的应用,常常将半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法
因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(_1,y1),B(_2,y2),弦AB中点为M(_0,y0),将点A、B坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:
_y0_2y2
k 0。
(1)2 2 1(a b 0)与直线相交于A、B,设弦AB中点为M(_0,y0),则有0 22abab_y0_2y2
k 0 (2)2 2 1(a 0,b 0)与直线l相交于A、B,设弦AB中点为M(_0,y0)则有022abab
(3)y2=2p_(p_gt;0)与直线l相交于A、B设弦AB中点为M(_0,y0),则有2y0k=2p,即y0k=p.
【典型例题】
例1、(1)抛物线C:y2=4_上一点P到点A(3,4______________
(2)抛物线C: y2=4_上一点Q到点B(4,1)与到焦点F的距离和最小,分析:(1)A在抛物线外,如图,连PF,则PH PF当A、P、F三点共线时,距离和最小。
(2)B在抛物线内,如图,作QR⊥l交于R,则当B、Q、R距离和最小。
解:(1)(2,2)
连PF,当A、P、FAP PH PF最小,此时AF即 y=22(_-1),代入y2=4_得P(2,22),(注:另一交点为(舍去)
2)1
, 2),2。