高中数学函数的图像练习题含答案
- 格式:docx
- 大小:617.72 KB
- 文档页数:16
§5 正弦函数的性质与图像5.1 正弦函数的图像1.问题导航(1)用“五点法”作正弦函数图像的关键是什么?(2)利用“五点法”作y =sin x 的图像时,x 依次取-π,-π2,0,π2,π可以吗?(3)作正弦函数图像时应留意哪些问题? 2.例题导读P 27例1.通过本例学习,学会用五点法画函数y =a sin x +b 在[0,2π]上的简图. 试一试:教材P 28练习题你会吗?1.正弦函数的图像与五点法(1)图像:正弦函数y =sin x 的图像叫作正弦曲线,如图所示.(2)五点法:在平面直角坐标系中经常描出五个关键点(它们是正弦曲线与x 轴的交点和函数取最大值、最小值时的点):(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0),用光滑的曲线顺次将它们连接起来,得到函数y =sin x 在[0,2π]上的简图,这种画正弦曲线的方法为“五点法”.(3)利用五点法作函数y =A sin x (A >0)的图像时,选取的五个关键点依次是:(0,0),⎝⎛⎭⎫π2,A ,(π,0),⎝⎛⎭⎫32π,-A ,(2π,0). 2.正弦曲线的简洁变换函数y =sin x 与y =sin x +k 图像间的关系.当k >0时,把y =sin x 的图像向上平移k 个单位长度得到函数y =sin x +k 的图像; 当k <0时,把y =sin x 的图像向下平移|k |个单位长度得到函数y =sin x +k 的图像.1.推断正误.(正确的打“√”,错误的打“×”) (1)函数y =sin x 的图像与y 轴只有一个交点.( )(2)函数y =sin x 的图像介于直线y =1与y =-1之间.( )(3)用五点法作函数y =-2sin x 在[0,2π]上的图像时,应选取的五个点是(0,0),⎝⎛⎭⎫π2,-2,(π,0),⎝⎛⎭⎫32π,2,(2π,0).( )(4)将函数y =sin x ,x ∈[-π,π]位于x 轴上方的图像保持不变,把x 轴下方的图像沿x 轴翻折到x 轴上方即可得到函数y =|sin x |,x ∈[-π,π]的图像.( )解析:(1)正确.观看正弦函数的图像知y =sin x 的图像与y 轴只有一个交点. (2)正确.观看正弦曲线可知正弦函数的图像介于直线y =1与y =-1之间.(3)正确.在函数y =-2sin x ,x ∈[0,2π]的图像上起关键作用的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,-2,(π,0),⎝⎛⎭⎫32π,2,(2π,0).(4)正确.当x ∈[-π,π]时,y =|sin x |=⎩⎪⎨⎪⎧sin x ,sin x ≥0,-sin x ,sin x <0,于是,将函数y =sin x ,x ∈[-π,π]位于x轴上方的图像保持不变,把x 轴下方的图像翻折到x 轴上方即可得函数y =|sin x |,x ∈[-π,π]的图像.答案:(1)√ (2)√ (3)√ (4)√2.用五点法画y =sin x ,x ∈[0,2π]的图像时,下列点不是关键点的是( ) A.⎝⎛⎭⎫π6,12 B.⎝⎛⎭⎫π2,1 C .(π,0) D .(2π,0)解析:选A.用五点法画y =sin x ,x ∈[0,2π]的图像,五个关键点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0).3.用五点法画y =sin x ,x ∈[0,2π]的简图时,所描的五个点的横坐标的和是________.解析:0+π2+π+3π2+2π=5π.答案:5π4.(1)正弦曲线在(0,2π]内最高点坐标为________,最低点坐标为________.(2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像外形________,位置________.(填“相同”或“不同”)解析:(1)由正弦曲线知,正弦曲线在(0,2π]内最高点为⎝ ⎛⎭⎪⎫π2,1,最低点为⎝ ⎛⎭⎪⎫3π2,-1.(2)在同一坐标系中函数y =sin x ,x ∈(0,2π]与y =sin x ,x ∈(2π,4π]的图像,外形相同,位置不同.答案:(1)⎝⎛⎭⎫π2,1 ⎝⎛⎭⎫3π2,-1(2)相同 不同1.y =sin x ,x ∈[0,2π]与y =sin x ,x ∈R 的图像间的关系(1)函数y =sin x ,x ∈[0,2π]的图像是函数y =sin x ,x ∈R 的图像的一部分.(2)由于终边相同的角有相同的三角函数值,所以函数y =sin x ,x ∈[2k π,2(k +1)π],k ∈Z 且k ≠0的图像与函数y =sin x ,x ∈[0,2π]的图像外形完全全都,因此将y =sin x ,x ∈[0,2π]的图像向左、向右平行移动(每次移动2π个单位长度)就可得到函数y =sin x ,x ∈R 的图像.2.“几何法”和“五点法”画正弦函数图像的优缺点(1)“几何法”的实质是利用正弦线进行的尺规作图,这样作图较精确,但较为烦琐.(2)“五点法”的实质是在函数y =sin x 的一个周期内,选取5个分点,也是函数图像上的5个关键点:最高点、最低点及平衡点,这五个点大致确定了函数一个周期内图像的外形.(3)“五点法”是画三角函数图像的基本方法,在要求精确度不高的状况下常用此法,要切实把握好.另外与“五点法”作图有关的问题经常消灭在高考试题中.3.关于“五点法”画正弦函数图像的要点 (1)应用的前提条件是精确度要求不是太高. (2)五个点必需是确定的五点.(3)用光滑的曲线顺次连接时,要留意线的走向,一般在最高(低)点的四周要平滑,不要消灭“拐角”现象.(4)“五点法”作出的是一个周期上的正弦函数图像,要得到整个正弦函数图像,还要“平移”.用五点法作正弦型函数的图像用五点法画函数y =2sin x -1,x ∈[0,2π]的简图. (链接教材P 27例1) [解] 步骤:①列表:x 0 π2 π 3π2 2π sin x 0 1 0 -1 0 y-11-1-3-1②描点:在平面直角坐标系中描出下列五个点:(0,-1),⎝ ⎛⎭⎪⎫π2,1,(π,-1),⎝ ⎛⎭⎪⎫3π2,-3,(2π,-1).③连线:用光滑曲线将描出的五个点连接起来,得函数y =2sin x -1,x ∈[0,2π]的简图,如图所示.方法归纳作形如函数y =a sin x +b ,x ∈[0,2π]的图像的步骤1.(1)函数f (x )=a sin x +b ,(x ∈[0,2π])的图像如图所示,则f (x )的解析式为( )A .f (x )=12sin x +1,x ∈[0,2π]B .f (x )=sin x +12,x ∈[0,2π]C .f (x )=32sin x +1,x ∈[0,2π]D .f (x )=32sin x +12,x ∈[0,2π](2)用五点法作出下列函数的简图.①y =2sin x ,x ∈[0,2π]; ②y =2-sin x ,x ∈[0,2π].解:(1)选A.将图像中的特殊点代入f (x )=a sin x +b ,x ∈[0,2π],不妨将(0,1)与⎝ ⎛⎭⎪⎫π2,1.5代入得⎩⎨⎧a sin 0+b =1,a sin π2+b =1.5,解得b =1,a =0.5,故f (x )=12sin x +1,x ∈[0,2π]. (2)①列表:x 0 π2 π 3π2 2π y =sin x 0 1 0 -1 0 y =2sin x2-2描点并将它们用光滑的曲线连接起来,如图所示.②列表:x 0 π2 π 3π2 2π y =sin x 0 1 0 -1 0 y =2-sin x21232描点并将它们用光滑的曲线连接,如图:利用正弦函数的图像求函数的定义域求函数f (x )=lg (sin x )+16-x 2的定义域. (链接教材P 30习题1-5 A 组T 4)[解] 由题意,x 满足不等式组⎩⎪⎨⎪⎧sin x >0,16-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4,sin x >0,作出y =sin x 的图像,如图所示.结合图像可得:该函数的定义域为[-4,-π)∪(0,π). 方法归纳一些三角函数的定义域可以借助函数图像直观地观看得到,同时要留意区间端点的取舍.有时利用图像先写出在一个周期区间上的解集,再推广到一般状况.2.求函数y =log 21sin x-1的定义域.解:为使函数有意义,需⎩⎪⎨⎪⎧log 21sin x -1≥0,sin x >0⇔0<sin x ≤12.依据正弦曲线得,函数定义域为⎝ ⎛⎦⎥⎤2k π,2k π+π6∪⎣⎢⎡⎭⎪⎫2k π+5π6,2k π+π,k ∈Z .利用正弦函数的图像确定方程解的个数在同一坐标系中,作函数y =sin x 和y =lg x 的图像,依据图像推断出方程sin x =lg x 的解的个数. (链接教材P 30习题1-5 A 组T 1(1))[解] 建立坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图像,再依次向右连续平移2π个单位,得到y =sin x 的图像.作出y =lg x 的图像,如图所示.由图像可知方程sin x =lg x 的解有3个.若本例中的函数y =lg x 换为y =x 2,则结果如何?解:在同始终角坐标系中画出函数y =x 2和y =sin x 的图像,如图所示.由图知函数y =x 2和y =sin x 和图像有两个交点,则方程x 2-sin x =0有两个根. 方法归纳方程根(或个数)的两种推断方法(1)代数法:直接求出方程的根,得到根的个数.(2)几何法:①方程两边直接作差构造一个函数,作出函数的图像,利用对应函数的图像,观看与x 轴的交点个数,有几个交点原方程就有几个根.②转化为两个函数,分别作这两个函数的图像,观看交点个数,有几个交点原方程就有几个根.3.(1)函数y =2sin x 与函数y =x 的图像的交点有( ) A .2个 B .3个 C .4个 D .5个 (2)争辩方程10sin x =x (x ∈R )根的个数.解:(1)选B.在同始终角坐标系中作出函数y =2sin x 与y =x 的图像,由图像可以看出有3个交点.(2)如图所示,当x ≥4π时,x 10≥4π10>1≥sin x ;当x =52π时,sin x =sin 52π=1,x 10=5π20,1>5π20,从而x >0时,有3个交点,由对称性知x <0时,有3个交点,加上x =0时的交点为原点,共有7个交点.即方程有7个根.思想方法数形结合思想的应用求满足下列条件的角的范围.(1)sin x ≥12;(2)sin x ≤-22.⎝⎛⎭⎫0,12作x 轴[解] (1)利用“五点法”作出y =sin x 的简图,过点⎝ ⎛⎭⎪⎫5π6,12两的平行线,在[0,2π]上,直线y =12与正弦曲线交于⎝⎛⎭⎫π6,12,点.结合图形可知,在[0,2π]内,满足y ≥12时x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪π6≤x ≤5π6.因此,当x ∈R 时,若y ≥12,则x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π6≤x ≤2k π+56π,k ∈Z .(2)同理,满足sin x ≤-22的角的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪5π4+2k π≤x ≤74π+2k π,k ∈Z . [感悟提高] 形如sin x >a (<a )的不等式,求角x 的范围,一般接受数形结合的思想来解题,具体步骤: (1)画出y =sin x 的图像,画直线y =a .(2)若解sin x >a ,则观看y =sin x 在直线y =a 上方的图像.这部分图像对应的x 的范围,就是所求的范围. 若解sin x <a ,则观看y =sin x 在直线y =a 下方的图像.这部分图像对应的x 的范围,就是所求的范围.1.函数y =1-sin x ,x ∈[0,2π]的大致图像是( )解析:选B.利用五点法画图,函数y =1-sin x ,x ∈[0,2π]的图像肯定过点(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,1),⎝⎛⎭⎫32π,2,(2π,1),故B 项正确.2.已知点M ⎝⎛⎭⎫π4,b 在函数f (x )=2sin x +1的图像上,则b =________.解析:b =f ⎝ ⎛⎭⎪⎫π4=2sin π4+1=2.答案:23.若函数f (x )=2sin x -1-a 在⎣⎡⎦⎤π3,π上有两个零点,则实数a 的取值范围是________.解析:令f (x )=0得2sin x =1+a .作出y =2sin x 在x ∈⎣⎢⎡⎦⎥⎤π3,π上的图像,如图所示.要使函数f (x )在⎣⎢⎡⎦⎥⎤π3,π上有两个零点,需满足3≤1+a <2,所以3-1≤a <1.答案:[3-1,1), [同学用书单独成册])[A.基础达标]1.关于正弦函数y =sin x 的图像,下列说法错误的是( ) A .关于原点对称 B .有最大值1C .与y 轴有一个交点D .关于y 轴对称解析:选D.正弦函数y =sin x 的图像如图所示.依据y =sin x ,x ∈R 的图像可知A ,B ,C 均正确,D 错误. 2.函数y =sin x 的图像与函数y =-sin x 的图像关于( ) A .x 轴对称 B .y 轴对称 C .原点对称D .直线y =x 对称解析:选A.在同始终角坐标系中画出函数y =sin x 与函数y =-sin x 在[0,2π]上的图像,可知两函数的图像关于x 轴对称.3.下列函数图像相同的是( ) A .y =sin x 与y =sin(x +π)B .y =sin ⎝⎛⎭⎫x -π2与y =sin ⎝⎛⎭⎫π2-xC .y =sin x 与y =sin(-x )D .y =sin(2π+x )与y =sin x解析:选D.对A ,由于y =sin(x +π)=-sin x ,故排解A ;对B ,由于y =sin ⎝ ⎛⎭⎪⎫π2-x =-sin ⎝ ⎛⎭⎪⎫x -π2,故排解B ;对C ,由于y =sin(-x )=-sin x ,故排解C ;对D ,由于y =sin(2π+x )=sin x ,故选D.4.函数y =-sin x ,x ∈⎣⎡⎦⎤-π2,3π2的简图是( )解析:选D .当x =-π2时,y =-sin ⎝ ⎛⎭⎪⎫-π2=1,故排解A 、B 、C ,选D .5.函数y =x sin x 的部分图像是( )解析:选A .函数y =x sin x 的定义域为R ,令f (x )=x sin x ,则f (-x )=(-x )sin(-x )=x sin x =f (x ),知f (x )为偶函数,排解B 、D ;当x ∈⎝ ⎛⎭⎪⎫0,π2时,f (x )>0,故排解C ,故选A.6.在[0,2π]上,满足sin x ≥22的x 的取值范围为________.解析:在同始终角坐标系内作出y =sin x 和y =22的图像如图,观看图像并求出交点横坐标,可得到x的取值范围为⎣⎢⎡⎦⎥⎤π4,34π.答案:⎣⎡⎦⎤π4,34π7.函数y =sin x 的图像和y =x2π的图像交点个数是________. 解析:在同始终角坐标系内作出两个函数的图像如图所示:由图可知交点个数是3.答案:38.已知sin x =m -1且x ∈R ,则m 的取值范围是________. 解析:由y =sin x ,x ∈R 的图像知,-1≤sin x ≤1, 即-1≤m -1≤1,所以0≤m ≤2. 答案:0≤m ≤29.用“五点法”画出函数y =3-sin x (x ∈[0,2π])的图像. 解:(1)列表,如表所示:x 0 π2 π 32π 2π y =sin x 0 1 0 -1 0 y =3-sin x32343(2)描点,连线,如图所示.10.若函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点,求k 的取值范围.解:f (x )=⎩⎪⎨⎪⎧3sin x ,0≤x ≤π,-sin x ,π<x ≤2π,作出函数的图像如图:由图可知当1<k <3时函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图像与直线y =k 有且只有两个不同的交点. [B.力量提升]1.若y =sin x ,x ∈⎣⎡⎦⎤π4,2π3,则函数的值域为( )A.⎝⎛⎭⎫22,1B.⎣⎡⎦⎤22,1 C .(1,2] D .[1,2]解析:选B.画出函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π4,2π3的图像如图所示,可知y ∈⎣⎡⎦⎤22,1.2.设a >0,对于函数f (x )=sin x +asin x(0<x <π),下列结论正确的是( ) A .有最大值而无最小值 B .有最小值而无最大值 C .有最大值且有最小值 D .既无最大值也无最小值解析:选B.f (x )=sin x +a sin x =1+asin x.由于0<x <π,所以0<sin x ≤1.所以1sin x≥1.所以1+asin x ≥a +1.所以f (x )有最小值而无最大值. 故选B.3.已知f (sin x )=x 且x ∈⎣⎡⎦⎤0,π2,则f ⎝⎛⎭⎫12=________.解析:由于x ∈⎣⎢⎡⎦⎥⎤0,π2,所以sin x =12时,x =π6,所以f ⎝⎛⎭⎫12=f ⎝ ⎛⎭⎪⎫sin π6=π6.答案:π64.若x 是三角形的最小角,则y =sin x 的值域是________. 解析:不妨设△ABC 中,0<A ≤B ≤C , 得0<A ≤B ,且0<A ≤C ,所以0<3A ≤A +B +C ,而A +B +C =π, 所以0<3A ≤π,即0<A ≤π3.若x 为三角形中的最小角,则0<x ≤π3,由y =sin x 图像知y ∈⎝⎛⎦⎤0,32.答案:⎝⎛⎦⎤0,325.用“五点法”作出函数y =1-2sin x ,x ∈[-π,π]的简图,并回答下列问题: (1)观看函数图像,写出满足下列条件的x 的区间. ①y >1;②y <1.(2)若直线y =a 与y =1-2sin x ,x ∈[-π,π]有两个交点,求a 的取值范围. 解:列表如下:x -π -π2 0 π2 π sin x 0 -1 0 1 0 1-2sin x131-11描点连线得:(1)由图像可知图像在y =1上方部分时y >1,在y =1下方部分时y <1, 所以当x ∈(-π,0)时,y >1;当x ∈(0,π)时,y <1.(2)如图所示,当直线y =a 与y =1-2sin x 有两个交点时,1<a <3或-1<a <1. 所以a 的取值范围是{a |1<a <3或-1<a <1}.6.(选做题)已知函数y =f (x )为奇函数,且是⎝⎛⎭⎫-12,12上的减函数,f (1-sin α)+f (1-sin 2α)<0,求α的取值范围.解:由题意可知f (1-sin α)<-f (1-sin 2α). 由于f (x )是奇函数,所以-f (1-sin 2α)=f (sin 2α-1),所以f (1-sin α)<f (sin 2α-1).又由f (x )是⎝⎛⎭⎫-12,12上的减函数, 所以⎩⎨⎧-12<1-sin α<12,-12<sin 2α-1<12,1-sin α>sin 2α-1,所以⎩⎨⎧12<sin α<32,12<sin 2α<32,sin 2α+sin α-2<0,解得22<sin α<1, 所以2k π+π4<α<2k π+π2(k ∈Z )或2k π+π2<α<2k π+3π4(k ∈Z ),所以α的取值范围为⎝⎛⎭⎪⎫2k π+π4,2k π+π2∪⎝ ⎛⎭⎪⎫2k π+π2,2k π+3π4(k ∈Z ).。
三角函数图像变换训练一、单选题1.(2023春·陕西咸阳·高一校考阶段练习)函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图像向左平移π4个单位得到下列哪个函数()A .πsin 24y x ⎛⎫=- ⎪⎝⎭B .πsin 24y x ⎛⎫=-+ ⎪⎝⎭C .πcos 24y x ⎛⎫=-+ ⎪⎝⎭D .πcos 24y x ⎛⎫ ⎪⎝+⎭=2.(2023·河南开封·统考二模)把函数πsin 6y x ⎛⎫=+ ⎪⎝⎭图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再把所得图像向右平移π3个单位,则最终所得图像的一条对称轴方程可以为()A .2x π=-B .π6x =-C .π4x =D .π3x =3.(2023春·重庆渝中·高三重庆巴蜀中学校考阶段练习)函数()sin f x x =的图象经过下列哪个变换可以得到()πsin 23g x x ⎛⎫=+ ⎪⎝⎭的图象,这个变换是()A .先将函数()sin f x x =的图象向左平移π3个单位,再把图象上每个点的横坐标扩大为原来的2倍B .先将函数()sin f x x =的图象向左平移π3个单位,再把图象上每个点的横坐标缩小为原来的12C .先把函数()sin f x x =的图象上每个点的横坐标缩小为原来的12,再将图象向左平移π3个单位D .先把函数()sin f x x =的图象上每个点的横坐标扩大为原来的2倍,再将图象向左平移π6个单位4.(2023春·河北衡水·高一校考阶段练习)为了得到函数πsin 410y x ⎛⎫=- ⎪⎝⎭的图象,只要将函数4πcos 5y x ⎛⎫=- ⎪⎝⎭图象上所有点的()A .横坐标伸长到原来的4倍,纵坐标不变,再把得到的图象向右平移π20个单位长度B .横坐标伸长到原来的4倍,纵坐标不变,再把得到的图象向左平移π5个单位长度C .横坐标缩短到原来的14,纵坐标不变,再把得到的图象向右平移π5个单位长度D .横坐标缩短到原来的14,纵坐标不变,再把得到的图象向左平移π20个单位长度5.(2023春·上海浦东新·高一华师大二附中校考阶段练习)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像()A .向左平移5π12个长度单位B .向右平移5π12个长度单位C .向左平移5π6个长度单位D .向右平移5π6个长度单位6.(2023春·安徽·高一校联考阶段练习)将函数()πcos 23f x x ⎛⎫=- ⎪⎝⎭图象上的所有点的横坐标伸长到原来的4倍(纵坐标不变),再向右平移π3个单位长度,得到函数()g x 的图象,则π2g ⎛⎫= ⎪⎝⎭()A .12B .2C D .17.(2023春·河南焦作·高二温县第一高级中学校考阶段练习)将函数()sin 2y x ϕ=+的图象沿x 轴向右平移π8个单位长度后,得到一个偶函数的图象,则ϕ的一个可能取值为()A .π4-B .π4C .3π8D .3π88.(2023·河北·高三学业考试)为了得到函数π2sin 3y x ⎛⎫=+ ⎪⎝⎭,x ∈R 的图象,只需将函数2sin y x =,x ∈R 的图象上所有的点()A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度二、多选题9.(2023春·重庆渝中·高一重庆巴蜀中学校考阶段练习)由曲线1π:sin 23C y x ⎛⎫=- ⎪⎝⎭得到2:cos C y x =,下面变换正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移5π6个单位长度,得到曲线2C B .把1C 上各点的横坐标伸长到原来的12倍,纵坐标不变,再把得到的曲线向左平移5π12个单位长度,得到曲线2C C .把1C 向左平移5π6个单位长度,再把得到的曲线上各点的横坐标缩短到原来的12倍,纵坐标不变,得到曲线2C D .把1C 向左平移5π12个单位长度,再把得到的曲线上各点的横坐标缩短到原来的2倍,纵坐标不变,得到曲线2C 10.(2023秋·山西运城·高一康杰中学校考期末)已知函数()tan πf x x =,将函数()y f x =的图象向左平移13个单位长度,然后纵坐标不变,横坐标伸长为原来的2倍,得到函数()g x 的图象,则下列描述中正确的是().A .函数()g x 的图象关于点2,03⎛⎫- ⎪⎝⎭成中心对称B .函数()g x 的最小正周期为2C .函数()g x 的单调增区间为51,33k k ⎛⎫-++ ⎪⎝⎭,k ∈ZD .函数()g x 的图象没有对称轴三角函数图像变换训练一、单选题1.(2023春·陕西咸阳·高一校考阶段练习)函数πsin 24y x ⎛⎫=+ ⎪⎝⎭的图像向左平移π4个单位得到下列哪个函数()A .πsin 24y x ⎛⎫=- ⎪⎝⎭B .πsin 24y x ⎛⎫=-+ ⎪⎝⎭C .πcos 24y x ⎛⎫=-+ ⎪D .πcos 24y x ⎛⎫ ⎪+=2.(2023·河南开封·统考二模)把函数sin 6y x ⎛⎫=+ ⎪⎝⎭图像上各点的横坐标缩短到原来的12倍(纵坐标不变),再把所得图像向右平移π3个单位,则最终所得图像的一条对称轴方程可以为()A .2x π=-B .π6x =-C .π4x =D .π3x =。
【金版学案】2015-2016高中数学 幂函数的图像、性质与应用练习 新人教A 版必修1基础梳理1.形如y =x α(α∈R)的函数叫做________,其中α为常数,只研究α为有理数的情形.例如:函数y =x 2,y =x 4的幂函数,而函数y =2x 2不是幂函数.2.幂函数y =x ,y =x 12,y =x 2,y =x -1,y =x 3的图象,如下图所示.3.幂函数的性质.(1)过定点:y =x α恒过定点______.当α>0时,所有幂函数都过定点____________.(2)单调性:当α>0时,y =x α在(0,+∞)上单调____;当α<0时,y =x α在(0,+∞)上单调____.(3)奇偶性:当α为整数且为奇数时,y =x α为______;当α为整数且为偶数时,y =x α为______;当x 为分数时可将y =x α化为根式再判断. 基础梳理1.幂函数 3.(1)(1,1) (0,0)和(1,1) (2)递增 递减 (3)奇函数 偶函数,思考应用1.我们知道,形如y =x α(其中幂指数α是常数)的函数叫幂函数,而形如y =a x(其中a 是大于0且不为1的常数)的函数叫指数函数,那么指数函数与幂函数的区别在哪里?解析:这两个函数都具有幂指数m n 的形式,但幂函数y =x α中,自变量在底数的位置,而指数函数y =a x中,自变量在幂指数的位置,这两个函数的自变量所在的位置不同.2.从幂函数的形式:y =x α来看,它的表达式中只含有一个常数字母,确定一个待定系数通常只要一个条件.若已知幂函数y =x α过某个定点,你能确定这个幂函数吗?解析:一般来说,由幂函数y =x α所经过的定点,可以确定这个幂函数.但若只告诉幂函数过原点,那我们只能判断幂指数α>0;若只告诉幂函数过点(1,1),那告诉的这个点没有任何作用,因为所有的幂函数都过点(1,1);若只告诉幂函数过点(-1,1), 那我们只能判断这个幂指数的图象关于y 轴对称,这个幂指数是偶函数.除这三个点之外,由幂函数所经过的定点,可以确定这个幂函数的表达式.3.如何根据幂函数的图象确定幂指数的大小?解析:作直线x =t (t >1),它与各幂函数图象相交,交点在第一象限,按交点从下到上的顺序,幂指数按从小到大的顺序排列.自测自评1.下列函数中,定义域是R 的是( )A .y =x -2B .y =x 12C .y =x 2D .y =x -12.下列四类函数中,具有性质“对任意的x >0,y >0,函数f (x )满足f (x +y )=f (x )f (y )”的是( )A .幂函数B .对数函数C .指数函数D .正比例函数3.已知幂函数f (x )的图象经过点(2,2),则f (4)=____ 自测自评1.解析:函数y =x -2,y =x -1的定义域为{x |x ∈R,x ≠0},函数y =x 12的定义域为{x |x ≥0},函数y =x 2的定义域为R.故选C.答案:C2.解析:本题考查幂的运算性质f (x )f (y )=a x a y =a x +y=f (x +y ). 答案:C3.解析:设f (x )=x n ,则2=2n,解得n =12.∴f (x )=x 12,f (4)=2.答案:2►基础达标1.下列所给出的函数中,属于幂函数的是( )A .y =-x 3B .y =x -3C .y =2x 3D .y =x 3-1 1.解析:由幂函数定义知选B. 答案:B2.已知函数:①y =x x ,②y =-x 2,③y =x 0,④y =2x ,⑤y =x 2+1,⑥y =x ,其中幂函数的个数是( )A .2个B .3个C .4个D .5个2.解析:由幂函数定义知③⑥是幂函数.故选A. 答案:A3.函数y =x -2在区间⎣⎢⎡⎦⎥⎤12,2上的最大值是( )3.解析:∵y =x -2在⎣⎢⎡⎦⎥⎤12,2上是单调递减函数,∴当x =12时,y 有最大值4.答案:C A.14 B .-14C .4D .-44.利用幂函数的性质,比较下列各题中两个值的大小:①2.334____2.434; ②0.3165____0.3565;③(2)-32____(3)-32; ④1.1-12____0.9-12.4.①< ②< ③> ④<5.下图是幂函数y =x m 和y =x n在第一象限内的图象,则( )A .-1<n <0<m <1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >15.解析:利用幂函数图象的性质及图象的关系知n <-1,0<m <1.故选B. 答案:B6.(2013·某某卷)函数f (x )=x -12的大致图象是( )6.解析:∵y =x -12定义域为(0,+∞),故选A.答案:A7.求下列幂函数的定义域:(1)y =x 3;(2)y =x 13;(3)y =x 12;(4)y =x -2;(5)y =x -12.7.分析:含分数指数幂的要化归为根式的形式.解析:(1)y =x 3,定义域是R.(2)y =x 13=3x ,定义域是R.(3)y =x 12=x ,定义域是[0,+∞).(4)y =x -2=1x2,定义域是{x |x ∈R,且x ≠0}.(5)y =x -12=1x,定义域是(0,+∞).点评:考查函数的定义域要全面,如分母不为零,零次幂的底数不为零,偶次根号下不小于零,等等►巩固提高8.给出两个结论:(1)当α=0时,幂函数y =x α的图象是一条直线;(2)幂函数y =x α的图象都经过(0,0)和(1,1)点,则正确的判断是( ) A .(1)对(2)错 B .(1)错(2)对 C .(1)(2)都错 D .(1)(2)都对 8.C 9.C 4,C 2,C 3,C 19.如图所示的曲线是幂函数y =x α在第一象限内的图象,已知α分别取-1,1,12,2四个值,则相应图象依次为:____________.10.设f (x )=(a -3)x (a +1)(a -2),当a 为何值时,(1)f (x )为常数函数? (2)f (x )为幂函数? (3)f (x )为正比例函数?10.(1){3,-1,2} (2){4} (3)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1-132,1+1321.注意幂函数与指数函数的区别,幂函数中底数是自变量,指数函数中指数是自变量.2.将幂指式x nm 写成m x n可以看出x 的取值X 围.3.比较幂值的大小常利用相关函数的单调性.。
高中数学基本初等函数图像题专题训练含答案姓名:__________ 班级:__________考号:__________一、选择题(共20题)1、函数的图象大致是 ( )A .B .C .D .2、已知函数的图象如图所示,则该函数的解析式可能是()A .B .C .D .3、函数在区间上的图象大致是()A . B .C .D .4、函数的图象大致为()A .B .C .D .5、 A . B .C .D .6、下列图象中不能作为函数的是()A .B .C .D .7、设函数满足对,都有,且在上单调递增,,,则函数的大致图象是()A .B .C .D .8、若方程在区间有解,则函数图象可能是()A .B .C .D .9、函数的图象大致为()A .B .C .D .10、函数的大致图象为()A .B .C .D .11、函数,图象大致为A. B .C .D .12、函数的图象大致是()A .B .C .D .13、已知函数,,则的图象不可能是()A .B .C .D .14、函数的图像可能是()A .B .C .D .15、函数的图像大致为()A .B .C .D .16、函数的图象大致为A .B .C .D .17、函数在其定义域上的图象大致为()A .B .C .D .18、函数的图象大致形状是()A .B .C .D .19、已知,函数与的图象可能是()A .B .C .D .20、函数的图象大致为()A .B .C .D .============参考答案============一、选择题1、B【解析】【分析】根据题意,先分析函数的奇偶性,排除AC ,再判断函数在上的符号,排除 D ,即可得答案.【详解】∵ f ( x ) 定义域 [ - 1 , 1 ] 关于原点对称,且,∴ f ( x ) 为偶函数,图像关于y 轴对称,故AC 不符题意;在区间上,,,则有,故 D 不符题意, B 正确.故选: B .2、D【解析】【分析】根据函数的图象结合函数的定义域,复合函数的奇偶性,利用排除法,即可得到结果 . 【详解】由图象可知函数是奇函数,函数和由复合函数的奇偶性可知,这两个函数为偶函数,故排除 A , C ;对于函数,由于时,,此时无意义,所以函数不经过原点,故 B 错误;故 D 满足题意.故选: D.3、A【解析】【分析】先判断函数的奇偶性,再由,进而得到正确选项 .【详解】∵ 函数,故函数为奇函数,排除 BD ;,可排除 C.故选: A.4、 B【分析】根据函数的奇偶性可排除 C ,再根据的符号即可排除 AD ,即可得出答案.【详解】解:函数的定义域为R ,因为,所以函数是偶函数,故排除 C ;,故排除 A ;,故排除 D.故选: B.5、【分析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象 .【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且时,,据此可知选项B 错误 .故选: A.【点睛】函数图象的识辨可从以下方面入手: (1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.6、 B【分析】根据函数的定义可知,对于x 的任何值y 都有唯一的值与之相对应,分析图象即可得到结论.【详解】由函数的定义可知,对定义域内的任意一个自变量x 的值,都有唯一的函数值y 与其对应,故函数的图象与直线x =a 至多有一个交点,图 B 中,存在x =a 与函数的图象有两个交点,不满足函数的定义,故 B 不是函数的图象.故选: B7、 A【分析】判断的奇偶性排除 BD ,再由当时,得出答案 .【详解】令,则函数为偶函数,故排除 BD当时,,则,故排除 C故选: A【点睛】关键点睛:本题关键是采用排除法,由奇偶性排除 BD ,再由当时,排除 C.8、 D【分析】由题意可得在区间上,能够成立,结合所给的选项,得出结论【详解】解:方程在区间上有解,在区间上,能够成立,结合所给的选项,只有 D 选项符合.故选: D .9、 A【分析】由条件判断函数为奇函数,且在为负数,从而得出结论 .【详解】,因此函数为奇函数,图像关于原点对称排除;当时,,,因此.故选:.【点睛】本题主要考查的是函数图像的应用,奇偶性的应用,根据奇偶函数的对称性进行判断是解决本题的关键,是中档题 .10、 A【分析】判断函数的奇偶性和对称性的关系,利用极限思想进行求解即可【详解】解:函数,,,,则函数为非奇非偶函数,图象不关于 y 轴对称,排除 C , D ,当,排除 B ,故选 A【点睛】本题主要考查函数图象的识别和判断,利用函数的对称性以及极限思想是解决本题的关键11、 D【分析】根据函数的奇偶性和函数图像上的特殊点对选项进行排除,由此得出正确选项 .【详解】,故函数为奇函数,图像关于原点对称,排除选项 .由排除选项 . 由,排除 C 选项,故本小题选 D.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性的判断方法,属于基础题 .12、 C【分析】根据函数的奇偶性和值域即可判断 .【详解】所以为偶函数,所以图象关于轴对称,故排除 B ,当时,故排除 A ,当时,故排除 D故选: C .13、 D【分析】先分析出为偶函数 . ,其图像关于y 轴对称,即可得到答案 .【详解】定义域为 R.因为,所以为偶函数 . ,其图像关于y 轴对称,对照四个选项的图像,只能选 D.故选 :D14、 B【分析】根据、分类讨论的图象,利用导函数研究它在各个区间上的单调性,分别判断两个区间某一部份的单调性即可得到它的大致图象;【详解】1 、当时,,即,令,则,∴ 时,即单调递增,故,∴ 此时,,即在单调递增,故排除D 选项;2 、当时,,令,则,∴ ,,故有即,所以,∴ 在上,而,故在上一定有正有负,则有B 正确;故选: B【点睛】本题考查了利用导数研究函数单调性,并确定函数的大致图象,注意按区间分类讨论,以及零点、极值点的讨论15、 B【分析】由函数为偶函数可排除 AC ,再由当时,,排除 D ,即可得解.【详解】设,则函数的定义域为,关于原点对称,又,所以函数为偶函数,排除 AC ;当时,,所以,排除 D.故选: B.16、 C【分析】由可排除 A 、 D ;再利用导函数判断在上的单调性,即可得出结论 . 【详解】因为,故排除 A 、 D ;,令,在是减函数,,在是增函数,,存在,使得,单调递减,单调递增,所以选项 B 错误,选项 C 正确.故选: C【点睛】本题考查由解析式选择函数图象的问题,利用导数研究函数单调性是解题的关键,考查学生逻辑推理能力,是一道中档题 .17、 D【分析】求函数的定义域 , 判断函数的奇偶性和对称性, 利用排除法, 进行判断即可【详解】函数的定义域为.因为,,所以是奇函数,图象关于原点对称,排除 A,B ;当,,排除 C.故选 :D.18、 D【分析】利用排除法,先判断函数的奇偶性,再取特殊值即可判断【详解】解:函数的定义域为,因为,所以为偶函数,所以其图像关于轴对称,所以排除 A ,B ,因为,所以排除 C ,故选: D19、 B【分析】根据函数的定义域,判断两个函数的单调性,即可求解 .【详解】,函数在上是增函数,而函数定义域为,且在定义域内是减函数,选项 B 正确》故选 :B.【点睛】本题考查函数的定义域、单调性,函数的图像,属于基础题 .20、 A【分析】分析函数的奇偶性,并结合函数的解析式知:当时,即可确定大概函数图象 . 【详解】根据题意,设,其定义域为,有,则为奇函数,其图象关于原点对称,排除 C 、 D ,当时,,,必有,排除 B ,故选: A.【点睛】关键点点睛:分析函数的奇偶性与函数值符号,应用间接法确定函数图象 .。
高中数学-正切函数的性质与图象练习一、选择题(每小题3分,共18分)1.下列说法正确的是( )A.正切函数在整个定义域内是增函数B.正切函数在整个定义域内是减函数C.函数y=3tan的图象关于y轴对称D.若x是第一象限角,则y=tanx是增函数【解析】选C.y=3tan=3tan|x|是偶函数,所以图象关于y轴对称.【误区警示】因为正切函数有无数个单调递增区间,很容易误选A,其实正切函数在整个定义域内不是单调函数.2.(·济宁高一检测)函数y=tan(cosx)的值域是( )A. B.C.[-tan1,tan1]D.以上都不对【解析】选C.cosx∈[-1,1],正切函数在[-1,1]上是增函数,所以y=tan(cosx)的值域是[-tan1,tan1].3.与函数y=3tan的图象不相交的一条直线是( )A.x=B.x=-C.x=D.x=【解析】选D.当x=时,2x+=,y=3tan无意义,故选 D.4.(·阜阳高一检测)函数f(x)=tan与函数g(x)=sin的最小正周期相同,则ω= ( )A.±1B.1C.±2D.2【解题指南】先求g(x)的最小正周期,再用正切函数的最小正周期公式求解.【解析】选A.g(x)的最小正周期为=π,则=π,所以ω=±1.5.tan与tan的大小关系为( )A.tanπ>tanB.tanπ=tanC.tanπ<tanD.无法比较【解析】选 C.tan=tan=tan,又y=tanx在上是增函数,而-<-<<,所以tan<tan.6.(2014·海口高一检测)下列函数中,既为偶函数又在(0,π)上单调递增的是( ) A.y=tan|x| B.y=cos(-x)C.y=sinD.y=【解析】选C.四个选项中的函数均为偶函数,但只有选项C中的y=sin=-cosx在(0,π)上单调递增.二、填空题(每小题4分,共12分)7.(·长沙高一检测)函数y=的最小正周期是.【解析】y=的图象是y=tanx的图象保留x轴上方部分,并将下方的部分翻折到x轴上方得到的,所以其最小正周期也为π.答案:π【变式训练】若函数f(x)=2tan的最小正周期T满足1<T<2,则自然数k的值为. 【解析】因为T=,1<<2,<k<π,而k∈N,故k=2或3.答案:2或38.(·宁德高一检测)函数y=tan的递增区间是.【解析】-+kπ<+<+kπ(k∈Z),得-+kπ<<+kπ(k∈Z),即-+2kπ<x<+2kπ(k∈Z),所以递增区间是(k∈Z).答案:(k∈Z)9.函数y=tan,x∈的值域是.【解析】x∈,x+∈,则tan∈,所以值域为.答案:三、解答题(每小题10分,共20分)10.求下列函数的定义域:(1)y=.(2)y=.【解题指南】解答本题(1)可由分母不为零及tanx的定义域求出;(2)可根据被开方数大于等于零,利用对数函数的单调性求出x的取值范围.【解析】(1)要使函数y=有意义,须有所以x≠kπ-,且x≠kπ+(k∈Z),所以函数的定义域为.(2)要使函数y=有意义,须有lo tanx≥0=lo 1.又因为函数y=lo x在(0,+∞)上是减少的,所以0<tanx≤1,所以kπ<x≤kπ+,k∈Z.所以函数y=的定义域为.11.作出函数y=tanx+|tanx|的图象,并求其定义域、值域、单调区间及最小正周期.【解析】y=tanx+|tanx|=其图象如图所示,由图象可知,其定义域是(k∈Z);值域是[0,+∞);单调递增区间是(k∈Z);最小正周期T=π.【拓展提升】巧求三角函数的定义域(1)求三角函数的定义域,既要注意一般函数定义域的规律,又要注意三角函数本身的特有属性.(2)求函数的定义域通常是解不等式组,利用“数形结合”,借助于数轴画线求交集的方法进行.在求解三角函数,特别是综合性较强的三角函数的定义域时,我们同样可以利用“数形结合”,在单位圆中画三角函数线,利用各三角不等式解集的扇形区域的交集来完成.(3)一般地,已知弦函数的取值范围,求角的取值范围用三角函数线简单;已知切函数的取值范围,求角的取值范围用图象比较好.一、选择题(每小题4分,共16分)1.函数y=+的定义域是( )A.B.C.D.【解析】选C.由得.2.要得到y=tan2x的图象,只需把y=tan的图象( )A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【解题指南】找出由y=tan2x的图象如何平移得到y=tan的图象,然后反向移动即可.【解析】选D.将y=tan2x的图象向左平移个单位可以得到y=tan2即y=tan的图象,所以只需把y=tan的图象向右平移个单位,就可得到y=tan2x的图象.3.(·萍乡高一检测)函数y=是( )A.奇函数B.非奇非偶函数C.既是奇函数又是偶函数D.偶函数【解析】选 A.定义域,且y==,f(-x)===-f(x),所以为奇函数.4.下列各式正确的是( )A.tan<tanB.tan>tanC.tan=tanD.大小关系不确定【解析】选B.因为tan=-tan=-tan,tan=-tan=-tan,而tan<tan,所以tan>tan.【变式训练】比较tan与tan大小.【解析】tan=-tan=-tan<0,tan=-tan=tan>0,所以tan<tan.二、填空题(每小题5分,共10分)5.(·金华高一检测)已知函数y=tanωx在上是减函数,则ω的取值范围是 .【解析】由题意知ω<0,且周期≥π,所以≤1,即-ω≤1,即-1≤ω<0.答案:-1≤ω<0【变式训练】函数y=tan的递增区间是.【解析】由kπ-<+<kπ+,k∈Z,解得2kπ-<x<2kπ+,k∈Z.答案:(k∈Z)6.(·黄山高一检测)下列三个说法:①函数y=tan(2x+1)的最小正周期是π;②函数y=tanx的图象关于点(π,0)成中心对称;③函数y=tanx的图象关于点成中心对称.其中正确说法的序号为.【解析】①T=;②③正确,因为y=tanx的对称中心为,k∈Z.答案:②③三、解答题(每小题12分,共24分)7.(·大连高一检测)已知-≤x≤,f(x)=tan2x+2tanx+2,求f(x)的最值及相应的x值.【解析】因为-≤x≤,所以-≤tanx≤1,而f(x)=tan2x+2tanx+2=(tanx+1)2+1,所以当tanx=-1即x=-时,f(x)有最小值1,当tanx=1即x=时,f(x)有最大值 5.【变式训练】求函数y=tan2+tan3x++1的定义域和值域.【解析】由3x+≠kπ+,k∈Z,得x≠+(k∈Z),所以函数的定义域为.设t=tan,则t∈R,y=t2+t+1=+≥,所以原函数的值域是.8.(·揭阳高一检测)已知函数f(x)=2tanωx+(ω>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于2π,求f(x)的单调递增区间.【解析】由题意知,函数f(x)的周期为2π,则=2π,由于ω>0,故ω=,所以f(x)=2tan.再由kπ-<x+<kπ+,k∈Z,得2kπ-<x<2kπ+,k∈Z,即函数f(x)的单调递增区间为,k∈Z.。
高中数学:指数函数的图像和性质练习及答案指数函数的图象与性质1.指数函数y=a x,y=b x,y=c x,y=d x在同一坐标系内的图象如图所示,则a、b、c、d的大小顺序是( )A.b<a<d<cB.a<b<d<cC.b<a<c<dD.b<c<a<d2.已知1>n>m>0,则指数函数①y=m x,②y=n x的图象为( )A.B.C.D.3.函数y=a x-(a>0,且a≠1)的图象可能是( )A.B.C.D.4.把函数y=f(x)的图象向左,向下分别平移2个单位,得到y=2x的图象,则f(x)的解析式是( ) A.f(x)=2x+2+2B.f(x)=2x+2-2C.f(x)=2x-2+2D.f(x)=2x-2-25.若关于x的方程|a x-1|=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)6.已知函数f(x)=|2x-1-1|.(1)作出函数y=f(x)的图象;(2)若a<c,且f(a)>f(c),求证:2a+2c<4.指数函数的定义域7.已知函数f(x)的定义域是(1,2),则函数f(2x)的定义域是( ) A.(0,1)B.(2,4)C.(,1)D.(1,2)8.函数y=的定义域是________.指数函数的值域9.函数y=的值域为________.10.当x∈[0,1]时,函数f(x)=3x+2的值域为________.指数函数的性质11.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( ) A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数12.关于指数函数,有下列几个命题:①指数函数的定义域为(0,+∞);②指数函数的值域是不包括1的;③指数函数f(x)=2x和f(x)=()x关于y轴对称;④指数函数都是单调函数.其中正确的命题有________(填写正确命题的序号).13.指数函数f(x)=a x(a>0,a≠1)对于任意的x1、x2∈R,都有f(x1)f(x2)________f(x1+x2).(填“>”,“<”或“=”)指数幂的大小比较14.a=与b=()5的大小关系是( )A.a>bB.a<bC.a=bD.大小关系不定15.设<()b<()a<1,那么( )A.a a<a b<b aB.a a<b a<a bC.a b<a a<b aD.a b<b a<a a16.设函数f(x)定义在实数集上,且y=f(x+1)是偶函数,且当x≥1时,f(x)=3x-1,则有( ) A.f()<f()<f()B.f()<f()<f()C.f()<f()<f()D.f()<f()<f()指数方程的解法17.集合M={3,2a},N={a,b},若M∩N={2},则M∪N等于( )A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}18.方程2m·3n-3n+1+2m=13的非负整数解(m,n)=________.19.若方程()x+()x-1+a=0有正数解,则实数a的取值范围是________.指数不等式的解法20.已知不等式为≤3x<27,则x的取值范围( )A.-≤x<3B.≤x<3C.RD.≤x<21.已知f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是( ) A.a>0B.a>1C.a<1D.0<a<122.不等式<2-2x的解集是________.指数函数的单调性23.函数y=的递减区间为( )A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)24.若函数y=(1-2a)x是实数集R上的增函数,则实数a的取值范围为( ) A.(,+∞)B.(-∞,0)C.(-∞,)D.(-,)25.已知函数f(n)=是增函数,则实数a的取值范围是( )A.(0,1)B.(7,8)C.[7,8)D.(4,8)26.函数y=的递增区间是________.27.已知函数f(x)=.(1)若a=1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.指数函数的最值28.已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为( ) A.B.2C.3D.429.已知函数y=9x-2·3x-1,求该函数在区间x∈[-1,1]上的最大值和最小值.30.已知f(x)=9x-2·3x+4,x∈[-1,2].(1)设t=3x,x∈[-1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.与指数函数相关的函数的奇偶性31.函数y=的图象( )A.关于原点对称B.关于直线y=-x对称C.关于y轴对称D.关于直线y=x对称32.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( )A.2B.C.D.a233.函数f(x)=k·a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),(1)求函数f(x)的解析式;(2)若函数g(x)=,试判断函数g(x)的奇偶性,并给出证明.答案1.指数函数y=a x,y=b x,y=c x,y=d x在同一坐标系内的图象如图所示,则a、b、c、d的大小顺序是( )A.b<a<d<cB.a<b<d<cC.b<a<c<dD.b<c<a<d【答案】A【解析】作直线x=1与各图象相交,交点的纵坐标即为底数,故从下到上依次增大.所以b<a<d<c.故选A.2.已知1>n>m>0,则指数函数①y=m x,②y=n x的图象为( )A.B.C.D.【答案】C【解析】由1>n>m>0可知①②应为两条递减指数函数曲线,故只可能是选项C或D,进而再判断①②与n和m的对应关系,不妨选择特殊点,令x=1,则①②对应的函数值分别为m和n,由m<n知选C.故选C.3.函数y=a x-(a>0,且a≠1)的图象可能是( )A.B.C.D.【答案】D【解析】当a>1时,y=a x-为增函数,且在y轴上的截距为0<1-<1,排除A,B.当0<a<1时,y=a x-为减函数,且在y轴上的截距为1-<0,故选D.4.把函数y=f(x)的图象向左,向下分别平移2个单位,得到y=2x的图象,则f(x)的解析式是( ) A.f(x)=2x+2+2B.f(x)=2x+2-2C.f(x)=2x-2+2D.f(x)=2x-2-2【答案】C【解析】y=2x向上,向右分别平移2个单位得f(x)的图象,所以f(x)=2x-2+2.5.若关于x的方程|a x-1|=2a(a>0且a≠1)有两个不等实根,则a的取值范围是( )A.(0,1)∪(1,+∞)B.(0,1)C.(1,+∞)D.(0,)【答案】D【解析】方程|a x-1|=2a(a>0且a≠1)有两个不相等的实数根转化为函数y=|a x-1|与y=2a有两个交点.①当0<a<1时,如图(1),∴0<2a<1,即0<a<.②当a>1时,如图(2),而y=2a>1不符合要求.综上,0<a<.6.已知函数f(x)=|2x-1-1|.(1)作出函数y=f(x)的图象;(2)若a<c,且f(a)>f(c),求证:2a+2c<4.【答案】(1)f(x)=其图象如图所示.(2)证明由图知,f(x)在(-∞,1]上是减函数,在[1,+∞)上是增函数,故结合条件知必有a<1.若c≤1,则2a<2,2c≤2,所以2a+2c<4;若c>1,则由f(a)>f(c),得1-2a-1>2c-1-1,即2c-1+2a-1<2,所以2a+2c<4.综上知,总有2a+2c<4.7.已知函数f(x)的定义域是(1,2),则函数f(2x)的定义域是( )A.(0,1)B.(2,4)C.(,1)D.(1,2)【答案】A【解析】根据题意可知1<2x<2,则0<x<1,所以函数f(2x)的定义域是(0,1).8.函数y=的定义域是________.【答案】(-∞,]【解析】要使函数y=有意义,则必须()3x-1-≥0,即()3x-1≥()3,∴3x-1≤3,解得x≤.∴函数y=的定义域是(-∞,].故答案为(-∞,].9.函数y=的值域为________.【答案】[0,4)【解析】∵2x>0,∴0≤16-2x<16,则0≤<4,故函数y=的值域为[0,4).10.当x∈[0,1]时,函数f(x)=3x+2的值域为________.【答案】[3,5]【解析】因为指数函数y=3x在区间[0,1]上是增函数,所以30≤3x≤31,即1≤3x≤3,于是1+2≤3x+2≤3+2,即3≤f(x)≤5.11.若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域均为R,则( )A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数【答案】B【解析】因为f(x),g(x)的定义域均为R,且f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x),所以f(x)为偶函数,g(x)为奇函数,故选B.12.关于指数函数,有下列几个命题:①指数函数的定义域为(0,+∞);②指数函数的值域是不包括1的;③指数函数f(x)=2x和f(x)=()x关于y轴对称;④指数函数都是单调函数.其中正确的命题有________(填写正确命题的序号).【答案】③④【解析】①指数函数的定义域为R,故①错误;②指数函数的值域是(0,+∞),故②错误;③∵f(x)=()x=2-x,∴指数函数f(x)=2x和f(x)=()x关于y轴对称,故③正确;④当a>1时,y=ax是增函数;当0<a<1时,y=ax是减函数,所以指数函数都是单调函数,故④正确.故答案为③④.13.指数函数f(x)=a x(a>0,a≠1)对于任意的x1、x2∈R,都有f(x1)f(x2)________f(x1+x2).(填“>”,“<”或“=”)【答案】=【解析】∵对于指数函数f(x)=a x(a>0,a≠1),任意取x 1、x2∈R,有f(x1)f(x2)===f(x1+x2).故答案为=.14.a=与b=()5的大小关系是( )A.a>bB.a<bC.a=bD.大小关系不定【答案】A【解析】考察函数y=()x与y=()x知,前者是一个增函数,后者是一个减函数,∴>()0=1,()5<()0=1,∴>()5,即a>b,故选A.15.设<()b<()a<1,那么( )A.a a<a b<b aB.a a<b a<a bC.a b<a a<b aD.a b<b a<a a【答案】C【解析】∵<()b<()a<1,且y=()x在R上是减函数.∴0<a<b<1,∴指数函数y=a x在R上是减函数,∴a b<a a,∴幂函数y=x a在R上是增函数,∴a a<b a,∴a b<a a<b a,故选C.16.设函数f(x)定义在实数集上,且y=f(x+1)是偶函数,且当x≥1时,f(x)=3x-1,则有( ) A.f()<f()<f()B.f()<f()<f()C.f()<f()<f()D.f()<f()<f()【答案】B【解析】∵y=f(x+1)是偶函数,故函数的图象关于直线x=1对称,则f()=f(),f()=f(),又∵当x≥1时,f(x)=3x-1为增函数,且<<,故f()<f()<f(),即f()<f()<f(),故选B.17.集合M={3,2a},N={a,b},若M∩N={2},则M∪N等于( )A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}【答案】D【解析】因为2是它们的公共元素,所以2a=2,a=1,b=2,因此M∪N={1,2,3},选D.18.方程2m·3n-3n+1+2m=13的非负整数解(m,n)=________.【答案】(3,0),(2,2)【解析】方程2m·3n-3n+1+2m=13变形为3n(2m-3)+2m=13.(*)∵m,n为非负整数,∴当m=0,1时,经验证无解,应舍去.当m=2时,(*)化为3n+22=13,解得n=2.此时方程的非负整数解为(2,2).当m=3时,(*)化为5·3n+23=13,即3n=1,解得n=0.当m≥4时,2m-3≥13,左边>右边,(*)无非负整数解.综上可知:方程2m·3n-3n+1+2m=13的非负整数解(m,n)=(3,0),(2,2).故答案为(3,0),(2,2).19.若方程()x+()x-1+a=0有正数解,则实数a的取值范围是________.【答案】(-3,0)【解析】令()x=t,∵方程有正根,∴t∈(0,1).方程转化为t2+2t+a=0,∴a=1-(t+1)2.∵t∈(0,1),∴a∈(-3,0).20.已知不等式为≤3x<27,则x的取值范围( )A.-≤x<3B.≤x<3C.RD.≤x<【答案】A【解析】由题意可得≤3x≤33,再根据函数y=3x在R上是增函数,可得-≤x<3,故选A.21.已知f(x)=a-x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是( )A.a>0B.a>1C.a<1D.0<a<1【答案】D【解析】∵f(-2)=a2,f(-3)=a3.f(-2)>f(-3),即a2>a3,故0<a<1.选D.22.不等式<2-2x的解集是________.【答案】{x|x>3,或x<-1}【解析】原不等式化为<()2x,又y=()x为减函数,故x2-3>2x,解得{x|x>3,或x<-1}.23.函数y=的递减区间为( )A.(-∞,-3]B.[-3,+∞)C.(-∞,3]D.[3,+∞)【答案】B【解析】设u=(x+3)2,y=()u,∵u=(x+3)2在(-∞,-3]上递减,在[-3,+∞)上递增,而y=()u在R上递减,∴y=在[-3,+∞)上递减.24.若函数y=(1-2a)x是实数集R上的增函数,则实数a的取值范围为( )A.(,+∞)B.(-∞,0)C.(-∞,)D.(-,)【答案】B【解析】由题意知函数为指数函数,且为实数集R上的增函数,所以底数1-2a>1,解得a<0.25.已知函数f(n)=是增函数,则实数a的取值范围是( )A.(0,1)B.(7,8)C.[7,8)D.(4,8)【答案】D【解析】因为函数f(n)=是增函数,所以解得4<a<8.26.函数y=的递增区间是________.【答案】[2,+∞)【解析】函数y=的单调递增区间即为y=x2-4x+3的单调递增区间,∵y=x2-4x+3的单调递增区间为[2,+∞),故答案为[2,+∞).27.已知函数f(x)=.(1)若a=1,求f(x)的单调区间;(2)若f(x)有最大值3,求a的值.【答案】(1)a=1,得f(x)=,∵∈(0,1),∴f(x)的外层函数是一个递减的指数函数;令t=x2-4x+3,则其减区间为(-∞,2),增区间为(2,+∞).∴f(x)的增区间为(-∞,2),减区间为(2,+∞)(2)∵f(x)有最大值为3,∈(0,1),函数t=ax2-4x+3有最小值-1,∴函数t=ax2-4x+3在区间(-∞,)上是减函数,在区间(,+∞)上是增函数由此可得,a>0且f()==3,得-+3=-1,解之得a=1.综上所述,当f(x)有最大值3时,a的值为1.28.已知函数y=ax(a>1)在区间[1,2]上的最大值与最小值之差为2,则实数a的值为( ) A.B.2C.3D.4【答案】B【解析】y=a x(a>1)在[1,2]上是增函数,最大值为a2,最小值为a1,所以a2-a1=2,解得a=2或a=-1(舍).29.已知函数y=9x-2·3x-1,求该函数在区间x∈[-1,1]上的最大值和最小值.【答案】令3x=t,∵-1≤x≤1,∴≤t≤3,∴y=t2-2t-1=(t-1)2-2(其中≤t≤3).∴当t=1时(即x=0时),y取得最小值-2,当t=3时(即x=1时),y取得最大值2. 30.已知f(x)=9x-2·3x+4,x∈[-1,2].(1)设t=3x,x∈[-1,2],求t的最大值与最小值;(2)求f(x)的最大值与最小值.【答案】(1)∵t=3x在[-1,2]是单调增函数,∴t max=32=9,t min=3-1=.(2)令t=3x,∵x∈[-1,2],∴t∈[,9],原方程变为:f(x)=t2-2t+4,∴f(x)=(t-1)2+3,t∈[,9],∴当t=1时,此时x=0,f(x)min=3,当t=9时,此时x=2,f(x)max=67.题组10 与指数函数相关的函数的奇偶性31.函数y=的图象( )A.关于原点对称B.关于直线y=-x对称C.关于y轴对称D.关于直线y=x对称【答案】A【解析】设函数y=f(x)=,则此函数的定义域为R.f(-x)===-f(x),故函数是奇函数,故它的图象关于原点O对称,故选A.32.已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a x-a-x+2(a>0,且a≠1).若g(2)=a,则f(2)等于( )A.2B.C.D.a2【答案】B【解析】∵f(x)是奇函数,g(x)是偶函数,∴由f(x)+g(x)=ax-a-x+2,①得f(-x)+g(-x)=-f(x)+g(x)=a-x-ax+2,②①+②,得g(x)=2,①-②,得f(x)=ax-a-x.又g(2)=a,∴a=2,∴f(x)=2x-2-x,∴f(2)=22-2-2=.33.函数f(x)=k·a-x(k,a为常数,a>0且a≠1)的图象过点A(0,1),B(3,8),(1)求函数f(x)的解析式;(2)若函数g(x)=,试判断函数g(x)的奇偶性,并给出证明.【答案】(1)由已知得∴k=1,a=,∴f(x)=2x.(2)函数g(x)为奇函数.证明:g(x)=,其定义域为R,又g(-x)===-=-g(x),∴函数g(x)为奇函数.。
高中数学必修五三角函数知识点+练习题含答案解析(很详细)第一部分必修五三角函数知识点整理第一章解三角形1、三角形的性质:①.A+B+C=π,? 222A B C π+=-?sin cos 22A B C += ②.在ABC ?中, a b +>c , a b -<c ; A >B ?sin A >sinB ...........................A >B ?cosA <cosB, a >b ? A >B③.若ABC ?为锐角?,则A B +>2π,B+C >2π,A+C >2π; 22a b +>2c ,22b c +>2a ,2a +2c >2b2、正弦定理与余弦定理:①.(2R 为ABC ?外接圆的直径)2s i n a R A =、2sin b R B =、2sin c R C =sin 2a A R =、 sin 2b B R =、 sin 2c C R= 面积公式:111sin sin sin 222ABC S ab C bc A ac B ?=== ②.余弦定理:2222cos a b c bc A =+-、2222cos b a c ac B =+-、2222cos c a b ab C =+-222cos 2b c a A bc +-=、222cos 2a c b B ac +-=、222cos 2a b c C ab+-= 补充:两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-;⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+;⑸()tan tan tan 1tan tan αβαβαβ --=+ ? (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ? (()()tan tan tan 1tan tan αβαβαβ+=+-).二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin1ααααααα±=±+=±?⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+ ?落幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=.第二部分必修五练习题含答案解析第一章解三角形1.在△ABC 中,AB =5,BC =6,AC =8,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .非钝角三角形解析:最大边AC 所对角为B ,则cosB =52+62-822×5×6=-320B>CB .B>A>C C .C>B>AD .C>A>B解析由正弦定理a sinA =b sinB ,∴sinB =bsinA a =32.∵B 为锐角,∴B =60°,则C =90°,故C>B>A. 答案 C3.在△ABC 中,已知a =8,B =60°,C =75°,则b 等于( )A .4 2B .4 3C .4 6 D.323解:由A +B +C =180°,可求得A =45°,由正弦定理,得b =asinB sinA =8×sin60°sin45°=8×3222=4 6. 答案 C4.在△ABC 中,AB =5,BC =7,AC =8,则BA →·BC → 的值为( )A .5B .-5C .15D .-15解析在△ABC 中,由余弦定理得:cosB =AB 2+BC 2-AC 22AB ·BC =25+49-642×5×7=17. ∴BA →·BC →=|BA →|·|BC →|cosB =5×7×17=5. 答案 A5.若三角形三边长之比是1:3:2,则其所对角之比是( )A .1:2:3B .1:3:2C .1:2: 3 D.2:3:2解析设三边长分不为a ,3a,2a ,设最大角为A ,则cosA =a 2+3a 2-2a 22·a ·3a =0,∴A =90°.设最小角为B ,则cosB =2a 2+3a 2-a 22·2a ·3a =32,∴B =30°,∴C =60°. 所以三角之比为1:2:3. 答案 A6.在△ABC 中,若a =6,b =9,A =45°,则此三角形有( )A .无解B .一解C .两解D .解的个数别确定解析由b sinB =a sinA ,得sinB =bsinA a =9×226=3 24>1.∴此三角形无解.答案 A7.已知△ABC 的外接圆半径为R ,且2R(sin 2A -sin 2C)=(2a -b)sinB(其中a ,b 分不为A ,B 的对边),这么角C 的大小为( )A .30°B .45°C .60°D .90°解析依照正弦定理,原式可化为2R ? ??a 24R 2-c 24R 2=(2a -b)·b 2R ,∴a 2-c 2=(2a -b)b ,∴a 2+b 2-c 2=2ab ,∴cosC =a 2+b 2-c 22ab =22,∴C =45°. 答案 B8.在△ABC 中,已知sin 2A +sin 2B -sinAsinB =sin 2C ,且满脚ab =4,则该三角形的面积为( )A .1B .2 C. 2 D. 3解析由a sinA =b sinB =c sinC=2R ,又sin 2A +sin 2B -sinAsinB =sin 2C ,可得a 2+b 2-ab =c 2.∴c osC =a 2+b 2-c 22ab =12,∴C =60°,sinC =32. ∴S △ABC =12absinC = 3. 答案 D9.在△ABC 中,A =120°,AB =5,BC =7,则sinB sinC 的值为( ) A.85 B.58 C.53 D.35解析由余弦定理,得 cosA =AB 2+AC 2-BC 22AB ·AC,解得AC =3. 由正弦定理sinB sinC =AC AB =35. 答案 D10.在三角形ABC 中,AB =5,AC =3,BC =7,则∠BAC 的大小为( )A.2π3B.5π6C.3π4D.π3解析由余弦定理,得cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =52+32-722×5×3=-12,∴∠BAC =2π3. 答案 A11.有一长为1 km 的歪坡,它的倾歪角为20°,现要将倾歪角改为10°,则坡底要加长( )A .0.5 kmB .1 kmC .1.5 km D.32km 解析如图,AC =AB ·sin20°=sin20°,BC =AB ·cos20°=cos20°,DC =AC tan10°=2cos 210°,∴DB =DC -BC =2cos 210°-cos20°=1.答案 B12.已知△ABC 中,A ,B ,C 的对边分不为a ,b ,c.若a =c =6+2,且A =75°,则b 为( )A .2B .4+2 3C .4-2 3 D.6- 2解析在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bccosA ,∵a =c ,∴0=b 2-2bccosA =b 2-2b(6+2)cos75°,而cos75°=cos(30°+45°)=cos30°cos45°-sin30°sin45°=22? ????32-12=14(6-2),∴b 2-2b(6+2)cos75°=b 2-2b(6+2)·14(6-2)=b 2-2b =0,解得b =2,或b =0(舍去).故选A. 答案 A 13.在△ABC 中,A =60°,C =45°,b =4,则此三角形的最小边是____________.解析由A +B +C =180°,得B =75°,∴c 为最小边,由正弦定理,知c =bsinC sinB =4sin45°sin75°=4(3-1).答案 4(3-1)14.在△ABC 中,若b =2a ,B =A +60°,则A =________.解析由B =A +60°,得 sinB =sin(A +60°)=12sinA +32cosA. 又由b =2a ,知sinB =2sinA.∴2sinA =12sinA +32cosA. 即32sinA =32cosA.∵cosA ≠0,∴tanA =33.∵0°<A<180°,∴A =30°. 答案30° 15.在△ABC 中,A +C =2B ,BC =5,且△ABC 的面积为103,则B =_______,AB =_______.解析由A +C =2B 及A +B +C =180°,得B =60°.又S =12AB ·BC ·sinB ,∴10 3=12AB ×5×sin60°,∴AB =8. 答案60° 816.在△ABC 中,已知(b +c):(c +a):(a +b)=8:9:10,则sinA :sinB :sinC =________.解析设b +c =8k ,c +a =9k ,a +b =10k ,可得a :b :c =11:9:7.∴sinA :sinB :sinC =11:9:7.答案 11:9:717.在非等腰△ABC 中,角A ,B ,C 所对的边分不为a ,b ,c ,且a 2=b(b +c).(1)求证:A =2B ;(2)若a =XXX ,试推断△ABC 的形状.解 (1)证明:在△ABC 中,∵a 2=b ·(b +c)=b 2+bc ,由余弦定理,得cosB =a 2+c 2-b 22ac =bc +c 22ac =b +c 2a =a 2b =sinA 2sinB ,∴sinA =2sinBcosB =sin2B.则A =2B 或A +2B =π.若A +2B =π,又A +B +C =π,∴B =C.这与已知相矛盾,故A =2B.(2)∵a =XXX ,由a 2=b(b +c),得XXX 2=b 2+bc ,∴c =2b.又a 2+b 2=4b 2=c 2.故△ABC 为直角三角形.18.锐角三角形ABC 中,边a ,b 是方程x 2-23x +2=0的两根,角A ,B 满脚2sin(A +B)-3=0.求:(1)角C 的度数;(2)边c 的长度及△ABC 的面积.解 (1)由2sin(A +B)-3=0,得sin(A +B)=32. ∵△ABC 为锐角三角形,∴A +B =120°,∴∠C =60°.(2)∵a ,b 是方程x 2-23x +2=0的两个根,∴a +b =23,ab =2.∴c 2=a 2+b 2-2abcosC =(a +b)2-3ab =12-6=6.∴c = 6.S △ABC =12absinC =12×2×32=32. 19.已知△ABC 的角A ,B ,C 所对的边分不是a ,b ,c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2).(1)若m ∥n ,求证:△ABC 为等腰三角形;(2)若m ⊥p ,边长c =2,角C =π3,求△ABC 的面积.解 (1)证明:∵m ∥n ,∴asinA =bsinB.由正弦定得知,sinA =a 2R ,sinB =b 2R (其中R 为△ABC 外接圆的半径),代入上式,得a ·a 2R =b ·b 2R,∴a =b.故△ABC 为等腰三角形.(2)∵m ⊥p ,∴m ·p =0,∴a(b -2)+b(a -2)=0,∴a +b =ab.由余弦定理c 2=a 2+b 2-2abcosC 得4=(a+b)2-3ab,即(ab)2-3ab-4=0. 解得ab=4,ab=-1(舍去).∴△ABC的面积S=12absinC=12×4×sinπ3= 3.。
• 高中数学必修一复习练习(四)函数班 号 姓名 指数函数及其性质1.下列函数中指数函数的个数为( )①y =(12)x -1; ②y =2·3x ; ③y =a x (a >0且a ≠1,x ≥0); ④y =1x ; ⑤y =(12)2x -1.A .1个B .2个C .4个D .5个2.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x3.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M NB . M ⊆NC .N MD .M =N4.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )5.若函数y =(2a -1)x 为指数函数,则实数a 的取值范围是________. 6.函数y =a x +1(a >0且a ≠1)的图象必经过点________(填点的坐标). 7.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值; (2)求函数y =f (x )(x ≥0)的值域.8.已知指数函数f (x )=a x 在区间[1,2]上的最大值比最小值大a2,求a 的值.1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)2.函数y =⎝⎛⎭⎫121-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.下列不等关系中,正确的是( ) A .(12)23<1<(12)13B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<14.函数f (x )=2|x |,则f (x )( )A .在R 上是减函数B .在(-∞,0]上是减函数C .在[0,+∞)上是减函数D .在(-∞,+∞)上是增函数 5.方程3x -1=19的解是________.6.已知函数y =(13)x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.7.已知2x ≤(14)x -3,求函数y =(12)x 的值域.8.已知函数f (x )=a 2-3x(a >0,且a ≠1).(1)求该函数的图象恒过的定点坐标; (2)指出该函数的单调性.1.使式子log (x -1)(x 2-1)有意义的x 的值是( ) A .x <-1或x >1 B .x >1且x ≠2 C .x >1D .x ≠22.方程2log 3x =14的解是( )A.33B.3C.19D .93.化简:2lg (lg a 100)2+lg (lg a )的结果是( )A.12B .1C .2D .44.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 485.若log a x =2,log b x =3,log c x =6,则log abc x 的值为________.6.已知x ,y ∈(0,1),若lg x +lg y =lg(x +y ),则lg(1-x )+lg(1-y )=________. 7.计算下列各式的值:(1)lg12.5-lg 58+lg 12; (2)12lg25+lg2+lg 10+lg(0.01)-1; (3)log 2(log 264).8.方程lg 2x +(lg2+lg3)lg x +lg2lg3=0的两根之积为x 1x 2,求x 1x 2的值.1.下列函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,a ≠1) B .y =x 与y =x C .y =lg x 与y =lg xD .y =x 2与y =lg x 22.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 3.函数y =log 12(3x -2)的定义域是( )A .[1,∞)B .(23,+∞)C .[23,1]D .(23,1]4.函数y =lg(x +1)的图象大致是( )5.函数y =log x (2-x )的定义域是________.6.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 7.求下列函数的定义域:(1)y =log 2(4x -3); (2)y =log 5-x (2x -2).8.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.参考答案指数函数及其性质1.选A 由指数函数的定义可判定,只有③正确. 2.B3.选A x ∈R ,y =2x >0,y =x 2≥0,即M ={y |y >0},N ={y |y ≥0},所以M N. 4.选C 由0<m <n <1可知①②应为两条递减曲线,故只可能是选项C 或D , 进而再判断①②与n 和m 的对应关系,判断方法很多,不妨选择特殊点,令x =1, 则①②对应的函数值分别为m 和n ,由m <n 知选C.5.解析:函数y =(2a -1)x 为指数函数,则2a -1>0且2a -1≠1,∴a >12且a ≠1. 答案:a >12且a ≠16.∵指数函数y =a x 恒过定点(0,1).∴y =a x +1的图象必过点(0,2).答案:(0,2) 7.解:(1)函数图象过点(2,12),所以a 2-1=12,则a =12.(2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1,于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2]. 8.解:由指数函数的概念知a >0,a ≠1.当a >1时,函数f (x )=a x 在区间[1,2]上是增函数,所以当x =2时,f (x )取最大值a 2,当x =1时,f (x )取最小值a , 由题意得a 2=a +a 2,即a 2=32a ,因为a >1,所以a =32;当0<a <1时,函数f (x )=a x 在区间[1,2]上是减函数,同理可以求得a =12.综上可知,a 的值为32或12✠✠指数函数及其性质的应用1.选D 不等式2x +1<1=20,∵y =2x 是增函数,∴x +1<0,即x <-1.2.选A 定义域为R.设u =1-x ,y =⎝⎛⎭⎫12u,∵u =1-x 在R 上为减函数,又∵y =⎝⎛⎭⎫12u在(-∞,+∞)上为减函数,∴y =⎝⎛⎭⎫121-x在(-∞,+∞)上是增函数.3.选D ∵函数y =(12)x 在R 上是减函数,而0<13<23,∴(12)23<(12)13<(12)0,即(12)23<(12)13<1.4.选B ∵y =2x 在R 上递增,而|x |在(-∞,0]上递减,在[0,+∞)是递增,∴f (x )=2|x |在(-∞,0]上递减,在[0,+∞)上递增.5.解析:∵3x -1=19,∴3x -1=3-2,∴x -1=-2,∴x =-1. 答案:-16.解析:函数y =(13)x 在定义域内单调递减,∴m =(13)-1=3,n =(13)-2=9, ∴m +n =12. 答案:127.解:∵2x ≤(14)x -3,即2x ≤26-2x ,∴x ≤6-2x ,∴x ≤2,∴y = (12)x ≥ (12)2=14,∴函数值域是[14,+∞).8.解:(1)当2-3x =0,即x =23时,a 2-3x =a 0=1. 所以,该函数的图象恒过定点(23,1)(2)∵u =2-3x 是减函数,∴当0<a <1时,f (x )在R 上是增函数;当a >1时,f (x )在R 上是减函数.❑❑对数与对数运算1.选B 由⎩⎪⎨⎪⎧x -1>0,x 2-1>0,x -1≠1,解得x >1且x ≠2.2.选C 由已知得log 3x =-2 ,∴ x =3-2=19.3.选C 由对数运算可知:lg(lg a 100)=lg(100lg a )=2+lg(lg a ),∴原式=2. 4.选A 由2x =3得:x =log 23.∴x +2y =log 23+2log 483=log 23+2log 283log 24=log 23+(3log 22-log 23)=3.5.解析:log a x =1log x a =2,∴log x a =12. 同理log x b =13,log x c =16.log abc x =1log x abc =1log x a +log x b +log x c =1. 答案:16.解析:lg(x +y )=lg x +lg y =lg(xy )⇒x +y =xy ,lg(1-x )+lg(1-y )=lg[(1-x )(1-y )]=lg(1-x -y +xy )=lg1=0. 答案:0 7.解:(1)原式=lg(252×85×12)=lg10=1.(2)原式=lg[2512×2×1012×(10-2)-1]=lg(5×2×1012×102)=lg1072=72.(3)原式=log 2(log 226)=log 26=1+log 23.8.解:因为lg2x +(lg2+lg3)lg x +lg2lg3=(lg x +lg2)(lg x +lg3),所以lg x =-lg2=lg2-1或lg x =-lg3=lg3-1,即x 1=12,x 2=13,所以x 1x 2=16.对数函数及其性质1.C2.选C 当x ≥1时,log 2x ≥0,所以y =2+log 2x ≥2.3.选D 由函数的解析式得log 12(3x -2)≥0=log 121.∴0<3x -2≤1,解得:23<x ≤1.4.选C 当x =0时y =0,而且函数为增函数,可见只有C 符合.5.解析:由对数函数的意义可得⎩⎪⎨⎪⎧2-x >0x >0x ≠1⇒⎩⎪⎨⎪⎧x <2x >0且x ≠1⇒0<x <2且x≠1. 答案:(0,1)∪(1,2)6.解析:当x =2时y =1. 答案:(2,1)7.解:(1)要使函数有意义,须满足:log 2(4x -3)≥0=log 21,⇒1≤ 4x -3⇒x ≥1,∴函数的定义域为[1,+∞).(2)要使函数有意义,须满足⎩⎪⎨⎪⎧2x -2>05-x >05-x ≠1⇒1<x <5且x ≠4. ∴函数的定义域为(1,4)∪(4,5).8.解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 的值.。
学习-----好资料高中数学函数的图像专题拔高训练一•选择题1. (2014?鹰潭二模)如图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h随时间t变化的可2. (2014?河东区一模)若方程B.3. (2014?福建模拟)现有四个函数:①y=x?sinx②y=x?cosx③y=x?|cosx|④y=x?2X的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是(C.①④②③ D .③④②①)5. (2014?遂宁一模)函数f (x)=xln|x|的图象大致是(9. (2014?大港区二模)如果若干个函数的图象经过平移后能够重合,则称这些函数为① f (x ) =sinxcosx ; ② f (x ) =「Sin2x+1 ;③ f (x ) =2sin (x+—); ④ f (x ) =sinx+:cosx .其中同簇函数”的是()A .①② |B .①④C .②③7. (2014?湖南二模)若函数 y=f (x )的图象如图所示,则函数 y=f (1 - x )的图象大致为( )C .、1 11111 0A .J J 0 y=x+cosx 的大致图象是(prj 1 z- fy ”f■a i /■ --- IfD.同簇函数”给出下列函数:D .③④学习-----好资料10. (2014?潍坊模拟)已知函数 f (x)=e|lnx|- |x-丄I,则函数y=f (x+1)的大致图象为()211.(2014?江西一模)平面上的点P(x, y),使关于t的二次方程t+xt+y=0的根都是绝对值不超过1的实数,那么这样的点P的集合在平面内的区域的形状是(12. (2014?宜春模拟)如图,半径为2的圆内有两条半圆弧,一质点M自点A开始沿弧A - B - C - O- A - D - C做匀速运动,则其在水平方向(向右为正)的速度v=v (t)的图象大致为(13. (2014?江西模拟)如图正方形ABCD边长为4cm, E为BC的中点,现用一条垂直于AE的直线l以0.4m/s的速度从11平行移动到12,则在t秒时直线I扫过的正方形ABCD的面积记为F (t)(m2),则F (t)的函数图象大概是(14. (2014?临汾模拟)如图可能是下列哪个函数的图象( )A . y=2x - x 2- 1B. 厂皿2xC . y= (x - 2x ) eD.y 二y 4x+l15. (2014?芜湖模拟)如果两个方程的曲线经过若干次平移或对称变换后能够完全重合,则称这两个方程为 生成方程对”.给出下列四对方程:① y=sinx+cosx 禾口 y= Sinx+1 ; —2 2 十 2 2 ② y - x =2 和 x - y =2;2 2③ y =4x 禾口 x =4y ;x④ y=l n (x - 1)和 y=e +1. 其中是互为生成方程对”有()B . 2对16. (2014?上饶二模)如图,不规则图形 ABCD 中:AB 和CD 是线段,AD 和BC 是圆弧,直线l 丄AB 于E ,当I 从左至右移动(与线段 AB 有公共点)时,把四边形 ABCD 分成两部分,设 AE=x ,左侧部分面积为 y ,则y 关于x 的大致图象为( )17. (2014?乌鲁木齐三模)已知函数 f ( x )在定义域R 上的值不全为零,若函数 f ( x+1)的图象关于(1 , 0)对 称,函数f (x+3)的图象关于直线 x=1对称,则下列式子中错误的是()互为18. (2014?凉山州一模)函数 的图象大致是(A . 1:(-x) =f (x) B.f (x - 2) =f (x+6) |C.f (- 2+x) +f (- 2 - x)=0D.f (3+x) +f (3 - x) =021. (2012?青州市模拟)如图,有一直角墙角,两边的长度足够长,在 P 处有一棵树与两墙的距离分别是a m (0v a v 12)、4m ,不考虑树的粗细•现在想用16m 长的篱笆,借助墙角围成一个矩形的花圃 ABCD •设此矩形花圃219. (2014?安阳一模)已知 (x )k+1, xE [ - 1, 0) ,+i.[o, 1],则下列叙述中不正确的一项是(i■ 2k川II i iII If (|x|)的图象20 .如图,在正四棱柱 ABCD - A 1B 1C 1D 1中,AA 仁2 , AB=1 , M 、N 分别在AD 1, BC 上移动,并始终保持 MN //MN=y ,则函数y=f (x )的图象大致是()|f (x ) I的图象D.-1 QC .D.的最大面积为S,若将这棵树围在花圃内,则函数S=f (a)(单位m )的图象大致是()22. (2009?江西)如图所示,一质点P (x, y)在xOy平面上沿曲线运动,速度大小不变,其在x轴上的投影点Q(x,0)的运动速度V=V(t)的图象大致为()23. (2010?湖南)用min{a,b}表示a,b两数中的最小值.若函数f (x)=min{|x|,|x+t|}的图象关于直线x= 丄对■w 称,则t的值为()c.A . - 2 |B. 2 C. - 1 |D . 124.已知函数f (x)的定义域为[a,b],函数y=f (x)的图象如下图所示,则函数f (|x|)的图象是()25. (2012?泸州二模)点P从点O出发,按逆时针方向沿周长为I的图形运动一周,O, P两点连线的距离y与点P 走过的路程x的函数关系如右图所示,那么点P所走的图形是()二•填空题(共5小题)26. (2006?山东)下列四个命题中,真命题的序号有_______________________ (写出所有真命题的序号).①将函数y=|x+1|的图象按向量y= (- 1, 0)平移,得到的图象对应的函数表达式为y=|x|.2 2 1②圆x +y +4x - 2y+1=0与直线y== •相交,所得弦长为2.2③若sin ( 3)=丄,sin (a— 3) —,贝U tan acot 3=5.2 3④如图,已知正方体ABCD - A i B i C i D i, P为底面ABCD内一动点,P到平面AAQ I D的距离与到直线CC i的距离相等,则P点的轨迹是抛物线的一部分.I)27. 如图所示,f (x)是定义在区间[-c, c](c> 0)上的奇函数,令g (x) =af (x)+b,并有关于函数g (x)的四个论断:g (n) _ g (m)、亠①若a>0,对于[-1, 1]内的任意实数m, n (m v n), -------------------------- . - . 恒成立;n〜m②函数g (x )是奇函数的充要条件是b=0;③若a》,b v 0,则方程g (x) =0必有3个实数根;④?a€R, g (x)的导函数g'(x)有两个零点;其中所有正确结论的序号是__________________ .28. 定义域和值域均为[-a, a](常数a>0)的函数y=f (x)和y=g (x)的图象如图所示,给出下列四个命题:①方程f[g (x)]有且仅有三个解;②方程g[f (x)]有且仅有三个解;③方程f[f (x)]有且仅有九个解;x=t (0W<2)截这个三角形29•如图所示,在直角坐标系的第一象限内, △ AOB是边长为2的等边三角形,设直线④方程g[g (x)]有且仅有一个解. 那么,其中正确命题的个数是_可得位于此直线左方的图形的面积为 f (t),则函数y=f (t)的图象(如图所示)大致是—_ .(填序号)P (x,y)的轨30. (2010?北京)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点(x)的最小正周期为_________________ ; y=f (x)在其两个相邻零点间的图象与参考答案与试题解析O A X•选择题1. (2014?鹰潭二模)如图所示是某一容器的三视图,现向容器中匀速注水, 容器中水面的高度h随时间t变化的可能图象是( )考点:函数的图象与图象变化.学习-----好资料专题:压轴题;数形结合.分析:; 根据几何体的三视图确定几何体的形状是解决本题的关键,可以判断出该几何体是圆锥,下面细上面粗的 容器,判断出高度 h 随时间t 变化的可能图象.解答: 解:该三视图表示的容器是倒放的圆锥,下面细,上面粗,随时间的增加,可以得出高度增加的越来越慢. 刚开始高度增加的相对快些.曲线越 竖直”之后,高度增加的越来越慢,图形越平稳.故选B .点评: 本题考查函数图象的辨别能力,考查学生对两变量变化趋势的直观把握能力,通过曲线的变化快慢进行筛 选,体现了基本的数形结合思想.专题:作图题;数形结合;转化思想.分析:根据方程f (x )- 2=0在(-a, 0)内有解,转化为函数f ( x )的图象和直线y=2在(-a, 0)上有交点. 解答:解:A :与直线y=2的交点是(0, 2),不符合题意,故不正确;B :与直线y=2的无交点,不符合题意,故不正确;C :与直线y=2的在区间(0, +a )上有交点,不符合题意,故不正确;D :与直线y=2在(-a, 0) 上有交点,故正确.故选D .点评:考查了识图的能力,体现了数形结合的思想,由方程的零点问题转化为函数图象的交点问题,体现了转化 的思想方法,属中档题.3. (2014?福建模拟)现有四个函数:①y=x?sinx ②y=x?cosx ③y=x?|cosx|④y=x?2x 的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是(A .( ①④③②B .④①②③C. ①④②③D.③④②①考点: 函数的图象与图象变化.专题:综合题.分析:. 从左到右依次分析四个图象可知,第一个图象关于 Y 轴对称,是一个偶函数,第二个图象不关于原点对称,也不关于Y 轴对称,是一个非奇非偶函数;第三、四个图象关于原点对称,是奇函数,但第四个图象在Y2. (2014?河东区一模)若方程 f (x )- 2=0在(0)内有解,贝U y=f (x )的图象是( )考点:函数的图象与图象变化.学习-----好资料学习-----好资料①y=x?sinx为偶函数;②y=x?cosx为奇函数;③y=x?|cosx|为奇函数,④y=x?2为非奇非偶函数且当x v 0时,③y=x?|cosx冋恒成立;则从左到右图象对应的函数序号应为:①④②③故选:C.本题考查的知识点是函数的图象与图象变化,其中函数的图象或解析式,分析出函数的性质,然后进行比点评:照,是解答本题的关键.考点:函数的图象与图象变化.)专题:函数的性质及应用.分析:由函数不是奇函数图象不关于原点对称,排除A、C,由x >0时,函数值恒正,排除D.解答:解:函数y=f (x)是一个非奇非偶函数,图象不关于原点对称,故排除选项A、C,又当x= - 1时,函数值等于0,故排除D ,故选B.从而得到正确的选项.排除法是解选择题常用的一种方点评:本题考查函数图象的特征,通过排除错误的选项,法.考点:函数的图象与图象变化;对数函数的图像与性质.专题:计算题.分析:由于f (- x) = - f (x),得出f (x)是奇函数,其图象关于原点对称,由图象排除C, D,利用导数研究根据函数的单调性质,又可排除选项B,从而得出正确选项.解答:解:T函数f (x) =xln|x|,可得f (—x) = - f (x),f (x)是奇函数,其图象关于原点对称,排除C, D ,又f' ( x) =lnx+1,令f' (x) > 0得:x >丄,得出函数f (x)在(一,+7 上是增函数,排除B ,e e故选A点评:本小题主要考查函数单调性的应用、函数奇偶性的应用、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题6. (2014?西藏一模)函数y=x+cosx的大致图象是( )考点:. 函数的图象与图象变化;函数的图象. 专题:计算题;数形结合.分析:先研究函数的奇偶性知它是非奇非偶函数,从而排除A 、C 两个选项,再看此函数与直线 y=x 的交点情况,即可作出正确的判断.解答::解:由于 f (x ) =x+cosx , /• f (- x ) = - x+cosx ,• •• f (- x )丼(x ),且 f (- x ) M — f (x ), 故此函数是非奇非偶函数,排除 ③④;又当 x="时,x+cosx=x ,2即f (x )的图象与直线y-x 的交点中有一个点的横坐标为 ,排除①.2故选B .点评: 本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力,属于中档题.y=f (1 - x )的图象大致为(考点: 函数的图象与图象变化.专题:‘ 压轴题;数形结合. 分析:先找到从函数y-f (x )到函数y-f (1 x )的平移变换规律是:先关于 y 轴对称得到y-f ( x ),再整体向右平移1个单位;再画出对应的图象,即可求出结果.解答: 解:因为从函数 y-f (x )到函数y-f (1-x )的平移变换规律是:先关于 y 轴对称得到y-f (- x ),再整体 向右平移1个单位即可得到.即图象变换规律是: ①T ②.学习-----好资料A .B .C.JD.y \■r **y=f (x )的图象如图所示,则函数学习 好资料故选:A .点评:本题考查了函数的图象与图象的变换,培养学生画图的能力,属于基础题,但也是易错题.易错点在于左 右平移,平移的是自变量本身,与系数无关.专题:函数的性质及应用.分析: 求出函数的定义域,通过函数的定义域,判断函数的奇偶性及各区间上函数的符号,进而利用排除法可得 答案. 解答:-解:函数产丄空竺的定义域为(-m, 0)U( 0, + a),9X - 1故函数为奇函数,图象关于原点对称,故A 错误由分子中cos3x 的符号呈周期性变化,故函数的符号也呈周期性变化,故 C 错误;不x € (0,丄E )时,f (x )> 0,故B 错误6故选:D点评:本题考查函数的图象的综合应用,对数函数的单调性的应用,考查基本知识的综合应用,考查数形结合, 计算能力.判断图象问题,一般借助:函数的定义域、值域、单调性、奇偶性、周期性、以及函数的图象 的变化趋势等等.9. (2014?大港区二模)如果若干个函数的图象经过平移后能够重合,则称这些函数为① f (x ) =sinxcosx ; ② f (x ) =「Sin2x+1 ;—K ③ f (x ) =2sin (x+ 4 );④ f (x ) =sinx+cosx .其中 同簇函数”的是()A .①②|B .①④ C .②③ 考点:函数的图象与图象变化.函数的性质及应用.由于f (x ) =sinx+J§cosx=2sin (x+匹),再根据函数图象的平移变换规律,可得它与f (x ) =2sin (x+卫)且 f (— X )3 x cos (- 3耳)-1=—f ( X )同簇函数”给出下列函数:D .③④⑦②考点:函数的图象与图象变化.学习-----好资料3 4的图象间的关系•而其余的两个函数的图象仅经过平移没法重合,还必须经过横坐标(或纵坐标)的伸缩变换,故不是同簇函数”.解:由于①f (x) =sinxcosx= sin2x与②f (x) in2x+1的图象仅经过平移没法重合,还必须经过纵坐2标的伸缩变换,故不是同簇函数”.由于①f (x) =sinxcosx^—sin2x与④f (x) =sinx+ :cosx=2sin (x+——)的图象仅经过平移没法重合,还2 3必须经过横坐标的伸缩变换,故不是同簇函数”.②f (x) =Jj sin2x+1与③f (x) =2sin (x+——)的图象仅经过平移没法重合,还必须经过横坐标的伸缩4变换,故不是同簇函数”.由于④ f (x) =sinx+ ';cosx=2 (—sinx+^_cosx) =2sin (x+ ),2 2 3故把③f (x) =2sin (x+丄)的图象向左平移——,可得f (x) =2sin (x+ ) 的图象,4 12 3故③和④是同簇函数”,故选:D •本题主要考查行定义,函数图象的平移变换规律,属于基础题.10. (2014?潍坊模拟)已知函数f (x) =e|lnx|- |x - -1,则函数y=f (x+1)的大致图象为( )考点:函数的图象与图象变化.专题:函数的性质及应用.分析:f-, 1>1化简函数f (x)的解析式为* X ,而f (x+1)的图象可以认为是把函数 f (X)的图象向左x , 0<C x<Cl平移1个单位得到的,由此得出结论.解答:解:T函数f (x) =e|lnx|-|x-丄• ••当x昌时,函数f (x) =x -( x —丄)=丄.X X] ] —T当0 V XV 1 时,函数f (x) =—-( - X+土) =x,即f (x) =] X .X K [八0<X<l函数y=f (x+1)的图象可以认为是把函数 f (x)的图象向左平移1个单位得到的,故选A.点评:本小题主要考查函数与函数的图象的平移变换,函数y f (x+1)的图象与函数f (x)的图象间的关系,属于基础题.学习好资料211. (2014?江西一模)平面上的点P (x, y),使关于t的二次方程t+xt+y=O的根都是绝对值不超过1的实数,那么这样的点P的集合在平面内的区域的形状是()考点:函数的图象与图象变化.专题:计算题;数形结合.分析:先根据条件t2+xt+y=0的根都是绝对值不超过1的实数转化成t2+xt+y=0的根在-1到1之间,然后根据根的分布建立不等式,最后画出图形即可.L 2解答:解:t +xt+y=0的根都是绝对值不超过1的实数,则t2+xt+y=0的根在-1到1之间,f A>o丁心知f (-1) >0f (1) >0X21 - x+y>0l+x+y^0t画出图象可知选项D正确.点评:本题主要考查了二次函数根的分布,以及根据不等式画出图象,同时考查数形结合的思想,属于基础题.12. (2014?宜春模拟)如图,半径为2的圆内有两条半圆弧,一质点M自点A开始沿弧A - B - C - O- A - D - C做匀速运动,则其在水平方向(向右为正)的速度v=v (t)的图象大致为()考点:函数的图象与图象变化.专题:函数的性质及应用.M的运动情况与速度v的关系,分析:;根据位移的定义与路程的概念,以及速度是位移与时间的比值,分析质点选出符合题意的答案.解答:,解:•••弧AB=弧BC=弧CD=弧DA= - Xu2^= n, 4弧CO=弧OA= JL X%2^= n9•••质点M自点A开始沿弧A - B - C- O - A - D - C做匀速运动时,所用的时间比为1:1:1:1 : 1 : 1;又•••在水平方向上向右的速度为正,•••速度在弧AB段为负,弧BC段为正,弧CO段先正后负,弧OA段先负后正,弧AD段为正, 弧DC段为负;•••满足条件的函数图象是B .故选:B.点评:本题考查路程及位移、平均速度与平均速率的定义,注意路程、平均速率为标量;量. 而位移、平均速度为矢13. (2014?江西模拟)如图正方形ABCD边长为4cm, E为BC的中点,现用一条垂直于AE的直线I以0.4m/s的速度从I l平行移动到12,则在t秒时直线I扫过的正方形ABCD的面积记为F (t)( m2),则F (t)的函数图象大概考点:函数的图象与图象变化.专题:函数的性质及应用.分析:分析出I与正方形AD边有交点时和I与正方形CD边有交点时,函数图象的凸凹性,进而利用排除法可得答案.解答:解:当I 与正方形AD 边有交点时,此时直线I 扫过的正方形 ABCD 的面积随t 的增大而增大的速度加快,故此段为凹函数,可排除 A , B ,当I 与正方形CD 边有交点时,此时直线I 扫过的正方形 ABCD 的面积随t 的增大而增大的速度不变, 故此段为一次函数,图象就在为直线, 可排除C , 故选:D点评:本题考查的知识点是函数的图象与图象变化,其中分析出函数图象的凸凹性是解答的关键.14. (2014?临汾模拟)如图可能是下列哪个函数的图象( )x 2A . y=2 — x — 1B.厂皿2 xC . y= (x — 2x ) eD ,‘: y =::.y= ■:, 1函数的图象与图象变化.函数的性质及应用.A 中y=2x -X 1 2- 1可以看成函数y=2x 与y=x 2+i 的差,分析图象是不满足条件的;2x sinxB 中由y=sinx 是周期函数,知函数 y= .「的图象是以x 轴为中心的波浪线,是不满足条件的;C 中函数y=x 2 - 2x 与y=e x 的积,通过分析图象是满足条件的;中y=:,的定义域是(0, 1 )U( 1, lnx解:A 中,••• y=2 - x - 1,当x 趋向于-a 时,函数y=2的值趋向于0, y=x +1的值趋向 •••函数y=2x -x 2- 1的值小于0,二A 中的函数不满足条件;2*sin 芷B 中,••• y=sinx 是周期函数,•函数 y= 「的图象是以x 轴为中心的波浪线,4x+l• B 中的函数不满足条件;C 中,•••函数 y=x 2 - 2x= (x - 1) 2 - 1,当 x v 0 或 x > 1 时,y >0,当 0v x v 1 时,y v 0; 且y=e x > 0恒成立,2x• y= (x - 2x ) e 的图象在x 趋向于-a 时,y > 0, 0v x v 1时,y v 0,在x 趋向于+ a 时,y 趋向于+a ; •C 中的函数满足条件;D 中,y=〒二的定义域是(0, 1)U( 1, + a),且在 x € (0, 1)时,Inx v 0,Lnx • y=」「v 0, • D 中函数不满足条件. lnx故选:C .本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综 合性题目.15. (2014?芜湖模拟)如果两个方程的曲线经过若干次平移或对称变换后能够完全重合,则称这两个方程为互为生成方程对”.给出下列四对方程: ① y=sinx+cosx 禾口 y= Sinx+1 ;2 2 2 2② y - x =2 和 x - y =2 ;2 2③ y =4x 禾口 x =4y ;分析: 由已知条件求得 f (4 - x ) = - f (x )…①、f (x+4) =f (4 - x )…②、f (x+8) =f (x )…③.再利用这+s ),分析图象是不满足条件的.解答:点评:学习-----好资料x④ y=l n (x - 1)和 y=e +1. 其中是互为生成方程对”有()A . 1对B . 2对考点:函数的图象与图象变化. 专题:函数的性质及应用.分析:根据函数的平移个对称即可得出结论. 解答: 解:① y=sinx+cosx=,.- i , y=“Jj sinx+1 ;故① 是,2 2 2 2 2 2② y - x =2令x=y , y=x ,则x - y =2 ;和x - y =2完全重合,故 ②是,2 2 2③ y =4x ;令x=y , y=x ,贝U x =4y 和x =4y 完全重合,故 ③是,x④ y=ln (x - 1)和y=e +1是一反函数,而互为反函数图象关于 y=x 对称,故④是,故 互为生成方程对”有4对. 故选:D .点评:本题是基础题,实质考查函数图象的平移和对称变换问题,只要掌握基本知识,领会新定义的实质,不难 解决问题.16. (2014?上饶二模)如图,不规则图形 ABCD 中:AB 和CD 是线段,AD 和BC 是圆弧,直线l 丄AB 于E ,当I 从左至右移动(与线段 AB 有公共点)时,把四边形 ABCD 分成两部分,设 AE=x ,左侧部分面积为 y ,则y 关于x 的大致图象为( ) 考点:函数的图象与图象变化. 专题:. 函数的性质及应用.分析:根据左侧部分面积为 y ,随x 的变化而变化,最初面积增加的快,后来均匀增加,最后缓慢增加,问题得以 解决. 解答:: 1 解:因为左侧部分面积为 y ,随x 的变化而变化,最初面积增加的快,后来均匀增加,最后缓慢增加,只有D 选项适合,故选D .点评: 本题考查了函数的图象,关键是面积的增加的快慢情况,培养真确的识图能力.17. (2014?乌鲁木齐三模)已知函数 f ( x )在定义域R 上的值不全为零,若函数 f ( x+1)的图象关于(1 , 0)对 称,函数f (x+3)的图象关于直线 x=1对称,则下列式子中错误的是( ) A . f (- x ) =f (x )B . f (x - 2) =f (x+6)C . f (- 2+x ) +f (- 2 - x )D . f (3+x ) +f (3 - x ) =0考点:函数的图象与图象变化. 专题:函数的性质及应用.3个结论检验各个选项是否正确,从而得出结论.解答:解:•••函数f (x+1 )的图象关于(1, 0)对称, D : c A .学习-----好资料•••函数f (x)的图象关于(2, 0)对称,令F ( x) =f (x+1 ),则F (x) = - F (2-x),故有f (3 - x) = - f ( x+1) , f ( 4 - x) = - f (x)…①.令G (x) =f (3-x),•••其图象关于直线x=1对称,• G (2+x) =G (- x),即f (x+5) =f (3 - x),•f (x+4) =f (4 - x) …②.由①②得,f (x+4) = - f (x),•f (x+8) =f (x) …③.•f (- x) =f ( 8 - x ) =f (4+4 - x ),由②得f[4+ (4 - x) ]=f[4 -( 4 - x) ]=f (x),•f (- x) =f (x) ,• A 对.由③得f (x - 2+8) =f (x - 2),即f (x- 2) =f (x+6 ),• B 对.由① 得,f (2-x) +f ( 2+x) =0 ,又f (- x) =f (x),•f (- 2 - x) +f (- 2+x) =f (2- x) +f (2+x) =0,「. C 对.若f (x+3) +f (3 - x) =0,贝U f (6+x) = - f ( x ),• f (12+x) =f (x),由③可得f (12+x) =f (4+x ),又f (x+4) = - f ( x ) ,• f ( x ) = - f (x ) ,• f ( x ) =0 ,与题意矛盾,• D 错,故选:D.点评:本题主要考查函数的奇偶性、单调性、周期性的应用,函数的图象及图象变换.18. (2014?凉山州一模)函数y= 「|的图象大致是()In|x|+1考点:函数的图象与图象变化.专题:函数的性质及应用.分析:求出函数的定义域,通过函数的定义域,判断函数的奇偶性及各区间上函数的符号,进而利用排除法可得答案.解答:解:函数f (x) =y= 的定义域为(-8,-—)U(-丄,0)U( 0,丄)U(丄,+8),四个图象ln|x |+1 e e e e 均满足;又••• f (- x)= = =f (x),故函数为偶函数,故函数图象关于y轴对称,四个图象均满ln| - 11+1 ln|x |+1足;当x€ (0, J时,y= 「| = V 0,可排除B, D答案;e In | x| + 1 lnx+1当x€ (■, + 8)时,y= 「- > 0,可排除C答案;e In | x |+1 lnx+1故选:A点评:本题考查函数的图象的综合应用,对数函数的单调性的应用,考查基本知识的综合应用,考查数形结合,学习-----好资料计算能力•判断图象问题,一般借助:函数的定义域、值域、单调性、奇偶性、周期性、以及函数的图象的变化趋势等等.,则下列叙述中不正确的一项是(19.( 2014?安阳一模)已知|f (x) |的图象考点:函数的图象与图象变化.专题:函数的性质及应用.分析:作出函数f (X)的图象,利用函数与f (X)之间的关系即可得到结论. 解答:解:作出函数f (X)的图象如图:A .将f (x)的图象向右平移一个单位即可得到 f (x - 1)的图象,贝U A正确.B .••• f (x)> 0,「. |f (x) |=f ( x),图象不变,则B 错误.C. y=f (- x )与y=f (x)关于y轴对称,则C正确.D . f (|x|)是偶函数,当x为,f (|x|) =f (x),贝U D正确,故错误的是B ,故选:B点评:本题主要考查函数图象之间的关系的应用,比较基础.20. 如图,在正四棱柱ABCD - A i B i C i D i中,AA i=2 , AB=1 , M、N分别在AD 1, BC上移动,并始终保持MN //ClA L平面DCC i D i,设BN=x , MN=y,则函数y=f (x)的图象大致是(6考点: 函数的图象与图象变化;直线与平面平行的性质.专题:’ 压轴题;数形结合. 分析:由MN //平面DCC1D1,我们过M 点向AD 做垂线,垂足为 E ,则ME=2AE=BN ,由此易得到函数 y=f (x ) 的解析式,分析函数的性质,并逐一比照四个答案中的图象,我们易得到函数的图象.解答:解:若MN //平面DCC1D1, 则 |MN|=一 丄「=即函数y=f (x )的解析式为f (x )=』4,+1 (0纟屯)其图象过(0, 1)点,在区间[0 , 1]上呈凹状单调递增 故选C点评: /本题考查的知识点是线面平行的性质,函数的图象与性质等,根据已知列出函数的解析式是解答本题的关 键.21. (2012?青州市模拟)如图,有一直角墙角,两边的长度足够长,在P 处有一棵树与两墙的距离分别是v a v 12)、4m ,不考虑树的粗细.现在想用16m 长的篱笆,借助墙角围成一个矩形的花圃的最大面积为S ,若将这棵树围在花圃内,则函数 S=f ( a )(单位m 2)的图象大致是( 考点:函数的图象与图象变化. 专题:压轴题;分类讨论.分析:为求矩形ABCD 面积的最大值S ,可先将其面积表达出来,又要注意P 点在长方形ABCD 内,所以要注意分析自变量的取值范围,并以自变量的限制条件为分类标准进行分类讨论.解答: 解:设AD 长为x ,则CD 长为16- x又因为要将P 点围在矩形ABCD 内,••• a$W2则矩形ABCD 的面积为x (16 - x ), 当0v a<8时,当且仅当 x=8时,S=64 当 8v a v 12 时,S=a (16 - a )f 64, 0<a<8a m (0ABCD •设此矩形花圃)(16 - a) f 8<Ca<C12学习-----好资料分段画出函数图形可得其形状与 C 接近 故选C .更多精品文档点评:解决本题的关键是将 S 的表达式求出来,结合自变量的取值范围,分类讨论后求出S 的解析式.22. (2009?江西)如图所示,一质点 P (x , y )在xOy 平面上沿曲线运动,速度大小不变,其在x 轴上的投影点Q(x , 0)的运动速度 V=V (t )的图象大致为()考点:函数的图象与图象变化;导数的几何意义. 专题:压轴题.分析:对于类似于本题图象的试题,可以考虑排除法,由图象依次分析投影点的速度、质点p 的速度等,逐步排除即可得答案.解答:解:由图可知,当质点 P (x , y )在两个封闭曲线上运动时,投影点Q (x , 0)的速度先由正到 0,到负数,再到0,到正,故A 错误; 质点P (x , y )在终点的速度是由大到小接近 0,故D 错误;质点P (x , y )在开始时沿直线运动,故投影点 Q (x , 0)的速度为常数,因此 C 是错误的,故选B .点评:本题考查导数的几何意义在函数图象上的应用.23. (2010?湖南)用min{a , b}表示a , b 两数中的最小值.若函数 f (x ) =min{|x| , |x+t|}的图象关于直线 x^ =对 ■w 称,则t 的值为( ) A . - 2 B . 2 C . - 1 |D . 1考点:函数的图象与图象变化.专题:作图题;压轴题;新定义;数形结合法. 分析:出结论解答:解:如图,在同一个坐标系中做出两个函数y=|x|与y=|x+t|的图象,函数f (x ) =min{|x| , |x+t|}的图象为两个图象中较低的一个, 分析可得其图象关于直线x=「对称,要使函数f (x ) =min{|x| , |x+t|}的图象关于直线 x= 丁对称,则t 的值为t=1故应选D .x= '观察图象得由题设,函数是一个非常规的函数,在同一个坐标系中作出两个函数的图象,及直线C .学习-----好资料点评:本题的考点是函数的图象与图象的变化,通过新定义考查学生的创新能力,考查函数的图象,考查考生数 形结合的能力,属中档题.24. 已知函数f(x )的定义域为[a , b ],函数y=f (x )的图象如下图所示,则函数 f (|x|)的图象是()考点:函数的图象与图象变化.专题:作图题;压轴题;数形结合;运动思想.分析:由函数y=f (x )的图象和函数f (|x|)的图象之间的关系, 留,x v 0部分的图象关于 y 轴对称而得到的.解答:解:T y=f (|x|)是偶函数,••• y=f (|x|)的图象是由y=f (x )把x >0的图象保留, x v 0部分的图象关于y 轴对称而得到的.故选B .点评: 考查函数图象的对称变换和识图能力,注意区别函数y=f (x )的图象和函数f (|x|)的图象之间的关系,函数y=f (x )的图象和函数|f (x ) |的图象之间的关系;体现了数形结合和运动变化的思想,属基础题.25. (2012?泸州二模)点P 从点0出发,按逆时针方向沿周长为 I 的图形运动一周,O , P 两点连线的距离y 与点P 走过的路程x 的函数关系如右图所示,那么点P 所走的图形是( )y=f (|x|)的图象是由y=f (x )把x > 0的图象保-3•4学习-----好资料考点:函数的图象与图象变化.专题:数形结合.分析:本题考查的是函数的图象与图象变化的问题•在解答时首先要充分考查所给四个图形的特点,包括对称性、圆滑性等,再结合所给0, P两点连线的距离y与点P走过的路程x的函数图象即可直观的获得解答.解答:解:由题意可知:O, P两点连线的距离y与点P走过的路程x的函数图象为:由图象可知函数值随自变量的变化成轴对称性并且变化圆滑.由此即可排除A、B、C.故选D.k1 1X1 2点评:本题考查的是函数的图象与图象变化的问题.在解答的过程当中充分体现了观察图形、分析图形以及应用图形的能力.体现了函数图象与实际应用的完美结合.值得同学们体会反思.二•填空题(共5小题)26. (2006?山东)下列四个命题中,真命题的序号有③④(写出所有真命题的序号).①将函数y=|x+1|的图象按向量y= (- 1, 0)平移,得到的图象对应的函数表达式为y=|x|.2 2 1②圆x +y +4x - 2y+1=0与直线y==-」-相交,所得弦长为2.③若sin ( a+ 3)=丄,sin ( a- ® =2,贝y tanacot 3=5.2 S④如图,已知正方体ABCD - A i B i C i D i, P为底面ABCD内一动点,P到平面AAQ I D的距离与到直线CC i的距离相等,则P点的轨迹是抛物线的一部分.考点:函数的图象与图象变化;两角和与差的正弦函数;直线和圆的方程的应用;点、线、面间的距离计算.专题:压轴题.分析:: 逐个进行验正,排除假命题,从而得到正确命题.解答::(解:①错误,得到的图象对应的函数表达式应为y=|x - 2|②错误,圆心坐标为(-2, 1),至U直线y=g K的距离为台£>半径2, 故圆与直线相离,(③正确,sin ( a+ 3) =g=s in acos 3+cos a s in 31sin ( a- 3) =sin 久cos 3- cos asin 3=.。
高中数学(必修一)第三章 函数的概念与性质幂函数 练习题(含答案解析)学校:___________姓名:___________班级:_____________一、单选题1.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x = 2.已知幂函数n y x =在第一象限内的图像如图所示,若112,2,,22n ⎧⎫∈--⎨⎬⎩⎭则与曲线1C 、2C 、3C、4C 对应的n 的值依次为( )A .12-、2-、2、12B .2、12、2-、12-C .2、12、12-、2-D .12-、2-、12、23.四个幂函数在同一平面直角坐标系中第一象限内的图象如图所示,则幂函数12y x =的图象是( )A .①B .①C .①D .①4.下列函数中,既是偶函数,又满足值域为R 的是( ) A .y =x 2B .1||||y x x =+C .y =tan|x |D .y =|sin x |5.如下图所示曲线是幂函数y =xα在第一象限内的图象,已知α取±2,±12四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12 D ..2,12,-2,-126.若幂函数()f x 经过点,且()8f a =,则=a ( )A .2B .3C .128D .5127.函数()0a y x x =≥和函数()0xy a x =≥在同一坐标系下的图像可能是( )A .B .C .D .8.式子)A .1633- B .1633--C .1633+D .1633-+9.对,a b ∈R ,记{},max ,,a a ba b b a b ≥⎧=⎨<⎩,函数()}2maxf x x -=的图象可能是( )A .B .C .D .二、解答题10.设函数()222f x x x =-+,[],1,x t t t R ∈+∈(1)求实数t 的取值范围,使()y f x =在区间[],1t t +上是单调函数; (2)求函数()f x 的最小值. 11.已知幂函数()223m m y x m --=∈Z 的图像与x 、y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的草图.12.已知幂函数()()25mf x m m x =+-在()0,∞+上单调递增.(1)求()f x 的解析式;(2)若()31f x x k >+-在[1,1]-上恒成立,求实数k 的取值范围. 13.设函数()f x 是定义在R 上的奇函数,且()21x ax b f x x +=++.(1)求实数a ,b 的值;(2)当x ∈⎤⎦,不等式()()22f x mx x ≥-有解,求实数m 的取值范围.三、填空题14.若点(2,4)P ,0(3,)Q y 均在幂函数()y f x =的图象上,则实数0y =_____.15.已知实数a ,b 满足等式a 12=b 13,下列五个关系式:①0<b<a<1;①-1<a<b<0;①1<a<b ;①-1<b<a<0;①a =b.其中可能成立的式子有________.(填上所有可能成立式子的序号) 16.函数3223125y x x x =--+在[0,3]上的最大值等于__________.17.定义{}()max ,()a ab a b b a b ≥⎧=⎨<⎩,则{}2max 1,2x x x +--的最小值为_________.参考答案:1.C【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0【详解】对选项A,则有:0x≠对选项B,则有:0x>对选项C,定义域为:R对选项D,则有:0x≥故答案选:C2.C【解析】本题可根据幂函数的图像与性质并结合题目中的图像即可得出结果.【详解】由幂函数的图像与性质可知:在第一象限内,在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,故曲线1C、2C、3C、4C对应的n的值依次为:2、12、12-、2-,故选:C.【点睛】本题考查幂函数的图像与性质,在第一象限内,幂函数在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,考查数形结合思想,是简单题.3.D【解析】由幂函数12y x=为增函数,且增加的速度比较缓慢作答.【详解】幂函数12y x=为增函数,且增加的速度比较缓慢,只有①符合.故选:D.【点睛】本题考查幂函数的图象与性质,属于基础题.4.C【分析】由函数的值域首先排除ABD,对C进行检验可得.【详解】选项A,B中函数值不能为负,值域不能R,故AB错误,选项D值域为[]0,1,故D也错误,那么选项C为偶函数,当3(,)22xππ∈时,tan tany x x==,值域是R,因此在定义域内函数值域为R,故选:C5.B【分析】在图象中,作出直线1x m =>,根据直线x m =和曲线交点的纵坐标的大小,可得曲线1C ,2C ,3C ,4C 相应的α应是从大到小排列.【详解】在图象中,作出直线1x m =>,直线x m =和曲线的交点依次为,,,A B C D , 所以A B C D y y y y >>>,所以C A B D m m m m αααα>>>, 所以A B C D αααα>>>,所以可得曲线1C ,2C ,3C ,4C 相应的α依次为 2,12,-12,-2 故选:B【点睛】本题主要考查幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 6.A【解析】设幂函数()f x x α=,代入点求出3α=,即可求解.【详解】设()f x x α=,因为幂函数()f x 经过点,所以f α==, 解得3α=,所以()38f a a ==,解得2a =, 故选:A 7.C【分析】按照x y a =和a y x =的图像特征依次判断4个选项即可.【详解】()0a y x x =≥必过(0,0),()0xy a x =≥必过(0,1),D 错误;A 选项:由x y a =图像知1a >,由a y x =图像可知01a <<,A 错误;B 选项:由x y a =图像知01a <<,由a y x =图像可知1a >,B 错误;C 选项:由x y a =图像知01a <<,由a y x =图像可知01a <<,C 正确. 故选:C. 8.A【分析】利用根式与分数指数幂互化和指数幂运算求解.【详解】231322333⎛⎫=-÷ ⎪⎝⎭, 21131326223333--=-=-,故选:A 9.A【分析】由()}2maxf x x -=2x -的较大者,在同一平面直角坐标系中作出两个函数的图象,取图象较高者即可得()f x 的图象.【详解】y =2y x 都是偶函数,当0x >时,12y x =在()0,∞+上单调递增,2yx 在()0,∞+上单调递减,当1x =2x -=在同一平面直角坐标系中作出y =和2yx 的图象,如图:()}2maxf x x -=2x -的较大者,所以()f x 图象是两个图象较高的,故选:A.10.(1)(][),01,-∞⋃+∞;(2)()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩【解析】(1)由题可得11t +≤或1t ≥,解出即可;(2)讨论对称轴在区间[],1t t +的位置,根据单调性即可求出. 【详解】(1)()f x 的对称轴为1x =,要使()y f x =在区间[],1t t +上是单调函数, 则11t +≤或1t ≥,解得0t ≤或1t ≥, 即t 的取值范围为(][),01,-∞⋃+∞;(2)()f x 的对称轴为1x =,开口向上,则当1t ≥时,()f x 在[],1t t +单调递增,()()2min 22f x f t t t ∴==-+,当11t t <<+,即01t <<时,()()min 11f x f ==,当11t +≤,即0t ≤时,()f x 在[],1t t +单调递减,()()2min 11f x f t t ∴=+=+,综上,()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩. 11.1m = ;草图见祥解【分析】根据幂函数的性质,可得到2230m m --<,再有图像关于y 对称,即可求得m 的值. 【详解】因为幂函数223()m m y x m Z --=∈的图像与坐标轴无交点,所以2230m m --<,解得13m -<<,又因为m Z ∈,所以0,1,2m =,因为图像关于y 对称,所以幂函数为偶函数, 当0m =时,则3y x -=为奇函数,不满足题意; 当1m =时,则4y x -= 为偶函数,满足题意; 当2m =时,则3y x -=为奇函数,不满足题意; 综上所述:1m = 草图(如下)【点睛】本题考查幂函数的性质和图像,需熟练掌握幂函数的性质和图像. 12.(1)2()f x x = (2)(),1-∞-【分析】(1)根据幂函数的定义和()f x 的单调性,求出m 得值; (2)结合第一问求出的2()f x x =,利用函数的单调性,解决恒成立问题. (1)()f x 是幂函数,则251m m +-=,2m ∴=或-3,()f x 在(0,)+∞上单调递增,则2m =所以2()f x x =; (2)()31f x x k >+-即2310x x k -+->,要使此不等式在[1,1]-上恒成立,只需使函数()231g x x x k =-+-在[1,1]-上的最小值大于0即可.①()231g x x x k =-+-在[1,1]-上单调递减,①()()11min g x g k ==--, 由10k -->,得1k <-.因此满足条件的实数k 的取值范围是(),1-∞-. 13.(1)0a =,0b = (2)1,4⎛⎤-∞ ⎥⎝⎦【分析】(1)根据定义在R 上的奇函数的性质以及定义即可解出;(2)由(1)可知,()21x f x x =+,根据分离参数法可得()()22112m x x ≤+-,再求出()()22112x x +-的最大值,即得解. (1)因为函数()f x 是定义在R 上的奇函数,所以()00f a ==,()()1111022f f b b-+-=+=+-,解得0b =,检验可知函数()21xf x x =+为奇函数,故0a =,0b =. (2)由(1)可知,()21x f x x =+,而x ∈⎤⎦,所以 ()()22f x mx x ≥-可化为()()22112m x x ≤+-,设[]23,4t x =∈,则()()()()[]222219121224,1024x x t t t t t ⎛⎫+-=+-=--=--∈ ⎪⎝⎭,而不等式()()22f x mx x ≥-有解等价于()()22max11412m x x ⎡⎤⎢⎥≤=+-⎢⎥⎣⎦,故实数m 的取值范围为1,4⎛⎤-∞ ⎥⎝⎦.14.9【分析】设出幂函数的解析式,代入P 点坐标求得这个解析式,然后令3x =求得0y 的值.【详解】设幂函数为()f x x α=,将()2,4P 代入得24,2αα==,所以()2f x x =,令3x =,求得2039y ==.【点睛】本小题主要考查幂函数解析式的求法,考查幂函数上点的坐标,属于基础题. 15.①①①【分析】在同一坐标系中画出函数121y x =,132y x =的图象,结合函数图象,进行动态分析可得,当01b a <<<时,当1a b <<时,当1a b ==时,1132a b =可能成立,10b a -<<<、10a b -<<<时,12a 没意义,进而即可得到结论【详解】10b a -<<<、10a b -<<<时,12a 没意义,①①不可能成立;’画出121y x =与132y x =的图象(如图), 已知1132x x m ==,作直线y m =, 若0m =或1,则a b =,①能成立; 若01m <<,则01b a <<<,①能成立;若1m ,则1a b <<,①能成立,所以可能成立的式子有①①①,故答案为①①①.【点睛】本题主要考查幂函数的图象与性质,意在考查灵活应用所学知识解答问题的能力,以及数形结合思想的应用,属于中档题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.16.5【分析】对3223125y x x x =--+求导,根据单调性求最大值.【详解】3223125y x x x =--+,则266126(2)(1)y x x x x '=--=-+当2x >时,0y '>,此时函数3223125y x x x =--+单调递增;当12x -<<时,0y '<,此时函数3223125y x x x =--+单调递减;当1x <-时,0y '>,此时函数3223125y x x x =--+单调递增.则函数3223125y x x x =--+在区间[0,2]内单调递减,在区间[2,3]内单调递增当0x =时,5y =,当3x =时,4y =-所以函数3223125y x x x =--+在0x =处取到最大值5所以函数3223125y x x x =--+在区间[0,3]上的最大值是5.故答案为:5.17.1【分析】根据题干中max 函数的定义,可以得到所求函数为分段函数,求出每一段的最小值,取其中的最小值即可 【详解】令212x x x +-=-得:3x =-或1x =,由题意可得:{}2221,3max 1,22,311,1x x x x x x x x x x x ⎧+-≤-⎪+--=--<<⎨⎪+-≥⎩,画出函数对应的图像如下:由图可得:当1x =时,{}2max 1,2x x x +--最小,代入解析式可得:最小值为1故答案为:1。
高中数学函数的图像练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 函数y=x sin x的部分图象是()A. B.C. D.2. 已知定义在区间[0, 4]上的函数y=f(x)的图象如图所示,则y=−f(1−x)的图象为()A. B.C. D.3. 设f′(x)f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象最有可能的是( )A. B.C. D.4. 函数y=ln|x−1|的图象大致形状是( )A. B. C. D.5. 函数f(x)=1+log2x与g(x)=2−x+1在同一直角坐标系下的图象大致是()A. B.C. D.6. 设函数y=f(x)定义在实数集R上,则函数y=f(a−x)与y=f(x−a)的图象()A.关于直线y=0对称B.关于直线x=0对称C.关于直线y=a对称D.关于直线x=a对称7. 已知定义在R上的函数y=f(x)的图象如下图所示,则函数y=1−f(−x)的图象为()A. B.C. D.8. 将函数g(x)=(x+1)lg|x|的图象向右平移1个单位长度得到函数f(x)的图象,则f(x)的|x+1|图象大致为( )A.B.C.D.的图象是()9. 函数y=xx+1A. B.C. D.10. 函数y=x sin x+cos x−1在区间[−π,π]上的图象大致为()A. B.C. D.11. 设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是( )A. B.C. D.+1的图象是( )12. 函数f(x)=11−xA. B. C. D.13. 函数f(x)=e|x|−2|x|−1的图象大致为()A. B.C. D.14. 函数y=−x4+x2+2的图象大致为( ) A.B.C.D.15. 设函数f(x)=ax+b的图象如图所示,则a、b、c的大小关系是()x2+cA.a>b>cB.a>c>bC.b>a>cD.c>a>b的图象向左平移1个单位长度,得到函数g(x)的图象,则函数16. 将函数f(x)=x−12x−x2g(x)的图象大致是()A. B.C. D.17. 函数f(x)=x−x ln|x|的大致图象是()A. B.C. D.18. 当a>0时,函数f(x)=(x2−2ax)e x的图象大致是()A. B.C. D.19. 若实数x,y满足|x−1|−ln1y=0,则y是x的函数的图象大致是()A. B.C. D.20. (福建厦门一次质检)已知函数f(x)的图象如图所示,则该函数的解析式可能是()A.f(x)=ln|x|e x B.f(x)=e x ln|x| C.f(x)=ln|x|xD.f(x)=(x−1)ln|x|参考答案与试题解析高中数学函数的图像练习题含答案一、选择题(本题共计 20 小题,每题 3 分,共计60分)1.【答案】A【考点】函数的图象变换【解析】判断函数的奇偶性以及x∈(0, π)时的函数值,推出结果即可.【解答】解:函数y=x sin x是偶函数,可知B,D不正确;当x∈(0, π)时,函数y>0,可知函数的图象为:A.故选:A.2.【答案】D【考点】函数的图象变换【解析】先找到从函数y=f(x)到函数y=−f(1−x)的平移变换规律是,即可求出结果【解答】解:y=f(x)沿y轴对称得到y=f(−x)的图象,再沿x轴对称得到y=−f(−x)图象,最后先向右平移一个单位得到y=−f(1−x)的图象,故只有D符合,故选:D.3.【答案】C【考点】函数的图象变换【解析】根据f′(x)的图象,由f′(x)的符号,确定原函数f(x)的单调性,确定f(x)的图象.【解答】解:从f′(x)的图象可以看出,当x∈(−∞,0)时,f′(x)>0,f(x)在(−∞,0)上为增函数;当x∈(0,2)时,f′(x)<0,f(x)在(0,2)上为减函数;当x∈(2,+∞)时,f′(x)>0,f(x)在(2,+∞)上为增函数,符合的图象是C.故选C.4.【答案】D【考点】函数的图象变换【解析】先化简函数的解析式,函数中含有绝对值,故可先去绝对值讨论,结合指数函数的单调性及定义域、对称性,即可选出答案.【解答】解:y=ln|x−1|,则x≠1,是将y=ln|x|的图像往右平移一个单位,而y=ln|x|是一个关于y轴对称的偶函数,且在(0,+∞)是增函数,故y=ln|x−1|的图象关于x=1对称,且在(1,+∞)是增函数,在(−∞,1)上是减函数. 故选D.5.【答案】C【考点】函数的图象变换对数函数的图象与性质指数函数的图象【解析】根据函数f(x)=1+log2x与g(x)=2−x+1解析式,分析他们与同底的指数函数、对数函数的图象之间的关系,(即如何变换得到),分析其经过的特殊点,即可用排除法得到答案.【解答】解:∵f(x)=1+log2x的图象是由y=log2x的图象上移1个单位而得,∴其图象必过点(1, 1),单调递增,故排除A,又∵g(x)=2−x+1=2−(x−1)的图象是由y=2−x的图象右移1个单位而得,故其图象也必过(1, 1)点,及(0, 2)点,故排除B,D.故选C.6.【答案】D【考点】函数的图象变换【解析】本选择题采用取特殊函数法.根据函数y=f(x)定义在实数集上设出一个函数,由此函数分别求出函数y=f(x−a)与y=f(a−x),最后看它们的图象的对称即可.【解答】解:令t=x−a,因为函数y=f(−t)与y=f(t)的图象关于直线t=0对称,所以函数y=f(a−x)与y=f(x−a)的图象关于直线x=a对称.故选D.7.【答案】C【考点】函数的图象变换【解析】先找到从函数y =f(x)到函数y =−f(1−x)的平移变换规律是,即可求出结果【解答】解:∵ y =1−f(−x)的图象可以由y =f(x)的图象先关于原点对称,再向上平移一个单位得到.故选C .8.【答案】D【考点】函数的图象函数的图象变换【解析】此题暂无解析【解答】解:易求得f (x )=g (x −1)=x lg |x−1||x|,其定义域为(−∞,0)∪(0,1)∪(1,+∞),当x <0时,−x +1>1,函数f (x )=x lg |x−1||x|=x lg (−x+1)−x=−lg (−x +1)<0,故排除AB 选项;当0<x <1时,0<−x +1<1,故函数f (x )=x lg |x−1||x|=x lg (−x+1)x=lg (−x +1)<0,故排除C 选项;当x >1时,函数f(x)=x lg |x−1||x|=x lg (x−1)x =lg (x −1),该函数图象可以看成将函数y =lg x 的图象向右平移一个单位得到.故选D .9.【答案】C【考点】函数的图象变换【解析】由图象的平移即可判断答案.【解答】解:y =x x+1=1−1x+1,则y =1−1x+1的图象是由y =−1x ,先向左平移一个单位,再向上平移一个单位得到. 故选C .10.【答案】C【考点】函数的图象函数奇偶性的判断函数的图象变换【解析】因为f(x)=x sin x+cos x−1,则f(−x)=x sin x+cos x−1=f(x),即f(x)为偶函数,其函数图象关于y轴对称,据此可知选项A,B错误;且当x=π时,y=πsinπ+cosπ−1=−2<0,据此可知选项D错误,故选C.【解答】解:因为f(x)=x sin x+cos x−1,则f(−x)=x sin x+cos x−1=f(x),即f(x)为偶函数,其函数图象关于y轴对称,据此可知选项A,B错误;且当x=π时,y=πsinπ+cosπ−1=−2<0,据此可知选项D错误,故选C.11.【答案】D【考点】函数的图象变换函数的单调性与导数的关系【解析】利用导数与函数单调性的关系即可得出.【解答】解:A,直线为导函数图象,抛物线为原函数图象,当x<0时,f′(x)<0,故f(x)单调递减,当x>0时,f′(x)>0,故f(x)单调递增,故选项正确;B,导函数单调递减且恒大于0,原函数单调递增,故选项正确;C,导函数单调递增且恒大于0,原函数单调递增,故选项正确;D,若上线为导函数图象,则导函数恒大于等于0,原函数应单调递增;若下线为导函数图象,则导函数恒小于等于0,原函数应单调递减,均不符合,故此选项错误.故选D.12.【答案】B【考点】函数的图象变换【解析】直接整理函数f(x),可知函数是平移所得,即可得到答案.【解答】解:∵f(x)=11−x +1=−1x−1+1,∴函数f(x)是由函数y=−1x向右移动一个单位,再向上移动一个单位所得,∴选项B满足.故选B.13.【答案】C【考点】函数的图象函数图象的作法利用导数研究函数的单调性函数的图象变换函数奇偶性的判断【解析】此题暂无解析【解答】解:函数f(x)=e|x|−2|x|−1是偶函数,排除选项B;当x>0时,函数f(x)=e x−2x−1可得f′(x)=e x−2当x∈(0,ln2)时,f′(x)<0,函数是减函数,当x>ln2时,函数是增函数,排除选项A,D.故选C.14.【答案】D【考点】利用导数研究函数的单调性函数的图象变换【解析】根据函数图象的特点,求函数的导数利用函数的单调性进行判断即可.【解答】解:函数过定点(0, 2),排除A,B.函数的导数f′(x)=−4x3+2x=−2x(2x2−1),由f′(x)>0得2x(2x2−1)<0,得x<−√22或0<x<√22,此时函数单调递增,由f′(x)<0得2x(2x2−1)>0,得x>√22或−√22<x<0,此时函数单调递减,排除C.故选D.15.【答案】B【考点】函数解析式的求解及常用方法函数的图象变换【解析】由函数图象可得f(0)=bc =0,解得b=0,又f(1)=a1+c=1,故a=c+1,再由f′(1)=0,可得c 的值,进而可得a 的值,故可比较大小.【解答】解:由函数图象可得f(0)=b c =0,解得b =0, 又f(1)=a 1+c =1,故a =c +1,又f′(x)=a(x 2+c)−2x(ax+b)(x 2+c)2=−ax 2−2bx+ac (x 2+c)2,由图可知x =1为函数的极值点,故f′(1)=0,即−a +ac =0,解得c =1,a =2,故a >c >b ,故选B16.【答案】B【考点】函数的图象变换函数奇偶性的性质函数的图象【解析】左侧图片未给解析【解答】解:g (x )=f (x +1)=x+1−12(x+1)−(x+1)2=x 1−x 2.因为g (x )=−g (−x ),所以g (x )为奇函数,排除A ;g (x )有唯一的零点,排除C ;g(12)=23>0,排除D ; 只有B 符合条件.故选B .17.【答案】C【考点】函数的图象变换利用导数研究函数的单调性函数奇偶性的判断【解析】此题暂无解析【解答】解:f(−x)=−x +x ln |−x|=−(x −x ln |x|)=−f(x),故f(x)是奇函数,排除A,D ;当x >0时,f(x)=x −x ln x ,则f ′(x)=−ln x ,令f ′(x)=−ln x >0,解得0<x <1,令f ′(x)=−ln x <0,解得x >1,故f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,排除B.故选C.18.【答案】B【考点】函数的图象变换利用导数研究函数的单调性导数的乘法与除法法则指数函数综合题【解析】利用函数图象的取值,函数的零点,以及利用导数判断函数的图象.【解答】解:由f(x)=0,解得x2−2ax=0,即x=0或x=2a,∵a>0,∴函数f(x)有两个零点,∴A,C不正确;设a=1,则f(x)=(x2−2x)e x,∴f′(x)=(x2−2)e x,由f′(x)=(x2−2)e x>0,解得x>√2或x<−√2.由f′(x)=(x2−2)e x<0,解得−√2<x<√2,即x=−√2是函数的一个极大值点,∴D不成立,排除D.故选B.19.【答案】B【考点】函数的图象变换【解析】先化简函数的解析式,函数中含有绝对值,故可先去绝对值讨论,结合指数函数的单调性及定义域、对称性,即可选出答案.【解答】=0,解:∵|x−1|−ln1y∴f(x)=(1)|x−1|其定义域为R,e)x−1,当x≥1时,f(x)=(1e<1,故在[1, +∞)上为减函数,因为0<1e又因为f(x)的图象关于x=1轴对称,对照选项,只有B正确.故选B.20.【答案】A【考点】函数的图象变换【解析】此题暂无解析【解答】因为当x=±1时,ln|x|=0,所以图中函数图象与x轴的交点为(±1,0).因为当x=−1e+1>0,故排除选项C,D;B选项时,C选项中,f(x)=e>0,D选项中,f(x)=1e中,当x→+∞时,e x→+∞,ln|x|→+∞,所以此时e x ln|x|→+∞,故排除选项B,故选A.本题考查函数的图象.【考向分析】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点.解决这类问题的方法一般是利用间接法,即由函数的性质排除不符合条件的选项.。