初三数学中考复习 随机事件的概率列举所有机会均等的结果 专项练习题 含答案
- 格式:doc
- 大小:2.26 MB
- 文档页数:7
初三数学概率练习题和答案概率是数学中的一个重要概念,是研究随机现象发生可能性大小的一门学科。
在初三数学中,概率是一个重要的知识点,它涉及到事件发生的可能性和概率计算方法。
为了帮助同学们巩固概率的知识,下面给大家提供一些初三数学概率的练习题和答案。
练习题1:某班级有60人,其中30人喜欢足球,25人喜欢篮球,15人既喜欢足球又喜欢篮球。
现在从中随机选取一位同学,请回答以下问题:a) 选取的同学既不喜欢足球也不喜欢篮球的概率是多少?b) 选取的同学喜欢足球或者篮球的概率是多少?c) 选取的同学只喜欢篮球的概率是多少?解答:a) 不喜欢足球的人数为60-30=30人,不喜欢篮球的人数为60-25=35人,既不喜欢足球也不喜欢篮球的人数为60-30-35=5人。
所以选取的同学既不喜欢足球也不喜欢篮球的概率为5/60=1/12。
b) 喜欢足球或者篮球的人数为30+25-15=40人。
所以选取的同学喜欢足球或者篮球的概率为40/60=2/3。
c) 只喜欢篮球的人数为25-15=10人。
所以选取的同学只喜欢篮球的概率为10/60=1/6。
练习题2:某班级有35人,其中有18人喜欢数学,10人喜欢英语,5人既喜欢数学又喜欢英语。
现在从中随机选取一位同学,请回答以下问题:a) 选取的同学既不喜欢数学也不喜欢英语的概率是多少?b) 选取的同学喜欢数学或者英语的概率是多少?c) 选取的同学只喜欢英语的概率是多少?解答:a) 不喜欢数学的人数为35-18=17人,不喜欢英语的人数为35-10=25人,既不喜欢数学也不喜欢英语的人数为35-18-25=7人。
所以选取的同学既不喜欢数学也不喜欢英语的概率为7/35=1/5。
b) 喜欢数学或者英语的人数为18+10-5=23人。
所以选取的同学喜欢数学或者英语的概率为23/35。
c) 只喜欢英语的人数为10-5=5人。
所以选取的同学只喜欢英语的概率为5/35=1/7。
通过以上的练习题,我们可以加深对概率的理解和运用。
中考数学复习专题《概率》专项训练-附带答案一、选择题1.下列事件为必然事件的是()A.三角形内角和是180°B.打开电视机,正在播放新闻C.明天下雨D.掷一枚质地均匀的硬币,正面朝上2.九年级一班有25名男生和20名女生,从中随机抽取一名作为代表参加校演讲比赛.下列说法正确的是()A.抽到男生和女生的可能性一样大B.抽到男生的可能性大C.抽到女生的可能性大D.抽到男生或女生的可能性大小不能确定3.将分别标有“大”、“美”、“明”、“德”四个汉字的小球装在一个不透明的口袋中,这些小球除汉字以外其它完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字可以组成“明德”的概率是()A.16B.18C.14D.5164.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是().A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开,则一位参观者从入口1进入并从出口A离开的概率是()A.12B.13C.14D.166.口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计下一次操作获到红球的概率是()A.0.3 B.0.4 C.0.5 D.0.67.有三张正面分别写有数字-2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,洗匀后,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.498.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B.抛一枚质地均匀的硬币,出现正面朝上的概率C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率D.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率二、填空题9.从√2,0,π,3.14,17中随机抽取一个数,抽到有理数的概率是.10.甲、乙、丙三个人相互传一个球,由甲开始发球,并作为第一次传球,则经过两次传球后,球回到甲手中的概率是。
冀教版九年级下册数学第31章随机事件的概率含答案一、单选题(共15题,共计45分)1、下列说法正确的是( )A.为了解我国中学生课外阅读的情况,应采用全面调查的方式B.一组数据1,2,5,5,5,3,3的中位数和众数都是5C.抛掷一枚硬币100次,一定有50次“正面朝上”D.甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定2、如图,是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是()A. B. C. D.3、有一首《对子歌》中唱到:天对地,雨对风,大陆对长空.现将“天,雨,大,空”四个字书写在材质、大小完全相同的卡片上,在暗箱搅匀后,随机抽取两张,恰为“天”、“空”二字的概率为()A. B. C. D.4、小明制作了十张卡片,上面分别标有1~10这十个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是( )A. B. C. D.5、一个不透明的口袋里装有除颜色不同外其余都相同的10个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出1球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了1000次,其中有200次摸到白球,因此小亮估计口袋中的红球有( )A.60个B.50个C.40个D.30个6、某林业部门要查某种幼树在一定条件的移植成活率.在同样条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率.如下表:成活的频率移植总数(n)成活数(m)()10 8 0.8050 47 0.94270 235 0.870400 369 0.923750 662 0.8831500 1335 0.893500 3203 0.9157000 6335 0.9059000 8073 0.89714000 12628 0.902所以可以估计这种幼树移植成活的概率为()A.0.1B.0.2C.0.8D.0.97、如图,转盘被划分成4个相同的小扇形,并分别标上数字1,2,3,4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,认为指向左侧扇形的数字,则点M落在直线y=x的下方的概率为()A. B. C. D.8、下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数9、在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为,那么袋中共有球()A.6个B.7个C.9个D.12个10、下列事件中是必然事件的是()A.任意买一张电影票,座位号是偶数B.正常情况下,将水加热到100℃时水会沸腾C.三角形的内角和是360°D.打开电视机,正在播动画片11、电动游览车经过某景区十字路口,可能直行,也可能左转或者右转.如果这三种可能性大小相同,则经过这个十字路口的两辆游览车一辆左转,一辆右转的概率为( )A. B. C. D.12、下列说法正确的是()A.一枚质地均匀的硬币已连续抛掷了 600次,正面朝上的次数更少,那么掷第601次一定正面朝上B.可能性小的事件在一次实验中一定不会发生 C.天气预报说明天下雨的概率是50%,意思是说明天将有一半时间在下雨 D.拋掷一枚图钉,钉尖触地和钉尖朝上的概率不相等13、用长为4cm,5cm,6cm的三条线段围成一个三角形,该事件是()A.随机事件B.必然事件C.不可能事件D.无法确定14、在一个不透明的笔袋中装有两支黑色笔和一支红色笔,除颜色不同外其他都相同,随机从其中摸出一支黑色笔的概率是()A. B. C. D.115、袋子中装有2个红球和5个白球,这些球除颜色外均相同.在看不到球的条件下,随机从袋中摸出一个球,则摸出白球的概率是()A. B. C. D.二、填空题(共10题,共计30分)16、小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是________.17、如图,在一块△ABC板面中,将△BEF涂黑,其中点D、E、F分别为BC、AD、CE的中点,小华随意向△ABC板面内部射击一粒小弹丸,则弹丸击中黑色区域的概率是(________ )18、有五个面的石块,每个面上分别标记1,2,3,4,5,现随机投掷100次,每个面落在地面上的次数如下表,估计石块标记3的面落在地面上的概率是________.石块的面 1 2 3 4 5频数17 28 15 16 2419、现有三张分别画有正三角形、平行四边形、菱形图案的卡片,它们除图案外完全相同,把卡片背面朝上洗匀,从中随机抽取一张后放回,再背面朝上洗匀,从中随机抽取一张,则两次抽出的每一张卡片的图案既是轴对称图形又是中心对称图形的概率是________.20、已知直线的解析式为y=ax+b,现从﹣1,﹣2,﹣3,4四个数中任选两个不同的数分别作为a、b的值,则直线y=ax+b同时经过第一象限和第二象限的概率是________.21、如图,五一黄金周期间,某景区规定和为入口,,,为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从入口进入、从,出口离开的概率是________.22、袋中装有6个黑球和4个白球,经过若干次试验,若从袋中任摸出一个球,恰是黑球的概率为________.23、在-4,-2,1,2四个数中,随机取两个数分别作为函数y=ax2+bx+1中a,b的值,则该二次函数图像恰好经过第一、二、四象限的概率为________.24、经过某十字路口的汽车,直行、向左转或向右转的可能性大小相同,则两辆汽车经过该十字路口都直行的概率为________.25、从实数﹣1、﹣2、1中随机选取两个数,积为负数的概率是________.三、解答题(共5题,共计25分)26、有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上.放在桌面上小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?27、四张小卡片上分别写有数字1、2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字3的概率;(2)随机地从盒子里抽取一张,将数字记为x,不放回再抽取第二张,将数字记为y,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x,y)在函数y=图象上的概率.28、请在你的班里做一项有关师生关系的调查,分四个方面:①自由平等的师生关系②既注重师道尊严,又注重平等的师生关系③传统的尊师爱生的关系④不太协调的关系,请你统计出四个方面的人数,回答以下问题.①列出表格,并作出相应的统计图.②任取一名同学,他与老师之间的关系是自由平等的师生关系,是哪一种事件?可能性约为多少?29、在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同.如果第一次随机摸出一个小球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)30、有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式有意义的(x,y)出现的概率;(3)使分式的值为整数的(x,y)出现的概率。
初三数学中考复习随机事件的概率频率与概率专项练习题含答案1.关于频率和概率的关系,以下说法正确的选项是( ) A .频率就是概率B .实验失掉的频率与概率不能够相等C .当实验次数很大时,概率动摇在频率左近D .当实验次数很大时,频率动摇在概率左近2.有一枚平均的正方体骰子,骰子各个面上的点数区分为1、2、3、4、5、6,假定恣意抛掷一次骰子,朝上的面的点数记为x ,计算|x -4|,那么其结果恰为2的概率是( )A.16 B .14 C.13 D .123. 为了估量湖中有多少条鱼,先从湖中捕捉50条鱼做记号,然后放回湖里,经过一段时间,等带记号的鱼完全混于鱼群之中,再第二次捕捞鱼共200条,有10条做了记号,那么估量湖里有鱼( )A .400条B .500条C .800条D .1000条4. 掷一枚平均的骰子,每次实验掷两次,两次骰子的点数之和为6的概率估量是( )A .1B .536 C.12D .05. 现有两枚质地平均的正方体骰子,每枚骰子的六个面上都区分标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是( ) A.13 B .16 C.19 D .1126. 某校举行以〝热情五月,唱响青春〞为主题的演讲竞赛.决赛阶段只剩下甲、乙、丙、丁四名同窗,那么甲、乙同窗取得前两名的概率是( )A.12 B .13 C.14 D .16 7. 以下说法正确的选项是( ) A .不能够事情发作的概率为0 B .随机事情发作的概率为12 C .概率很小的事情不能够发作D .投掷一枚质地平均的硬币1000次,正面朝上的次数一定是500次 8. 某学校在停止防溺水平安教育活动中,将以下几种在游泳时的本卷须知写在纸条上并折好,内容区分是:①相互关心;②相互提示;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描画正确的纸条的概率是( ) A.12 B .13 C.23 D .169.现有四张完全相反的卡片,下面区分标有数字-1、-2、3、4,把卡片反面朝上洗匀,然后从中随机抽取两张,那么这两张卡片上的数字之积为正数的概率是 .10. 抛掷一枚平均的硬币2次,2次的结果都是正面朝上的概率为 . 11.一个不透明的口袋里装有假定干除颜色外其他完全相反的小球,其中有6个黄球,将口袋中的球摇匀,从中恣意摸出一个球记下颜色后再放回,经过少量重复上述实验后发现,摸到黄球的频率动摇在30%,由此估量口袋中共有小球 个.12.在一次抛图钉的实验中,小丽所在的小组的五个同窗区分各抛掷500次,失掉钉尖触地的频率区分为79.5%、80%、80.8%、80.5%、80.2%,由此可估量抛一次图钉,钉尖触地的概率约是 .13. 在抛掷图钉的游戏中,假设共实验了200次,其中钉尖朝上的次数为120次,那么钉尖朝上的频率为 .14.一个口袋装有10个红球和假定干个黄球.在不允许将球倒出来数的前提下,为估量口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不时重复上述进程20次,失掉红球数与10的比值的平均数为0.4,依据上述数据,估量口袋中大约有个黄球.15. 如图,转盘中6个扇形的面积都相等,恣意转动转盘一次,当转盘中止转动时,指针指向奇数的概率是______.16.某篮球运发动去年共参与40场竞赛,其中三分球的命中率为0.25,平均每场有12次三分球未投中.(1)该运发动去年的竞赛中共投中多少个三分球?(2)在其中的一场竞赛中,该运发动三分球共出手20次.小亮说:〝该运发动这场竞赛中一定投中了5个三分球.〞你以为小亮的说法正确吗?请说明理由.17.某学习小组由3名男生和1名女生组成,在一次协作学习后,末尾停止效果展现.(1)假设随机选取1名同窗独自展现,那么女生展现的概率为;(2)假设随机选取2名同窗共同展现,求同为男生的概率.18.在一个不透明的口袋里装有只要颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不时重复.下表是活动停止中的一组统计数据:很大时,摸到白球的频率将会接近;(2)假设你去摸一次,你摸到白球的概率是,摸到黑球的概率是;(3)试预算口袋中黑、白两种颜色的球各有多少个?19. 在某项针对18~35岁的青年人每天发微博数量的调查中,设一团体的〝日均发微博条数〞为m ,规则:当m≥10时为A 级,当5≤m<10时为B 级,当0≤m <5时为C 级.现随机抽取30个契合年龄条件的青年人展开每人〝日均发微博条数〞的调查,所抽青年人的〝日均发微博条数〞的数据如下: 11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1)求样本数据中为A 级的频率;(2)试估量1000个18~35岁的青年人中〝日均发微博条数〞为A 级的人数; (3)从样本数据为C 级的人中随机抽取2人,用罗列法求抽得2团体的〝日均发微博条数〞都是3的概率. 参考答案:1---8 DCDBC DBC 9. 2310. 1411. 20 12. 80% 13. 3514. 15 15. 2316. 解:(1)设该运发动共出手x 个三分球.依据题意,得1-0.25x40=12,解得x =640,此时0.25x =0.25×640=160(个).∴该运发动去年的竞赛中共投中160个三分球(2)小亮的说法不正确 理由:∵命中率是指命中的能够性的大小,而不是确定的百分率,∴正确的说法为该运发动这场竞赛中能够投中了5个三分球. 17. (1) 14(2) 解:列表如下:况,∴P(A)=612=12.18. (1) 0.6(2) 0.6 0.4(3)白球:20×0.6=12(个),黑球:20×0.4=8(个)19. (1)由15÷30=50%,得样本数据中为A 级的频率为50%;(2)由于1000×50%=500,所以估量1000个18~35岁的青年人中〝日均发微博条数〞为A 级的人数为500;(3)样本数据为C 级的人〝日均发微博条数〞区分为0,2,3,3.画树状图如下: 由树状图可知,共16种等能够的结果,其中〝日均发微博条数〞都是3(记为事情A)有4种结果,故P(A)=416=14.。
2019届初三数学中考复习 随机事件的概率-列举所有机会均等的结果专项练习题1.甲、乙两袋,甲袋里有红、黄、白色球各一个,乙袋里有红、黄色球各一个,分别从这两袋中任取一球,那么所取的两球是同色球的概率是( ) A.16 B .13 C.12 D .232.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是( )A.18 B .16 C.38 D .123. 小明和小华参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A.14 B .13 C.12 D .344.一个箱子中放有红、黄、黑三种小球,三个人先后去摸球,一人摸一次,一次摸出一个小球,摸出后放回,摸出黑色小球为赢,这个游戏是( )A .公平的B .不公平的C .先摸者赢的可能性大D .后摸者赢的可能性大5.“红灯停、绿灯行”是我们在日常生活中必须遵守的交通规则,这样才能保障交通顺畅和行人安全,小刚每天从家骑自行车上学都经过三个路口,且每个路口安装了红灯和绿灯,假如每个路口红灯和绿灯亮的时间相同,那么小刚从家随时出发去学校,他遇到两次红灯的概率是( )A.18 B .38 C.58 D .786. 从长为35710的四条线段中任意选择三条作为边,能构成三角形的概率是( )A.14 B .12 C.34 D .17. 甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( )A.16 B .13 C.12 D .238. 把只有颜色不同的1个红球和2个白球装入一个不透明的口袋里搅匀,从中随机地一次摸了2个球,得1红球1白球的概率为 .9.从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是 .10.“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,那么双方出现相同手势的概率是 .11. 某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个,顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖,那么顾客摸奖一次,得奖的概率是 .12. 在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9、9、11、10;乙组:9、8、9、10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率是 .13. 甲、乙同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a 、b ,则a +b =9的概率为______.14. 如图是一个可以自由转动的转盘,转盘被分成6个相等的扇形,甲、乙两人利用这个转盘做下列游戏:①甲自由转动转盘,指针指向奇数,则甲获胜,否则乙获胜;②甲自由转动转盘,指针指向质数(即只能被自身和1整除的自然数),则甲获胜,否则乙获胜;③乙自由转动转盘,指针指向3的倍数,则乙获胜,否则甲获胜;④乙自由转动转盘,指针指向偶质数,则甲获胜,否则乙获胜.在以上四个游戏中,对甲、乙双方公平的游戏为;对甲、乙双方不公平的游戏为;其中对甲有利的游戏是,对乙有利的游戏是(填序号).15. 甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.16. 小刚和小明玩“石头”“剪子”“布”的游戏,游戏的规则为:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,若两人所出手势相同,则为平局.(1)玩一次小刚出“石头”的概率是多少?(2)玩一次小刚胜小明的概率是多少?用列表法或画树状图法加以说明.17. 三张卡片的正面分别写有数字2、5、5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将××部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小刚去;若和等于10,小芳去;和是其他数,游戏重新开始,你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.18. 小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树状图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利?参考答案:我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
人教版九年级数学中考概率专项练习夯实基础1.(2018·黑龙江齐齐哈尔)下列成语中,表示不可能事件的是()A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地A.2.(2018·湖南衡阳)已知抛一枚均匀硬币正面朝上的概率为12,下列说法错误的是()A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次都可能正面朝上C.大量反复抛一枚均匀硬币,平均每100次有50次正面朝上D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的2次必有1次正面朝上,不正确,有可能两次都正面朝上,也可能都反面朝上,故选项A错误;连续抛一枚均匀硬币10次都可能正面朝上,是一个随机事件,有可能发生,故选项B正确;因为已知抛一枚均匀硬币正面朝上的概率为12,所以大量反复抛一枚均匀硬币,平均100次出现正面朝上50次,故选项C正确;通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的,概率均为12,故选项D正确.故选A.3.(2018·广东广州)甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A.12B.13C.14D.164种等可能的结果:(1,1),(1,2),(2,1),(2,2),所以取出的两个小球上都写有数字2的概率是14,故答案为C.4.(2017·北京)下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1 000时,“钉尖向上”的概率一定是0.620.其中合理的是( ) A.① B.②C.①②D.①③5.(2018·浙江金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( ) A.16 B.14C.13D.712黄色扇形的圆心角度数为90°,占周角的14,∴黄色扇形面积占圆面积的14,∴指针停止后落在黄色区域的概率是14,故选B .6.(2018·山东聊城)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是 ( )A.12B.13C.23D.16:由树状图可知,所有可能出现的站法共有6种,其中小亮恰好站在中间的情况有2种,故小亮恰好站在中间的概率是26=13.7.(2018·湖北武汉)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是( ) A.14B.12C.34D.56,由表可知,共有16种等可能结果,其中两次抽取的卡片上数字之积为偶数的有12种结果,所以P (两次抽取的卡片上数字之积为偶数)=1216=34.故选C .8.(2018·四川内江)有五张卡片(形状、大小、质地都相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形又是中心对称图形的概率是 . ①⑤两个,故从中任取一张既是轴对称图形又是中心对称图形的概率是25.9.(2018·山东聊城)某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启42秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到绿灯的概率是 . 解析遇到绿灯的概率是4230+3+42=1425.10.(2018·江苏盐城)端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其他均相同),其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他的好朋友小悦. (1)用树状图或列表的方法列出小悦拿到两个粽子的所有可能结果; (2)请你计算小悦拿到的两个粽子都是肉馅的概率. 画树状图如下,或列表:(2)从树状图或列表可以得出共有12种等可能的结果,其中小悦拿到的两个粽子都是肉馅的情况有2种结果,所以小悦拿到的两个粽子都是肉馅的概率为212=16.提升能力11.(2018·湖南益阳)2018年5月18日,益阳新建西流湾大桥竣工通车.如图,从沅江A 地到资阳B 地有两条路线可走,从资阳B 地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A 地出发经过资阳B 地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是 .A 到资阳B 的两条路分别记为M 和N ,从资阳B 到益阳火车站的三条路分别记会龙山大桥为C ,西流湾大桥为D ,龙洲大桥为E ,画树状图如下:共有6条路可走,其中经过西流湾大桥D 的路线有两种,∴P=26=13.12.(2017·四川成都)已知☉O 的两条直径AC ,BD 互相垂直,分别以AB ,BC ,CD ,DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在☉O 内的概率为P 2,则P1P 2= .O 的半径为1,则S ☉O =π,AO=1,AD=√2.所以S阴影=4[12π·(√22)2-(14π-12)]=2, 又因为该图形的总面积为2+π. 所以P 1=22+π,P 2=π2+π,所以P 1P 2=2π.13.(2018·山东烟台)随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷,某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图.请结合图中所给的信息解答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为 ;(2)将条形统计图补充完整,观察此图,支付方式的“众数”是“ ”;(3)在一次购物中,小明和小亮都想从“微信”“支付宝”“银行卡”三种方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.81°(2)微信;补全条形统计图如图所示:(3)方法1:设使用“微信”支付为a ,使用“支付宝”支付为b ,使用“银行卡”支付为c ,画树状图如下:共有9种情况,符合条件的有3种,即(a ,a ),(b ,b ),(c ,c ), 故两人恰好选择同一种支付方式的概率为39=13.方法2:设使用“微信”支付为a ,使用“支付宝”支付为b ,使用“银行卡”支付为c ,列表如下:共有9种情况,符合条件的有3种,即(a ,a ),(b ,b ),(c ,c ),故两人恰好选择同一种支付方式的概率为39=13.创新拓展14.(2017·安徽名校模拟卷)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了 名学生; (2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A 类和D 类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.(2)C类女生有20×25%-2=3(人),D类男生有20×(1-15%-25%-50%)-1=1(人),补充完整条形统计图如图所示:(3)列表如下:A类中的两名男生分别记为A1和A2.共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一名男生和一名女生的概率为36=12.。
中考数学复习 简单随机事件的概率一、选择题1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( A )A .摸出的是3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球2.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( D )A .甲组B .乙组C .丙组D .丁组【解析】根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.故选D. 3.在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是( B )A.17B.37C.47D.574.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为( C )A.15B.14C.13D.125.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( D )A.12B.14C.18D.116【解析】根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,两个转盘的指针都指向2的概率为116.6.在一个木制的棱长为3的正方体的表面涂上颜色,将它的棱三等分,然后从等分点把正方体锯开,得到27个棱长为1的小正方体,将这些小正方体充分混合后,装入口袋,从这个口袋中任意取出一个小正方体,则这个小正方体的表面恰好涂有两面颜色的概率是( C )A.12B.13C.49D.59【解析】大正方体表面涂色后分割成27个小正方体,容易知道恰好有两面涂有颜色的正方体有12个,P =1227=49.二、填空题7.“明天的太阳从西方升起”这个事件属于__不可能__事件.(选填“必然”“不可能”或“不确定”)8.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是 __13__.9.经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率__19__.10.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为__14__.【解析】大于6的为7,8两块扇区,而一共有8块扇区,P =28=14.11.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为15,那么口袋中小球共有__15__个.【解析】设小球共有x 个,则3x =15,解得x =15.12.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙获胜.这个游戏__不公平__.(填“公平”或“不公平”)【解析】奇偶情况数不对等,不公平.三、解答题13.一个口袋中放有290个涂有红、黑、白三种颜色的质地相同的小球.若红球个数是黑球个数的2倍多40个.从袋中任取一个球是白球的概率是129.(1)求袋中红球的个数;(2)求从袋中任取一个球是黑球的概率.解:(1)290×129=10(个),290-10=280(个),(280-40)÷(2+1)=80(个),280-80=200(个).故袋中红球的个数是200个(2)80÷290=829.答:从袋中任取一个球是黑球的概率是8 2914.某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.(1)按约定,“小李同学在该天早餐得到两个油饼”是__不可能__事件;(可能,必然,不可能)(2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.解:(2)画树状图:即小张同学得到猪肉包和油饼的概率为212=1615.某厂为新型号电视机上市举办促销活动,顾客每买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.(1)小明为厂家设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球的顾客获得大奖,其余的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)如图是一个可以自由转动的转盘,请你将转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(转盘上用文字注明,简述获奖方式)解:(1)该抽奖方案符合厂家的设奖要求:分别用黄1、黄2、白1、白2、白3表示这5个球,从中任意摸出2个球,可能出现的结果有:(黄1,黄2)、(黄1,白1)、(黄1,白2)、(黄1,白3)、(黄2,黄1)、(黄2,白1)、(黄2,白2)、(黄2,白3)、(白1,黄1)、(白1,黄2)、(白1,白2)、(白1,白3)、(白2,黄1)、(白2,黄2)、(白2,白1)、(白2,白3)、(白3,黄1)、(白3,黄2)、(白3,白1)、(白3,白2),共有20种,它们出现的可能性相同.所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(A)=220=110,即顾客获得大奖的概率为10%,获得小奖的概率为90%(2)本题答案不唯一,如图所示,将转盘中圆心角为36°的扇形区域涂上黄色,其余区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖。
初三数学中考复习随机事件的概率专项综合练习题含答案1.从一副洗匀的普通扑克牌中随机抽取一张,那么抽出红桃的概率是( ) A.154 B .1354 C.113 D .142. 以下事情中,是肯定事情的是( )A .将油滴入水中,油会浮会水面上B .车辆随机到在一个路口,遇到红灯C .假设a 2+b 2,那么a =bD .掷一枚质地平均的硬币,一定正面向上3.以下事情中的不能够事情是( )A .通常加热到100℃时,水沸腾B .抛掷2枚正方体骰子,都是6点朝上C .经过有交能信号灯的路口,遇到红灯D .恣意画一个三角形,其内角和是360°4. 如图,共有12个大小相反的小正方形,其中阴影局部的5个小正方形是一个正方体的外表展开图的一局部,现从其他的小正方形中任取一个涂上阴影,能构成这个正方体的外表展开图的概率是( )A.47 B .37 C.27 D .175. 一个不透明的盒子里有n 个除颜色外其他完全相反的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,恣意摸出一个球记下颜色后再放回盒子,经过少量重复摸球实验后发现,摸到黄球的频率动摇在30%,那么估量盒子中小球的个数n 为( )A .20B .24 C.28 D .306. 在课外实际活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法预算正面朝上的概率,其实验次数区分为10次、50次、100次,200次,其中实验相对迷信的是( )A .甲组B .乙组C .丙组D .丁组7. 从2,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率为( )A.15 B .25 C.35 D .458.某品牌电插座抽样反省的合格率为99%,那么以下说法中正确的选项是( )A .购置20个该品牌的电插座,一定都合格B .购置1000个该品牌的电插座,一定有10个不合格C .即使购置一个该品牌的电插座,也能够不合格D .购置100个该品牌的电插座,一定有99个合格9.九一(1)班在参与学校4×100m 接力赛时,布置了甲,乙,丙,丁四位选手,他们的顺序由抽签随机决议,那么甲跑第一棒的概率为( )A .1B .12 C.13 D .1410. 一个不透明的布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其他都相反.从袋中恣意找出1个球,是黄球的概率为( )A.12 B .15 C.310 D .71011. 小明恣意掷一枚平均的硬币,前9次都是正面朝上,当他掷第10次时,你以为正面朝上的概率是_____.12. 在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差异,从袋子中随机摸出一个球,那么摸出白球的概率是_____.13. 我国魏晋时期数学家刘徽首创〝割圆术〞计算圆周率.随着时代开展,如古人们依据频率估量概率这一原理,常用随机模拟的方法对圆周率π停止估量,用计算机随机发生m 个有序数对(x ,y)(x ,y 是实数,且0≤x≤1,0≤y≤1),它们对应的点在平面直角坐标系中全部在某一个正方形的边界及其外部.假设统计出这些点中到原点的距离小于或等于1的点有n 个,那么据此可估量π的值为_______.(用含m ,n 的式子表示)14. 在一个不透明的箱子里装有白色、蓝色、黄色的球共20个,除颜色外,外形、大小、质地等完全相反,小明经过屡次摸球实验后发现摸到白色、黄色球的频率区分动摇在10%和15%,那么箱子里蓝色球的个数很能够是______个.15. ⊙O 的两条直径AC 、BD 相互垂直,区分以AB 、BC 、CD 、DA 为直径向外作半圆失掉如下图的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P 1,针尖落在⊙O 内的概率为P 2,那么P 1P 2=______. 16. 不透明袋子中装有2个红球,1个白球和1个黑球,这些球除颜色外无其他差异,随机摸出1个球不放回,再随机摸出1个球,求两次均摸到红球的概率.17. 在3×3的方格纸中,点A 、B 、C 、D 、E 、F 区分位于如下图的小正方形的顶点上.(1)从A 、D 、E 、F 四个点中恣意取一点,以所取的这一点及点B 、C 为顶点画三角形,那么所画三角形是等腰三角形的概率是________;(2)从A 、D 、E 、F 四个点中先后恣意取两个不同的点,以所取的这两点及点B 、C 为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).18. 为了调查甲、乙两种成熟期小麦的株高长势状况,现从中各随机抽取6株,并测得它们的株高(单位:cm)如下表所示:(1) 一?(2) 现将停止两种小麦优秀种类杂交实验,需从表内的甲、乙两种小麦中,各随机抽取一株停止配对,以预估全体配对状况.请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰恰都等于各自平均株高的概率. 参考答案:1---10 BDBBD DCADC11. 1212. 1313. 4n m14. 1515. 2π16. 解:如下图:一切的能够有12种,契合题意的有2种,故两次均摸到红球的概率为:212=16. 17. 解:(1)从A 、D 、E 、F 四个点中恣意取一点,以所取的这一点及点B 、C 为顶点画三角形,有△ABC ,△DBC ,△EBC ,△FBC ,但只要△DBC 是等腰三角形,所以P(所画三角形是等腰三角形)=14; (2)用〝树状图〞或应用表格列出一切能够的结果:∵以点A ∴P(所画的四边形是平行四边形)=412=13.18. 解:(1)∵x 甲=63+66+63+61+64+616=63, ∴s 2甲=16×[(63-63)2×2+(66-63)2+2×(61-63)2+(64-63)2]=3; ∵x 乙=63+65+60+63+64+636=63, ∴S 2乙=16×[(63-63)2×3+(65-63)2+(60-63)2+(64-63)2]=73; ∵s 2乙<s 2甲. ∴乙种小麦的株高长势比拟划一;(2)列表如下:的有6种, ∴所抽取的两株配对小麦株高恰恰都等于各自平均株高的的概率为636=16.。
冀教版九年级下册数学第31章随机事件的概率含答案一、单选题(共15题,共计45分)1、在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是( )A. B. C. D.2、某校举行才艺比赛,三个年级均有男、女各一名选手进入决赛,决赛的规则是男、女各一名选手组成搭档展示才艺,则恰好同一年级的男、女选手组成搭档的概率是()A. B. C. D.3、在五张完全相同的卡片上,分别写有数字0,﹣1,﹣2,1,3,现从中随机抽取一张,抽到写有负数的卡片的概率是()A. B. C. D.4、红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A.红红不是胜就是输,所以红红胜的概率为B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样5、把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数的图象与x轴有两个不同交点的概率是().A. B. C. D.6、下列事件中,是随机事件的是()A.明天太阳从西边出来B.打开电视,正在播放《江西新闻》C.南昌是江西的省会D.小明跑完1000米所用的时间恰好为1分钟7、下列事件为必然事件的是()A.袋中有4个蓝球,2个绿球,共6个球,随机摸出一个球是红球B.三角形的内角和为180°C.打开电视机,任选一个频道,屏幕上正在播放广告D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上8、连续四次抛掷一枚硬币都是正面朝上,则“第五次抛掷正面朝上”是()A.必然事件B.不可能事件C.随机事件D.概率为1的事件9、用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.910、一个质地均匀的小正方体的六面上都标有数字,1,2,3,4,5,6。
初三数学中考复习随机事件的概率列举所有机会均等的结果专项练习题含答案
A.1
4
B.
1
2
C.
3
4
D.1
7. 甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( )
A.1
6
B.
1
3
C.
1
2
D.
2
3
8. 把只有颜色不同的1个红球和2个白球装入一个不透明的口袋里搅匀,从中随机地一次摸了2个球,得1红球1白球的概率为.
9.从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是.
10.“石头、剪刀、布”是民间广为流传的游戏,游戏时,双方每次任意出“石头”“剪刀”“布”这三种手势中的一种,那么双方出现相同手势的概率是.
11. 某商场在“五一”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个,顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖,那么顾客摸奖一次,得奖的概率是.
12. 在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9、9、11、10;乙组:9、8、9、10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率是.
13. 甲、乙同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为a、b,则a+b=9的概率为______.
14. 如图是一个可以自由转动的转盘,转盘被分成6个相等的扇形,甲、乙两人利用这个转盘做下列游戏:①甲自由转动转盘,指针指向奇数,则甲获胜,否则乙获胜;②甲自由转动转盘,指针指向质数(即只能被自身和1整除的自然数),则甲获胜,否则乙获胜;③乙自由转动转盘,指针指向3的倍数,则乙获胜,否则甲获胜;④乙自由转动转盘,指针指向偶质数,则甲获胜,否则乙获胜.在以上四个游戏中,对甲、乙双方公平的游戏为;对甲、乙双方不公平的游戏为;其中对甲有利的游戏是,对乙有利的游戏是(填序
号).
15. 甲、乙两人都握有分别标记为A、B、C的三张牌,两人做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.
(1)用树状图或列表等方法,列出甲、乙两人一次游戏的所有可能的结果;
(2)求出现平局的概率.
16. 小刚和小明玩“石头”“剪子”“布”的游戏,游戏的规则为:“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,若两人所出手势相同,则为平局.
(1)玩一次小刚出“石头”的概率是多少?
(2)玩一次小刚胜小明的概率是多少?用列表法或画树状图法加以说明.
17. 三张卡片的正面分别写有数字2、5、5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.
(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;
(2)学校将××部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小刚去;若和等于10,小芳去;和是其他数,游戏重新开始,你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.18. 小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.
(1)请用树状图或列表法列出摸笔游戏所有可能的结果;
(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利?
参考答案:
1---7 BBAAB DB 8. 23
9. 23
10. 13
11. 13
12. 516
13. 19
14. ①② ③④ ③ ④ 15. 解:(1)画树状图得: 则共有9种等可能的结果;
(2)∵出现平局的有3种情况,∴出现平局的概率为:39=1
3.
16. 解:(1)P(玩一次小刚出“石头”)=1
3
(2)树状图如下:可能出现的结果有9种,而且每种结果出现
的可能性相同,其中小刚胜小明的结果有3种,所以P(玩一次小刚胜小明)=1
3
17. (1) 2
3
解:(2)根据题意列表如下:
2 5 5 2 (2,2)(4) (2,5)(7) (2,5)(7) 5 (5,2)(7) (5,5)(10) (5,5)(10) 5
(5,2)(7)
(5,5)(10)
(5,5)(10)
∵共有910的共有4种,∴P(数字和为7)=49,P(数字和为10)=4
9,∴P(数字和为7)=P(数字和为10),
∴游戏对双方公平. 18. 解:(1)列表如下:
小明
小军 红1 红2
红3
黑1
黑2
红1
——
红2,红1 红3,红1 黑1,红1 黑2,红1 红2 红1,红2
——
红3,红2 黑1,红2 黑2,红2 红3 红1,红3 红2,红3
——
黑1,红3 黑2,红3 黑1 红1,黑1 红2,黑1 红3,黑1
——
黑2,黑1 黑2 红1,黑2 红2,黑2 红3,黑2 黑1,黑2
——
(2)20种,并且它们出现的可能性相等.其中两人所取笔的颜色相同的有8种,所以P(小明获胜)=820=2
5.
∵P(小军获胜)=1-25=3
5
,
而25<3
5
,∴游戏规则不公平,对小军有利.。