广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编9:圆锥曲线
- 格式:doc
- 大小:2.71 MB
- 文档页数:28
试卷类型:B 2013年广州市普通高中毕业班综合测试(二)理科综合2013.4本试卷共12页,36小题,满分300分。
考试用时150分钟。
注意事项:1. 答卷前,考生务必用2B铅笔在“考生号”处填涂考生号。
用黑色字迹的钢笔或签 _字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
2. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
5. 本卷用到的相对原子质量为:H-1, C-12, N-14, 0-16,S-32, Fe-56一、单项选择题:本题包括16小题,每小题4分,共64分。
在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得O分。
1. 下列有关血红蛋白的说法正确的是A. 人体内缺铁会影响血红蛋白的正常合成B. 血浆渗透压的大小与血红蛋白含量直接相关C. 血红蛋白发生变性后.,其运输氧的能力不受影响D. 出现镰刀型细胞贫血症的根本原因是血红蛋白的含量不足2. 下列有关传统发酵技术应用的叙述,不合理的是A. 可利用选择培养基筛选出生产所需的优良菌种B. 制作泡菜所用的微生物属于分解者C. 果醋的制作过程中醋酸杆菌只进行无氧呼吸D. 在腐乳制作过程中必须有能分泌蛋白酶的微生物参与3. 某植物的花色有蓝花和白花两种,由两对等位基因(A和a、B和b)控制。
下表是两组 纯合植株杂交实验的统计结果,有关分析不正确的是A. 控制花色的这两对等位基因的遗传遵循自由组合定律B. 第①组F2中纯合蓝花植株的基因型有3种C. 第②组蓝花亲本的基因型为aaBB或AAbbD. 白花植株与第②组F,蓝花植株杂交,后代开蓝花和白花植株的比例为3:14. 两种物种间(如某种灵长类动物和蟒蛇)存在“互动多样性”的现象,即存在多种类型 的种间关系。
绝密★启用前 试卷类型:A2013年深圳市高三年级第二次调研考试全套及答案(含理综、英语、语文、理科数学) 2013.4本试卷共12页,36小题,满分300分。
考试用时150分钟。
相对原子质量:H 1 C 12 N 14 O 16 S 32 I 127 Cl 35.5 Al 27 Ca 40Cu 63.5 Fe 56 K 39 Mg 24 Na 23 Zn 65 Li 7 Mn 55一,单项选择题(本大题16小题,每小题4分,共64分)1.胰岛素是由“胰岛素原”在高尔基体内转变而成。
“胰岛素原”有86个氨基酸,1条肽链;胰岛素含51个氨基酸,2条肽链。
由此推知高尔基体A.加快了氨基酸的脱水缩合B.促进了限制酶的合成C.参与了肽链的剪切加工D.能独立合成蛋白质2.接近人体的蚊子,可借助汗液散发出的体味寻找适合的部位叮咬。
叮咬部位因释放组织胺而出现红肿现象,并产生痒感。
以下分析合理的是A.组织胺使毛细血管通透性下降B.红肿等过敏反应存在个体差异C.“汗气”为蚊子传递了物理信息D.产生痒觉的中枢是下丘脑 3.一般情况下,完成下列哪项实验不需要用到氯化钠溶液A.观察口腔上皮细胞中核酸的分布B.观察藓类叶片中的叶绿体C.用显微镜观察红细胞的正常形态D.对鸡血细胞中DNA 粗提取 4.有关生物技术的操作过程或应用的叙述,错误的是 A.测定泡菜中亚硝酸盐含量时需要标准显色液 B.可用聚乙二醇促进植物细胞原生质体的融合 C.胚胎分割技术可看做是动物无性繁殖的方法 D.以尿素作为唯一碳源的培养基用于鉴别细菌5.去除垂体后,大鼠淋巴细胞的数量和淋巴因子的活性明显下降。
垂体、下丘脑与免疫细胞之间存在如下图所示的联系,有关说法正确的是A. 下丘脑不属于内分泌腺B.细胞Y 的增殖能力大于XC.细胞X 与Y 的RNA 不同D.物质甲为淋巴因子下丘脑垂体6.实验表明,某些“21-三体综合征”患者体内超氧化物歧化酶(简称SOD)的活性为正常人的1.5倍。
2013年广州市普通高中毕业班综合测试(二)语文2013.4本试卷共8页,24小题,满分为150分。
考试用时150分钟。
注意事项:1 .答卷前,考生务必用2B铅笔在“考生号”处填涂考生号。
用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
2 .选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、本大题4小题,每小题3分,共12分。
1.下列词语中加点的字,读音全都正确的一组是A.谒.见(yâ)抚恤.(xù)造福桑梓.(xīn)审时度.势(duó)B.修葺.(qì)拂.晓(fó)瞠.目结舌(chēnɡ)潸.然泪下(shān)C.契.机(qiâ)莅.临(lì)矫.枉过正(jiǎo)一曝.十寒(pù)D.混淆.(xiáo)喟.叹(kuì)拐弯抹.角(mò)数.见不鲜(shuò)2.下列句子中加点的词语,使用恰当的一项是A.有人大代表提出,政府应加强对幼儿教育的管理,使义务教育涵盖..学前阶段,保证每一位儿童都能平等接受优质的学前教育。
B.一些编剧在改编名著的时候,没有很好地理解原著的精髓,胡编乱造了许多情节,这样反而..大大地削弱了作品原有的思想性。
(完整版)2013年高考广东理科数学试题及答案(word解析版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2013年高考广东理科数学试题及答案(word解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2013年高考广东理科数学试题及答案(word解析版)(word版可编辑修改)的全部内容。
2013年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年广东,理1,5分】设集合{}2|20,M x x x x =+=∈R ,{}2|20,N x x x x =-=∈R ,则MN =( )(A ){}0 (B){}0,2 (C ){}2,0- (D ){}2,0,2- 【答案】D【解析】易得{}2,0M =-,{}0,2N =,所以M N ={}2,0,2-,故选D .(2)【2013年广东,理2,5分】定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )(A )4 (B)3 (C )2 (D )1 【答案】C【解析】3y x =,2sin y x =为奇函数;21y x =+为偶函数;2x y =为非奇非偶函数.∴共有2个奇函数,故选C .(3)【2013年广东,理3,5分】若复数z 满足i 24i z =+,则在复平面内,z 对应的点的坐标是( )(A )()2,4 (B )()2,4- (C)()4,2- (D )()4,2 【答案】C【解析】由i 24i z =+,得24i (24i)(i)42i i i (i)z ++⋅-===-⋅-,故z 对应点的坐标为(4)2-,,故选C . (4)【2013年广东,理4 X 1 2 3P35310110则X 的数学期望EX =(A )32(B )2 (C )52(D )3【答案】A【解析】33115312351010102EX =⨯+⨯+⨯==,故选A . (5)【2013年广东,理5,5分】某四棱台的三视图如图所示,则该四棱台的体积是( )(A)4 (B )143 (C )163(D )6 【答案】B【解析】解法一:由三视图可知,原四棱台的直观图如图所示, 其中上、下底面分别是边长为1,2的正方形,且1DD ⊥面ABCD ,上底面面积2111S ==,下底面面积2224S ==.又∵12DD =,∴()1122111411()442333V S S S S h =++=+⨯+⨯=台,故选B .解法二:由四棱台的三视图,可知原四棱台的直观图如图所示.在四棱台1111ABCD A B C D -中,四边形ABCD 与四边形A 1B 1C 1D 1都为正方形,2AB =,111A B =,且1D D ⊥平面ABCD ,12D D =. 分别延长四棱台各个侧棱交于点O ,设1OD x =,因为11OD C ODC ∆∆∽,所以111OD D C OD DC=, 即122x x =+,解得2x =.111111111114224112333ABCD A B C D O A A B B C O D CD V V V ---=⨯⨯⨯-⨯⨯⨯=-=棱锥棱锥,故选B .(6)【2013年广东,理6,5分】设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( )(A )若αβ⊥,m α⊂,n β⊂,则m n ⊥ (B )若//αβ,m α⊂,n β⊂,则//m n (C )若m n ⊥,m α⊂,n β⊂,则αβ⊥ (D )若m α⊥,//m n ,//n β,则αβ⊥ 【答案】D【解析】选项A 中,m 与n 还可能平行或异面,故不正确;选项B 中,m 与n 还可能异面,故不正确;选项C 中,α与β还可能平行或相交,故不正确;选项D 中,∵m α⊥,//m n ,n α∴⊥. 又//n β,αβ∴⊥,故选D . (7)【2013年广东,理7,5分】已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )(A)2214x -= (B )22145x y -= (C )22125x y -= (D)2212x = 【答案】B【解析】由曲线C 的右焦点为0(3)F ,,知3c =.由离心率32e =,知32c a =,则2a =,故222945b c a =-=-=,所以双曲线C 的方程为22145x y -=,故选B .(8)【2013年广东,理8,5分】设整数4n ≥,集合{}1,2,3,,X n =.令集合(){,,|,,S x y z x y z X =∈且三条件x y z <<,,y z x z x y <<<<,}恰有一个成立,若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )(A)(),,y z w S ∈,(),,x y w S ∉ (B )(),,y z w S ∈,(),,x y w S ∈ (C )(),,y z w S ∉,(),,x y w S ∈ (D )(),,y z w S ∉,(),,x y w S ∈ 【答案】B【解析】解法一:特殊值法,不妨令2,3,4x y z ===,1w =,则()(),,3,4,1y z w S =∈,()(),,2,3,1x y w S =∈,故选B . 解法二:由()x y z S ∈,,,不妨取x y z <<,要使()z w x S ∈,,,则w x z <<或x z w <<.当w x z <<时, w x y z <<<,故()y z w S ∈,,,()x y w S ∈,,.当x z w <<时,x y z w <<<,故()y z w S ∈,,,()x y w S ∈,,.综上可知,()y z w S ∈,,,()x y w S ∈,,,故选B .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13)(9)【2013年广东,理9,5分】不等式220x x +-<的解集为 . 【答案】()2,1-【解析】220x x +-<即()()210x x +-<,解得21x -<<,故原不等式的解集为1{|}2x x -<<. (10)【2013年广东,理10,5分】若曲线ln y kx x =+在点()1,k 处的切线平行于x 轴,则k = . 【答案】1-【解析】1y xk '=+.因为曲线在点(1)k ,处的切线平行于x 轴,所以切线斜率为零,由导数的几何意义得10|x y ='=,故10k +=,即1k =-.(11)【2013年广东,理11,5分】执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为 . 【答案】7【解析】第一次循环后:1,2s i ==;第二次循环后:2,3s i ==;第三次循环后:4,4s i ==;第四次循环后:7,5s i ==;故输出7.(12)【2013年广东,理12,5分】在等差数列{}n a 中,已知3810a a +=,则573a a += . 【答案】20【解析】依题意12910a d +=,所以()57111334641820a a a d a d a d +=+++=+=. 或:()57383220a a a a +=+=.(13)【2013年广东,理13,5分】给定区域D :4440x y x y x +≥⎧⎪+≤⎨⎪≥⎩,令点集()()000000{,|,,,T x y D x y Z x y =∈∈是z x y =+在D 上取得最大值或最小值的点},则T 中的点共确定 条不同的直线.【答案】6【解析】画出可行域如图所示,其中z x y =+取得最小值时的整点为()0,1,取得最大值时的整点为()0,4,()1,3,()2,2,()3,1及()4,0共5个整点.故可确定516+=条不同的直线.(二)选做题(14—15题,考生只能从中选做一题) (14)【2013年广东,理14,5分】(坐标系与参数方程选做题)已知曲线C的参数方程为x ty t⎧⎪⎨⎪⎩(t 为参数),C 在点()1,1处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为 .【答案】sin 4πρθ⎛⎫+ ⎪⎝⎭【解析】曲线C 的普通方程为222x y +=,其在点()1,1处的切线l 的方程为2x y +=,对应的极坐标方程为cos sin 2ρθρθ+=,即sin 4πρθ⎛⎫+= ⎪⎝⎭(15)【2013年广东,理15,5分】(几何证明选讲选做题)如图,AB 是圆O 的直径,点C 在圆O 上,延长BC 到D 使BC CD =,过C 作圆O 的切线交AD 于E .若6AB =,2ED =,则BC= .【答案】23【解析】依题意易知ABC CDE ∆∆,所以AB BCCD DE=,又BC CD =,所以212BC AB DE =⋅=,从而23BC =.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤. (16)【2013年广东,理16,12分】已知函数()2cos 12f x x π⎛⎫=-⎪⎝⎭,x ∈R .(1)求6f π⎛⎫- ⎪⎝⎭的值;(2)若3cos 5θ=,3,22πθπ⎛⎫∈⎪⎝⎭,求23f πθ⎛⎫+ ⎪⎝⎭. 解:(1)2cos 2cos 2cos 1661244f πππππ⎛⎫⎛⎫⎛⎫-=--=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)22cos 22cos 2cos 2sin 233124f ππππθθθθθ⎛⎫⎛⎫⎛⎫+=+-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为3cos 5θ=,3,22πθπ⎛⎫∈⎪⎝⎭, 所以4sin 5θ=-,所以24sin 22sin cos 25θθθ==-,227cos2cos sin 25θθθ=-=-,所以23f πθ⎛⎫+ ⎪⎝⎭cos2sin2θθ=-72417252525⎛⎫=---=⎪⎝⎭. (17)【2013年广东,理17,12分】某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数. (1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人;(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.解:(1)样本均值为1719202125301322266+++++==.(2)由(1)知样本中优秀工人占的比例为2163=,故推断该车间12名工人中有11243⨯=名优秀工人(3)设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则()P A =1148212C C C 1633=.(18)【2013年广东,理18,14分】如图1,在等腰直角三角形ABC中,90A ∠=︒,6BC =,,D E 分别是,AC AB 上的点,2CD BE ==,O 为BC 的中点.将ADE ∆沿DE 折起,得到如图2所示的四棱锥A BCDE '-,其中3A O '=.(1)证明:A O '⊥平面BCDE ;(2)求二面角D AF E --的余弦值. 解:(1)在图1中,易得3,32,22OC AC AD ===,连结,OD OE ,在OCD ∆中,由余弦定理可得222cos 455OD OC CD OC CD =+-⋅︒=,由翻折不变性可知22A D '=,所以222A O OD A D ''+=,所以A O OD '⊥,理可证A O OE '⊥, 又OD OE O =,所以A O '⊥平面BCDE .(2)解法一:过O 作OH CD ⊥交CD 的延长线于H ,连结A H ',因为A O '⊥平面BCDE ,所以A H CD '⊥,A HO '∴∠为二面角A CD B '--的平面角.由图1可知,H 为AC 中点,故322OH =,2230A H OH OA ''+, 所以15cos OH A HO A H '∠=',所以二面角A CD B '--的平面角的余弦值为15. 解法二:以O 点为原点,建立空间直角坐标系O xyz -如图所示,则(3A ',()0,3,0C -,()1,2,0D -,所以()0,3,3CA '=,(3DA '=-,设(),,n x y z =为平面A CD '的法向量,则00n CA n DA ⎧'⋅=⎪⎨'⋅=⎪⎩,即330230y z x y z ⎧=⎪⎨-++=⎪⎩,解得3y xz x=-⎧⎪⎨=⎪⎩,令1x =,得(1,1,3n =-由(1)知,(3OA '=为平面CDB 的一个法向量,所以15cos ,35n OA n OA n OA '⋅'==='⋅, 即二面角A CD B '--15. (19)【2013年广东,理19,14分】设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N .(1)求2a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有1211174n a a a +++<. 解:(1)依题意,12122133S a =---,又111S a ==,所以24a =.(2)当2n ≥时,32112233n n S na n n n +=---,()()()()321122111133n n S n a n n n -=-------,两式相减得()()()2112213312133n n n a na n a n n n +=----+---,整理得()()111n n n a na n n ++=-+, 即111n n a a n n +-=+,又21121a a -=,故数列n a n ⎧⎫⎨⎬⎩⎭是首项为111a =,公差为1的等差数列, 所以()111n an n n=+-⨯=,所以2n a n =.(3)当1n =时,11714a =<;当2n =时,12111571444a a +=+=<; 当3n ≥时,()21111111n a n n n n n=<=---,此时222121111111111111111434423341n a a a n n n ⎛⎫⎛⎫⎛⎫+++=+++++<++-+-++- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭11171714244n n =++-=-<,综上,对一切正整数n ,有1211174n a a a +++<.(20)【2013年广东,理20,14分】已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(1)求抛物线C 的方程;(2)当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (3)当点P 在直线l 上移动时,求AF BF ⋅的最小值. 解:(1)依题意,设抛物线C 的方程为24xcy =,2=结合0c >,解得1c =. 所以抛物线C 的方程为24x y =.(2)抛物线C 的方程为24x y =,即214y x =,求导得12y x '=,设()11,A x y ,()22,B x y (其中221212,44x x y y ==), 则切线,PA PB 的斜率分别为112x ,212x ,所以切线PA 的方程为()1112x y y x x -=-, 即211122x x y x y =-+,即11220x x y y --=,同理可得切线PB 的方程为22220x x y y --=,因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --=,所以()()1122,,,x y x y为方程00220x x y y --=的两组解.所以直线AB 的方程为00220x x y y --=. (3)由抛物线定义可知11AF y =+,21BF y =+,所以()()()121212111AF BF y y y y y y ⋅=++=+++,联立方程0022204x x y y x y--=⎧⎪⎨=⎪⎩,消去x 整理得()22200020y y x y y +-+=,由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y =,所以()221212000121AF BF y y y y y x y ⋅=+++=+-+, 又点()00,P x y 在直线l 上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭,所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.(21)【2013年广东,理21,14分】设函数()()21x f x x e kx =--(其中k ∈R ).(1)当1k =时,求函数()f x 的单调区间;(2)当1,12k ⎛⎤∈ ⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .解:(1)当1k =时,()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=-, 令()0f x '=,得0x =,ln 2x =,当x 变化时,()(),f x f x '的变化如下表:f x 0,ln 2,0-∞)ln 2,+∞.(2)()()()1222x x x x f x e x e kx xe kx x e k '=+--=-=-,令()0f x '=,得10x =,()2ln 2x k =,令()()ln 2g k k k =-,则()1110k g k k k -'=-=>,所以()g k 在1,12⎛⎤⎥⎝⎦上递增, 所以()ln 21ln 2ln 0g k e ≤-=-<,从而()ln 2k k <,所以()[]ln 20,k k ∈,所以当()()0,ln 2x k ∈时,()0f x '<;当()()ln 2,x k ∈+∞时,()0f x '>;所以()(){}(){}3max 0,max 1,1k M f f k k e k ==---,令()()311k h k k e k =--+,则()()3k h k k e k '=-,令()3k k e k ϕ=-,则()330k k e e ϕ'=-<-<,所以()k ϕ在1,12⎛⎤ ⎥⎝⎦上递减,而()()1313022e ϕϕ⎛⎫⎫⋅=-< ⎪⎪⎝⎭⎭,所以存在01,12x ⎛⎤∈ ⎥⎝⎦使得()00x ϕ=,且当01,2k x ⎛⎫∈ ⎪⎝⎭时,()0k ϕ>,当()0,1k x ∈时,()0k ϕ<,所以()k ϕ在01,2x ⎛⎫⎪⎝⎭上单调递增,在()0,1x上单调递减.17028h ⎛⎫=> ⎪⎝⎭,()10h =,()0h k ≥在1,12⎛⎤⎥⎝⎦上恒成立,当且仅当1k =时取得“=".综上,函数()f x 在[]0,k 上的最大值()31k M k e k =--.。
2013年广东省广州市高考数学二模试卷(理科)
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)(2013•广州二模)对于任意向量、、,下列命题中正确的是()
•|=|||| +|=|丨(•)(••=||2
解:∵=||||cos|||||
|+||+||,只有当,
∵(是向量,其方向与向量相同,()与向量
=||||cos0=
22
的距离为=0
3.(5分)(2013•广州二模)若1﹣i(i是虚数单位)是关于x的方程x2+2px+q=0(p、q∈R)的一个解,
根据根与系数的关系可得,解得
4.(5分)(2013•广州二模)已知函数y=f(x)的图象如图l所示,则其导函数y=f'(x)的图象可能是()
..D
5.(5分)(2013•广州二模)若函数的一个对称中心是,则
ω×)+,
解:∵函数的一个对称中心是
ω×++=k+
6.(5分)(2013•广州二模)一个圆锥的正(主)视图及其尺寸如图2所示.若一个平行于圆锥底面的平面将此圆锥截成体积之比为l:7的上、下两部分,则截面的面积为.
.D
小锥体与原锥体体积之比等于相似比的立方,,
截面的面积为
7.(5分)(2013•广州二模)某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万元.年维修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年限(即
费用
=15+1.5n++=0.15n
年平均费用:=0.15n++1.652+1.65=2。
广州市2013届普通高中毕业班综合测试(二)数学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
参考公式:锥体的体积公式Sh 油,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 对于任意向量a 、b 、c,下列命题中正确的是A. |a.b| = |a| |b|B. |a+b|=|a|+丨b 丨C. (a.b)c =a (b-c)D. a.a =|a|2 2. 直线y=kx +1与圆x 2+y 2-2y=0的位置关系是A.相交B.相切C.相离D.取决于k 的值 3. 若1-i(i 是虚数单位)是关于x 的方程x 2+2px +q=0(p 、q ∈R)的一个解,则p+q=A. -3B. -1C. 1D. 34. 已知函数y=f(x)的图象如图l 所示,则其导函数y=f'(x)的图象可能是5. 若函数*))(6cos(N x y ∈+=ωπω的一个对称中心是()0,6π,则ω的最小值为 A.1 B. 2C. 4D. 86. 一个圆锥的正(主)视图及其尺寸如图2所示.若一个平 行于圆锥底面的平面将此圆锥截成体积之比为l:7的上、下两部分,则截面的面积为7. 某辆汽车购买时的费用是15万元,每年使用的保险费、路桥费、汽油费等约为1.5万 元.年维修保养费用第一年3000元,以后逐年递增3000元,则这辆汽车报废的最佳年 限(即使用多少年的年平均费用最少)是 ( ) A. 8 年 B. IO 年 C. 12 年 D. 15 年9. 记实数x 1,x 2,…,x n 中的最大数为max{x 1,x 2,…,x n } ,最小数为min{x 1,x 2,…,x n }则max{min{x+1,x 2 - x + 1, -x +6}}=( ) A. 43 B. 1 C. 3 D. 27 二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(-)必做题(9-13题)9.某商场销售甲、乙、丙三种不同型号的钢笔,甲、乙、丙三种型号钢笔数量之比依次为 2:3:4. 现用分层抽样的方法抽出一个容量为n 的样本,其中甲型钢笔有12支,则此样 本容量n =____10.已知a 为锐角,且)4cos(=+πa 11.用0,1,2,3,4,5这六个数字,可以组成____个没有重复数字且能被5整除的五位数(结果用数值表示).12.已知函数 f(x) =x 2 - 2x ,点集 M = {(X ,Y )| f(x) +f(y)≤2},N = {(X , Y )| f{x)-f{y)0},则M N 所构成平面区域的面积为______13.数列{a n }的项是由l 或2构成,且首项为1,在第k 个l 和第k+ 1个l 之间有2k-1 个2,即数列{a n } 为:1, 2,1, 2,2,2,1,2,2,2,2,2, 1, …,记数列 {a n }的前n 项和为S n ,则S 20=________; S 2013 =_____.(二)选做题(14-15题,考生只能从中选做一题)14.(几何证明选讲选做题)15.(坐标系与参数方程选做题)= 0的距离为d ,则丨PA 丨+ d 的最小值为_______.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)某单位有A 、B 、C 三个工作点,需要建立一个公共无线网络发射点0,使得发射点到 三个工作点的距离相等.已知这三个工作点之间的距离分别为AB=80m, BC = 70m, CA=50m.假定A 、B 、C 、O 四点在同一平面内. (1)求BAC ∠的大小;(2)求点O 到直线BC 的距离17.(本小题满分12分)已知正方形ABCD 的边长为2,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点.(1) 在正方形ABCD 内部随机取一点P ,求满足|PH|<2的概率;(2) 从A 、B 、C 、D 、E 、F 、G 、H 这八个点中,随机选取两个点,记这两个点之间的 距离为ξ,求随机变量f 的分布列与数学期望ξE . 18.(本小题满分14分)等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足==EA CE DB AD沿DE 折起到ΔA 1DE 的位置,使二面角A 1-DE-B 成直二面角, 连结A 1B 、A 1C (如图4).(1) 求证:A 1D 丄平面BCED;(2) 在线段BC 上是否存在点P ,使直线PA 1与平面A 1BD 所成的角为600?若存在,求出PB 的长;若不存在,请说明理由19.(本小题满分W 分)巳知a>0,设命题p:函数f(x)=x 2-2ax+ 1-2a 在区间[0,1]上与x 轴有两个不同 的交点;命题q: g(x) =|x-a|-ax 在区间(0, + ∞ )上有最小值.若q p ∧⌝)(是真命题,求实数a 的取值范围.20.(本小题满分14分)经过点F (0,1)且与直线y= -1相切的动圆的圆心轨迹为M 点A 、D 在轨迹M 上, 且关于y 轴对称,过线段AD (两端点除外)上的任意一点作直线l ,使直线l 与轨迹M 在点D 处的切线平行,设直线l 与轨迹M 交于点B 、 C.(1) 求轨迹M 的方程;(2) 证明:CAD BAD ∠=∠;(3) 若点D 到直线AB 的距离等于||22AD ,且ΔABC 的面积为20,求直线BC 的方程.21.(本小题满分14分)设a n 是函数*)(1)(23N n x n x x f ∈-+=的零点.(1)证明:0<a n <1;。
2013年高考真题——理科综合广东卷第9题设nA为阿弗加德罗常数的数值,下列说法正确的是A.常温常压下,8gO2含有4nA个电子B.1L 0.1molL-1的氨水中有nA个NH4+C.标准状况下,22.4L盐酸含有nA个HCl分子D.1molNa被完全氧化生成Na2O2,失去个2nA电子【答案解析】AB项,NH3·H2O为弱电解质,1L 0.1mol/L的氨水中含有铵根应小于0.1nA;C 项,标况下,盐酸是溶液,不能用气体摩尔体积进行计算;D项,根据Na元素反应前后化合价的变化,则说明1molNa完全被氧化失去的电子数为nA。
下列叙述Ⅰ和Ⅰ均正确并且有因果关系的是选项叙述Ⅰ叙述ⅠANH4Cl为强酸弱碱盐用加热法除去NaCl中的NH4ClBFe3+具有氧化性用KSCN溶液可以鉴别Fe3+C溶解度:CaCO3 Ca(HCO3)2溶解度:Na2CO3 NaHCO3DSiO2可与HF反应氢氟酸不能保存在玻璃瓶中【答案解析】DA项,加热法利用的是NH4Cl受热易分解生成NH3和HCl;B项,用KSCN溶液检验Fe3+,利用的是二者发生络合反应生成血红色的Fe(SCN)3;C项,在相同条件下,溶解度:Na2CO3 NaHCO3。
下列措施不合理的是A.用SO2漂白纸浆和草帽辫B.用硫酸清洗锅炉中的水垢C.高温下用焦炭还原SiO2制取粗硅D.用Na2S作沉淀剂,除去废水中的【答案解析】BA项,利用了SO2的漂白性;B项,除水垢一般用弱酸(醋酸)而不用强酸;C 项,二者能发生反应生成粗硅(高温下);D项,重金属离子一般用硫试剂(如:硫化钠等)转化为难溶物除去50Ⅰ时,下列各溶液中,离子的物质的量浓度关系正确的是A.pH=4的醋酸中:c(H+)=4.0molL-1B. 饱和小苏打溶液中:c(Na+)= c(HCO3-)C.饱和食盐水中:c(Na+)+ c(H+)= c(Cl-)+c(OH-)D.PH=12的纯碱溶液中,【答案解析】CA项,醋酸为弱酸,pH=4的醋酸中,c(H+)4.0molL-1;B项中,HCO3-既发生电离也发生水解反应,c(Na+)c(HCO3-);D项,50Ⅰ Kw≠1×10-14。
广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编17:导数与积分(2)一、选择题1 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))由曲线sin ,cos y x y x ==与直线0,2x x π==所围成的平面图形(图1中的阴影部分)的面积是( )A .1B .4πC .3D .2-【答案】D2 .(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)如图所示,图中曲线方程为21y x =-,用定积分表达围成封闭图形(阴影部分)的面积是【答案】C3 .(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))曲线f(x)=xlnx 在点x=1处的切线方程为( )A .y=2x+2B .y=2x-2C .y=x-1C .y=x+1【答案】C4 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)将边长为2的等边三角形PAB 沿x 轴滚动,某时刻P 与坐标原点重合(如图),设顶点(,)P x y 的轨迹方程是()y f x =,关于函数()y f x =的有下列说法:①()f x 的值域为[0,2];②()f x 是周期函数;③( 1.9)()(2013)f f f π-<<;④69()2f x dx π=⎰.其中正确的说法个数为: ( )A .0B .C .2D .3【答案】C5 .(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))已知函数()yf x =的图象如图1所示,则其导函数()y f x '=的图象可能是【答案】A 二、填空题6 .(广东省茂名市2013届高三第一次模拟考试数学(理)试题)计算________.【答案】2e ;7 .(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )在平面直角坐标系Oxy 中,直线a y =(0>a )与抛物线2x y =所围成的封闭图形的面积为328,则=a _______. 【答案】28 .(广东省海珠区2013届高三上学期综合测试一数学(理)试题)不等式211x -<的解集为(),a b ,计算定积分)2b ax dx =⎰_______.【答案】139.(广东省广州市2013届高三调研测试数学(理)试题)若直线2y x m =+是曲线ln y x x =的切线,则实数m 的值为_________.【答案】e -分析:设切点为000(,ln )x x x ,由1(ln )ln ln 1y x x x xx x''==+=+得0ln 1k x =+,图1A .B .C .D .O x P A 第8题图故切线方程为0000ln (ln 1)()y x x x x x -=+-,整理得00(ln 1)y x x x =+-, 与2y x m =+比较得00ln 12x x m+=⎧⎨-=⎩,解得0e x =,故e m =-10.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)10x cos⎰d x =______________.【答案】1sin11.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)2(3sin )x x dx π+=⎰________________.【答案】2318π+解析:22220033(3sin )(cos )|128x x dx x x πππ+=-=+⎰.12.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))曲线y= x 3-x + 3在点(1,3)处的切线方程为_______【答案】21x y -+13.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))若直线y kx =与曲线ln y x=相切,则k =__________________.【答案】1e14.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)计算= ________.【答案】2e .三、解答题 15.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))已知函数()ln f x x =,2()()g x f x ax bx =++,函数()g x 的图象在点(1,(1))g 处的切线平行于x 轴.(1)确定a 与b 的关系;(2)试讨论函数()g x 的单调性; (3)证明:对任意*n N ∈,都有()211ln 1ni i n i=-+>∑成立. 【答案】解:(1)依题意得2()ln g x x ax bx =++,则1'()2g x ax b x=++ 由函数()g x 的图象在点(1,(1))g 处的切线平行于x 轴得:'(1)120g a b =++= ∴21b a =--(2)由(1)得22(21)1'()ax a x g x x -++=(21)(1)ax x x--=∵函数()g x 的定义域为(0,)+∞∴当0a ≤时,210ax -<在(0,)+∞上恒成立,由'()0g x >得01x <<,由'()0g x <得1x >, 即函数()g x 在(0,1)上单调递增,在(1,)+∞单调递减; 当0a >时,令'()0g x =得1x =或12x a=, 若112a <,即12a >时,由'()0g x >得1x >或102x a <<,由'()0g x <得112x a<<,即函数()g x 在1(0,)2a ,(1,)+∞上单调递增,在1(,1)2a单调递减;若112a >,即102a <<时,由'()0g x >得12x a >或01x <<,由'()0g x <得112x a<<, 即函数()g x 在(0,1),1(,)2a +∞上单调递增,在1(1,)2a单调递减;若112a =,即12a =时,在(0,)+∞上恒有'()0g x ≥, 即函数()g x 在(0,)+∞上单调递增,综上得:当0a ≤时,函数()g x 在(0,1)上单调递增,在(1,)+∞单调递减; 当102a <<时,函数()g x 在(0,1)单调递增,在1(1,)2a 单调递减;在1(,)2a+∞上单调递增; 当12a =时,函数()g x 在(0,)+∞上单调递增, 当12a >时,函数()g x 在1(0,)2a 上单调递增,在1(,1)2a单调递减;在(1,)+∞上单调递增.(3)证法一:由(2)知当1a =时,函数2()ln 3g x x x x =+-在(1,)+∞单调递增,2ln 3(1)2x x x g ∴+-≥=-,即2ln 32(1)(2)x x x x x ≥-+-=---,令*11,x n N n =+∈,则2111ln(1)n n n+>-,2222111111111111ln(1)ln(1)ln(1)...ln(1)...123112233n n n ∴++++++++>-+-+-++-2222111111111111ln[(1)(1)(1)...(1)]...123112233n n n∴++++++>-+-+-++-即()211ln 1ni i n i=-+>∑ 【证法二:构造数列{}n a ,使其前n 项和ln(1)n T n =+, 则当2n ≥时,111ln()ln(1)n n n n a T T n n-+=-==+, 显然1ln 2a =也满足该式,故只需证221111ln(1)n n n n n-+>=- 令1x n=,即证2ln(1)0x x x +-+>,记2()ln(1)h x x x x =+-+,0x > 则11(21)'()12120111x x h x x x x x x +=-+=-+=>+++,()h x 在(0,)+∞上单调递增,故()(0)0h x h >=,∴221111ln(1)n n n n n -+>=-成立,2222111111111111ln(1)ln(1)ln(1)...ln(1)...123112233n n n∴++++++++>-+-+-++-即()211ln 1ni i n i =-+>∑ 】 【证法三:令211()ln(1)i ni i n n i ϕ==-=+-∑,则2(1)()ln(2)ln(1)(1)n n n n n n ϕϕ+-=+--++2111ln(1)11(1)n n n =+-++++ 令11,1x n =++则(1,2]x ∈,*11,,1x n N n =-∈+ 记22()ln (1)(1)ln 32h x x x x x x x =--+-=+-+ ∵1(21)(1)()230x x h x x x x--'=+-=>∴函数()h x 在(1,2]单调递增, 又(1)0,(1,2],()0,h x h x =∴∈>当时即(1)()0n n ϕϕ+->, ∴数列()n ϕ单调递增,又(1)ln 20ϕ=>,∴()211ln 1ni i n i=-+>∑】 16.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )已知x a a x a x x f ln )()12(21)(22+++-=(0>x ,a 是常数),若对曲线)(x f y =上任意一点) , (00y x P 处的切线)(x g y =,)()(x g x f ≥恒成立,求a 的取值范围.江门市2013年高考模拟考【答案】解:依题意,xaa a x x f +++-=2/)12()()(00x f y =,曲线)(x f y =在点) , (00y x P 处的切线为))((00/0x x x f y y -=- ,即))((00/0x x x f y y -+=,所以))(()(00/0x x x f y x g -+=直接计算得)1)(ln ()12(21)(002200-++++--=x x x a a x a x x x x g , 直接计算得)()(x g x f ≥等价于0)1)(ln ()(2100220≥+-++-x xx x a a x x 记)1)(ln ()(21)(00220+-++-=x xx x a a x x x h ,则 )1)(()11)(()()(020020/xx aa x x x x a a x x x h +--=-++-=若02≤+a a ,则由0)(/=x h ,得0x x = ,且当00x x <<时,0)(/<x h ,当0x x >时,0)(/>x h ,所以)(x h 在0x x =处取得极小值,从而也是最小值,即0)()(0=≥x h x h ,从而)()(x g x f ≥恒成立 .若02>+a a ,取a a x +=20,则0)1)(()(020/≥+--=xx aa x x x h 且当01x x ≠时0)(/>x h ,)(x h 单调递增 ,所以当00x x <<时,0)()(0=<x h x h ,与)()(x g x f ≥恒成立矛盾,所以02≤+a a ,从而a 的取值范围为01≤≤-a17.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(本小题满分14分)已知函数()()2ln f x x a x x =+--在0x =处取得极值.(1)求实数a 的值;(2)若关于x 的方程()52f x x b =-+在区间[]0,2上恰有两个不同的实数根,求实数b 的取值范围; (3)证明:对任意的正整数n ,不等式()23412ln 149n n n+++++>+都成立.【答案】(本小题主要考查导数、函数的单调性、不等式、最值、方程的根等知识,考查化归转化、分类讨论、数形结和的数学思想方法,以及抽象概括能力、运算求解能力、创新能力和综合应用能力) 解:(1)()'121,f x x x a=--+ 0x =时,()f x 取得极值, ()'00,f ∴=故12010,0a-⨯-=+解得 1.a =经检验1a =符合题意 (2)由1a =知()()2ln 1,f x x x x =+-- 由()52f x x b =-+,得()23ln 10,2x x x b +-+-=令()()23ln 1,2x x x x b ϕ=+-+-则()52f x x b =-+在区间[]0,2上恰有两个不同的实数根等价于()0x ϕ=在区间[]0,2上恰有两个不同的实数根()()()()'451132,1221x x x x x x ϕ-+-=-+=++当[]0,1x ∈时,()'0x ϕ>,于是()x ϕ在[)0,1上单调递增; 当(]1,2x ∈时,()'0x ϕ<,于是()x ϕ在(]1,2上单调递减依题意有()()()()()0031ln 111022ln 12430b b b ϕϕϕ=-≤⎧⎪⎪=+-+->⎨⎪⎪=+-+-≤⎩,解得,1ln 31ln 2.2b -≤<+(3) ()()2ln 1f x x x x =+--的定义域为{}1x x >-,由(1)知()()()'231x x f x x -+=+,令()'0fx =得,0x =或32x =-(舍去), ∴当10x -<<时, ()'0f x >,()f x 单调递增;当0x >时, ()'0fx <,()f x 单调递减.()0f ∴为()f x 在()1,-+∞上的最大值. ()()0f x f ∴≤,故()2ln 10x x x +--≤(当且仅当0x =时,等号成立)对任意正整数n ,取10x n=> 得,2111ln 1,n n n⎛⎫+<+⎪⎝⎭ 211ln n n n n++⎛⎫∴< ⎪⎝⎭.故()23413412ln 2ln ln lnln 14923n n n n n++++++>++++=+. 18.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)已知二次函数()21f x x ax m =+++,关于x 的不等式()()2211f x m x m <-+-的解集为()1m m ,+,其中m 为非零常数.设()()1f xg xx =-.(1)求a 的值;(2)k k (∈R )如何取值时,函数()x ϕ()g x =-()1k x ln -存在极值点,并求出极值点;(3)若1m =,且x 0>,求证:()()1122nn n g x g x n (⎡⎤+-+≥-∈⎣⎦N *). 【答案】(本小题主要考查二次函数、一元二次不等式、一元二次方程、函数应用、均值不等式等基础知识,考查数形结合、函数与方程、分类与整合、化归与转化的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力、创新意识) (1)解:∵关于x 的不等式()()2211fx m x m <-+-的解集为()1m m ,+,即不等式()22120x a m x m m ++-++<的解集为()1m m ,+, ∴()2212x a m x m m ++-++=()()1x mx m ---.∴()2212x a m x m m ++-++=()()2211x m x m m -+++. ∴()1221a m m +-=-+. ∴2a =-(2)解法1:由(1)得()()1f x g x x =-()221111x x m m x x x -++==-+--. ∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞. ∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=- 方程()2210x k x k m -++-+=(*)的判别式()()222414Δk k m k m =+--+=+①当0m >时,0Δ>,方程(*)的两个实根为11x ,=<21x ,=>则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x②当0m <时,由0Δ>,得k <-k >若k <-则11x ,=<21x ,=<故x ∈()1,+∞时,()0x ϕ'> ∴函数()x ϕ在()1,+∞上单调递增. ∴函数()x ϕ没有极值点若k >,1212k x ,+-=>2212k x ,++=>则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x综上所述, 当0m >时,k 取任意实数, 函数()x ϕ有极小值点2x ; 当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x(其中1x =, 2x =解法2:由(1)得()()1f x g x x =-()221111x x m m x x x -++==-+--. ∴()()x g x ϕ=-()1k x ln -()11mx x =-+-()1k x ln --的定义域为()1,+∞. ∴()1x ϕ'=-()211mkx x ---()()22211x k x k m x -++-+=- 若函数()()x g x ϕ=-()1k x ln -存在极值点等价于函数()x ϕ'有两个不等的零点,且 至少有一个零点在()1,+∞上 令()x ϕ'()()22211x k x k m x -++-+=-0=,得()221x k x k m -++-+0=, (*) 则()()2224140Δkk m k m =+--+=+>,(**)方程(*)的两个实根为1x =, 2x =设()h x=()221x k x k m -++-+,①若1211x x ,<>,则()10h m =-<,得0m >,此时,k 取任意实数, (**)成立. 则()21x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()21x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x②若1211x x ,>>,则()10212h m k ,.⎧=->⎪⎨+>⎪⎩得00m k ,.⎧<⎨>⎩又由(**)解得k >k <-故k >则()11x x ,∈时,()0x ϕ'>;()12x x x ,∈时,()0x ϕ'<;()2x x ,∈+∞时,()0x ϕ'>. ∴函数()x ϕ在()11x ,上单调递增,在()12x x ,上单调递减,在()2x ,+∞上单调递增. ∴函数()x ϕ有极小值点2x ,有极大值点1x综上所述, 当0m >时,k 取任何实数, 函数()x ϕ有极小值点2x ; 当0m <时,k >函数()x ϕ有极小值点2x ,有极大值点1x(其中122k x +-=, 222k x ++=)(2)证法1:∵1m =, ∴()g x =()111x x -+-. ∴()()1111nnn n n g x g x x x x x ⎛⎫⎛⎫⎡⎤+-+=+-+ ⎪ ⎪⎣⎦⎝⎭⎝⎭ 112212111111n n n n nn n n n nn n n x C x C x C x C x x xx x x ----⎛⎫=+⋅+⋅++⋅+-+ ⎪⎝⎭122412n n n nn n n C x C x C x ----=+++令T 122412n n n nn n n C xC x C x ----=+++,则T 122412n nn n n n n n C xC x C x -----=+++122412n nn n n n n C x C x C x ----=+++.∵x 0>, ∴2T ()()()122244122n n n n n n n n n n C xx C x x C x x -------=++++++≥121n n n n C C C -⋅+⋅++⋅()1212n n n nC C C -=+++ ()012102n n nn n n n n n nC C C C C C C -=+++++-- ()222n =-∴22n T ≥-,即()()1122nnng x g x ⎡⎤+-+≥-⎣⎦证法2:下面用数学归纳法证明不等式11nn n x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22n ≥-.① 当1n =时,左边110x x x x ⎛⎫⎛⎫=+-+= ⎪ ⎪⎝⎭⎝⎭,右边1220=-=,不等式成立; ② 假设当n k =k (∈N *)时,不等式成立,即11kk k x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭22k ≥-,则 11111k k k x x x x +++⎛⎫⎛⎫+-+ ⎪⎪⎝⎭⎝⎭11111111kk k k k k k x x x x x x x x x x x x ++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥=++-++++-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111kk kx x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111k k x x --⎛⎫+ ⎪⎝⎭()22k ≥⋅-+122k +=-也就是说,当1n k =+时,不等式也成立.由①②可得,对∀n ∈N *,()()1122nn n g x g x ⎡⎤+-+≥-⎣⎦都成立 19.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)二次函数()f x 满足(0)(1)0f f ==,且最小值是14-.(1)求()f x 的解析式;(2)设常数1(0,)2t ∈,求直线l :2y t t =-与()f x 的图象以及y 轴所围成封闭图形的面积是()S t ;(3)已知0m ≥,0n ≥,求证:211()()24m n m n +++≥【答案】解:(1)由二次函数()f x 满足(0)(1)0f f ==.设()(1)(0)f x ax x a =-≠,则221()()24af x ax ax a x =-=--又()f x 的最小值是14-,故144a -=-.解得1a =.∴2()f x x x =-;(2)依题意,由22x x t t -=-,得x t =,或1x t =-.(1t -t) 由定积分的几何意义知3232222002()[()()]()|3232ttx x t t S t x x t t dx t x tx =---=--+=-+⎰(3)∵()f x 的最小值为14-,故14m -,14n -∴12m n +-≥-,故12m n ++≥∵1()02m n +,102m n ++≥,∴11()()22m n m n +++≥=,∴211()()24m n m n +++≥ 20.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)设()x g x e =,()[(1)]()f x g x a g x =λ+-λ-λ,其中,a λ是常数,且01λ<<.(1)求函数()f x 的极值;(2)证明:对任意正数a ,存在正数x ,使不等式11x e a x--<成立; (3)设12,λλ∈+R ,且121λλ+=,证明:对任意正数21,a a 都有:12121122a a a a λλ≤λ+λ.【答案】解析:(1)∵()[(1)]()f x g x a g x λλλλ'''=+--,由()0f x '>得,[(1)]()g x a g x λλ''+->,∴(1)x a x λλ+->,即(1)()0x a λ--<,解得x a <,故当x a <时,()0f x '>;当x a >时,()0f x '<; ∴当x a =时,()f x 取极大值,但()f x 没有极小值(2)∵111x x e e x x x----=, 又当0x >时,令()1xh x e x =--,则()10xh x e '=->,故()(0)0h x h >=,因此原不等式化为1x e x a x--<,即(1)10x e a x -+-<, 令()(1)1xg x e a x =-+-,则()(1)xg x e a '=-+, 由()0g x '=得:1x e a =+,解得ln(1)x a =+,当0ln(1)x a <<+时,()0g x '<;当ln(1)x a >+时,()0g x '>. 故当ln(1)x a =+时,()g x 取最小值[ln(1)](1)ln(1)g a a a a +=-++,令()ln(1),01as a a a a=-+>+,则2211()0(1)1(1)a s a a a a '=-=-<+++. 故()(0)0s a s <=,即[ln(1)](1)ln(1)0g a a a a +=-++<. 因此,存在正数ln(1)x a =+,使原不等式成立(3)对任意正数12,a a ,存在实数12,x x 使11xa e =,22xa e =, 则121122112212x x x x a a ee e λλλλλλ+=⋅=,12112212x x a a e e λλλλ+=+,原不等式12121122a a a a λλλλ≤+11221212x x x x ee e λλλλ+⇔≤+,11221122()()()g x x g x g x λλλλ⇔+≤+由(1)()(1)()f x g a λ≤-恒成立,故[(1)]()(1)()g x a g x g a λλλλ+-≤+-, 取1212,,,1x x a x λλλλ===-=, 即得11221122()()()g x x g x g x λλλλ+≤+, 即11221212x x x x ee e λλλλ+≤+,故所证不等式成立21.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)已知函数321,(1)()(1),(1)x x ax bx x f x c e x -⎧-++<⎪=⎨-≥⎪⎩在32,0==x x 处存在极值. (1)求实数b a ,的值;(2)函数)(x f y =的图像上存在两点B A ,使得AOB ∆是以坐标原点O 为直角顶点的直角三角形,且斜边AB 的中点在y 轴上,求实数c 的取值范围;(3)当e c =时,讨论关于x 的方程()f x kx =()k R ∈的实根的个数.【答案】解(1)当1x <时,2()32f x x ax b '=-++.因为函数f(x)在20,3x x ==处存在极值,所以(0)0,2()0,3f f '=⎧⎪⎨'=⎪⎩解得1,0a b ==. (2) 由(1)得321,(1),()(1),(1),x x x x f x c e x -⎧-+<⎪=⎨-≥⎪⎩根据条件知A,B 的横坐标互为相反数,不妨设32(,),(,()),(0)A t t t B t f t t -+>.若1t <,则32()f t t t =-+,由AOB ∠是直角得,0OA OB ⋅=,即23232()()0t t t t t -++-+=,即4210t t -+=.此时无解;若1t ≥,则1()(1)t f t c e -=-. 由于AB 的中点在y 轴上,且AOB ∠是直角,所以B 点不可能在x 轴上,即1t ≠. 由0OA OB ⋅=,即2321()(1)t t t t c e --++⋅-=0,即()11(1)1t c t e -=+-..因为函数()1(1)1t y t e -=+-在1t >上的值域是(0,)+∞,所以实数c 的取值范围是(0,)+∞.(3)由方程()f x kx =,知32,(1),(1)x x x x kx e e x ⎧-+<⎪=⎨-≥⎪⎩,可知0一定是方程的根,所以仅就0x ≠时进行研究:方程等价于2,(10),,(1).x x x x x k e e x x ⎧-+<≠⎪=⎨-≥⎪⎩且构造函数2,(10),(),(1),x x x x x g x e e x x⎧-+<≠⎪=⎨-≥⎪⎩且对于10x x <≠且部分,函数2()g x x x =-+的图像是开口向下的抛物线的一部分, 当12x =时取得最大值14,其值域是1(,0)(0,]4-∞; 对于1x ≥部分,函数()x e e g x x -=,由2(1)()0x e x e g x x-+'=>,知函数()g x 在()1,+∞上单调递增. 所以,①当14k >或0k ≤时,方程()f x kx =有两个实根; ②当14k =时,方程()f x kx =有三个实根; ③当104k <<时,方程()f x kx =有四个实根.22.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))已知a <2,(1) 求f(x)的单调区间; (2)若存在x 1∈[e,e 2],使得对任意的x 2∈[—2,0],f (x 1)<g(x 2)恒成立,求实数a 的取值范围.【答案】23.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))定义(,)|||ln |x x y e y y x y ρ=---,其中,x R y R +∈∈.(1)设0a >,函数()(,)f x x a ρ=,试判断()f x 的定义域内零点的个数; (2)设0a b <<,函数()(,)(,)F x x a x b ρρ=-,求()F x 的最小值; (3)记(2)中最小值为(,)T a b ,若{}n a 是各项均为正数的单调递增数列,证明:1111(,)()ln 2nii n i T a aa a ++=<-∑.【答案】24.(广东省韶关市2013届高三4月第二次调研测试数学理试题)设函数32()()f x ax a b x bx c =-+++其中0,,a b c R ≥∈(1)若1()3f '=0,求()f x 的单调区间;(2)设M 表示'(0)f 与'(1)f 两个数中的最大值,求证:当0≤x ≤1时,|()f x '|≤M .【答案】设函数32()()f x ax a b x bx c =-+++其中0,,a b c R ≥∈(1)若1()3f '=0,求()f x 的单调区间(2)设M 表示'(0)f 与'(1)f 两个数中的最大值,求证:当0≤x ≤1时,|()f x '|≤M . 解:(1)由1()3f '=0,得a =b .当0a =时,则0b =,()f x c =不具备单调性 故f (x )= ax 3-2ax 2+ax +c .由()f x '=a (3x 2-4x +1)=0,得x 1=13,x 2=1列表:由表可得,函数f (x )的单调增区间是(-∞,13)及(1,+∞) .单调减区间是[,1]3(2)当0a =时,()f x '=2bx b -+ 若0b = ()0f x '=,若0b >,或0b <,()f x '在[0,1]是单调函数,'(0)(1)f f '-=≤()f x '≤(0)f ',或'(1)f -=(0)f '≤()f x '≤(1)f '所以,()f x '≤M当0a >时,()f x '=3ax 2-2(a +b )x +b =3222()33a b a b aba x a a++---. ①当1,033a b a b a a++≥或≤时,则()f x '在[0,1]上是单调函数,所以(1)f '≤()f x '≤(0)f ',或(0)f '≤()f x '≤(1)f ',且(0)f '+(1)f '=a >0.所以M -()f x '<≤M②当013a ba +<<,即-a <b <2a ,则223a b ab a +--≤()f x '≤M . (i) 当-a <b ≤2a 时,则0<a +b ≤32a. 所以 (1)f '223a b ab a +--=22223a b ab a --=223()3a a b a -+≥214a >0.所以 M -()f x '<≤M (ii) 当2a <b <2a 时,则()(2)2a b b a --<0,即a 2+b 2-52ab <0. 所以223a b ab b a +--=2243ab a b a -->22523ab a b a-->0,即(0)f '>223a b ab a +-.所以 M -()f x '<≤M综上所述:当0≤x ≤1时,|()f x '|≤M25.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)已知函数2(),()ln f x x ax g x x =-=.(1)若()()f x g x ≥对于定义域内的任意x 恒成立,求实数a 的取值范围;(2)设()()()h x f x g x =+有两个极值点12,x x ,且11(0,)2x ∈,证明:123()()ln 24h x h x ->-; (3)设1()()()2ax r x f x g +=+对于任意的(1,2)a ∈,总存在01[,1]2x ∈,使不等式2()(1)r x k a >- 成立,求实数k 的取值范围.【答案】解析:(Ⅰ)由题意:)()(x g x f ≥⇔≥-ax x 2x ln ,)0(>x分离参数a 可得:)0(ln >-≤x xx x a设x x x x ln )(-=φ,则22/1ln )(x x x x -+=φ由于函数2x y =,x y ln =在区间),0(+∞上都是增函数,所以函数1ln 2-+=x x y 在区间),0(+∞上也是增函数,显然1=x 时,该函数值为0 所以当)1,0(∈x 时,0)(/<x ϕ,当),1(+∞∈x 时,0)(/>x ϕ所以函数)(x φ在)1,0(∈x 上是减函数,在),1(+∞∈x 上是增函数 所以1)1()(min ==φφx ,所以1)(min =≤x a φ即]1,(-∞∈a(Ⅱ)由题意知道:x ax x x h ln )(2+-=,且)0(,12)(2|>+-=x x ax x x h所以方程)0(0122>=+-x ax x 有两个不相等的实数根21,x x ,且)21,0(1∈x , 又因为,2121=x x 所以),1(2112+∞∈=x x ,且)2,1(,122=+=i x ax i i而)ln ()()(112121x ax x x h x h +-=-)ln (2222x ax x +--]ln )12([12121x x x ++-=]ln )12([22222x x x ++--212122lnx x x x +-=22222221ln )21(x x x x +-=2222222ln 41x x x --=,)1(2>x设)1(,2ln 41)(222≥--=x x x x x u ,则02)12()(322/≥-=x x x u所以2ln 43)1()(-=>u x u ,即2ln 43)()(21->-x h x h(Ⅲ))21()()(ax g x f x r ++=21ln2++-=ax ax x 所以12)(|++-=ax a a x x r 12222++-=ax x x a ax 1)22(22+--=ax a a x ax因为(1,2)a ∈,所以21212212222=-≤-=-a a a a 所以当),21(+∞∈x 时,)(x r 是增函数,所以当01[,1]2x ∈时, 21ln1)1()(max 0++-==a a r x r ,(1,2)a ∈所以,要满足题意就需要满足下面的条件:)1(21ln12a k a a ->++-,令)1(21ln 1)(2a k a a a --++-=ϕ,(1,2)a ∈即对任意(1,2)a ∈,)1(21ln1)(2a k a a a --++-=ϕ0>恒成立 因为)122(11222111)(2/-++=+-+=+++-=k ka a aa a ka ka ka a a ϕ分类讨论如下: (1)若0=k ,则1)(/+-=a aa ϕ,所以)(a ϕ在)2,1(∈a 递减,此时0)1()(=<ϕϕa 不符合题意(2)若0<k ,则)121(12)(/+-+=k a a ka a ϕ,所以)(a ϕ在)2,1(∈a 递减,此时0)1()(=<ϕϕa 不符合题意.(3)若0>k ,则)121(12)(/+-+=k a a ka a ϕ,那么当1121>-k 时,假设t 为2与121-k 中较小的一个数,即}121,2min{-=k t ,则)(a ϕ在区间})121,2min{,1(-k 上递减,此时0)1()(=<ϕϕa 不符合题意.综上可得⎪⎩⎪⎨⎧≤->11210k k 解得41≥k ,即实数k 的取值范围为),41[+∞26.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))已知函数32(),()ln ,(0)f x x x bx g x a x a =-++=>.(1)若()f x 存在极值点,求实数b 的取值范围;(3)当b=0时,令(),1()(),1f x x F x g x x <⎧=⎨≥⎩.P(11,()x F x ),Q(22,()x F x )为曲线y=()F x 上的两动点,O 为坐标原点,请完成下面两个问题:①能否使得POQ 是以O 为直角顶点的直角三角形,且斜边中点在y 轴上?请说明理由. ②当1<12x x <时,若存在012(,)x x x ∈,使得曲线y=F(x)在x=x 0处的切线l ∥PQ, 求证:1202x x x +<【答案】27.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)设函数2()(1)n n f x x x =-在1[,1]2上的最大值为n a (1,2,n =).(1)求12,a a 的值;(2)求数列{}n a 的通项公式;(3)证明:对任意*n N ∈(2n ≥),都有21(2)n a n ≤+成立.【答案】解:(1)解法1:∵121'()(1)2(1)(1)[(1)2]n n n n f x nx x x x x x n x x --=---=---当1n =时,1'()(1)(13)f x x x =--当1[,1]2x ∈时,1'()0f x ≤,即函数1()f x 在1[,1]2上单调递减, ∴1111()28a f ==, 当2n =时,2'()f x 2(1)(12)x x x =--当1[,1]2x ∈时,2'()0f x ≤,即函数2()f x 在1[,1]2上单调递减, ∴2211()216a f ==【解法2:当1n =时,21()(1)f x x x =-,则21'()(1)2(1)(1)(13)f x x x x x x =---=--当1[,1]2x ∈时,1'()0f x ≤,即函数1()f x 在1[,1]2上单调递减,∴1111()28a f ==, 当2n =时,222()(1)f x x x =-,则222'()2(1)2(1)f x x x x x =---2(1)(12)x x x =--当1[,1]2x ∈时,2'()0f x ≤,即函数2()f x 在1[,1]2上单调递减,∴2211()216a f ==】 (2)令'()0n f x =得1x =或2n x n =+,∵当3n ≥时,1[,1]22n n ∈+且当1[,)22nx n ∈+时'()0n f x >,当(,1]2nx n ∈+时'()0n f x <,故()n f x 在2nx n =+处取得最大值,即当3n ≥时,22()()()222n n n n n a f n n n ==+++24(2)n n n n +=+,------(*) 当2n =时(*)仍然成立,综上得21,184.2(2)n nn n a n n n +⎧=⎪⎪=⎨⎪≥⎪+⎩(3)当2n ≥时,要证2241(2)(2)n n n n n +≤++,只需证明2(1)4n n +≥∵01222(1)()()n n nn n n C C C n n n +=+++2(1)41212142n n n-≥++⋅≥++=∴对任意*n N ∈(2n ≥),都有21(2)n a n ≤+成立28.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))已知函数2()1f x a bx x =++在3x =处的切线方程为58y x =-. (1)求函数()f x 的解析式;(2)若关于x 的方程()x f x k e =恰有两个不同的实根,求实数k 的值; (3)数列{}n a 满足12(2)a f =,1(),n n a f a n N *+=∈, 求12320131111S a a a a =+++⋅⋅⋅⋅+的整数部分.惠州市2013届高三第一次模拟考【答案】解: (1) f'(x)=2ax+b ,依题设,有`(3)5(3)7f f =⎧⎨=⎩,即659317a b a b +=⎧⎨++=⎩,解得11a b =⎧⎨=-⎩2()=1f x x x ∴-+(2)方程()=k x f x e ∴,即21k xx x e -+=,得2k (1)xx x e -=-+, 记2F(x)(1)xx x e -=-+,则22F'(x)=(21)(1)(32)(1)(2)xx x x x ex x e x x e x x e -------+=--+=---令F'(x)=0,得121,2x x ==当x 变化时,F'(x)、F(x)的变化情况如下表:∴当1x =时,F(x)取极小值1e ;当2x =时,F(x)取极大值23e作出直线y x =和函数2F(x)(1)xx x e -=-+的大致图象,可知当1k e =或23k e =时,它们有两个不同的交点,因此方程()x f x k e =恰有两个不同的实根,(3) 12(2)3a f ==,得1312a >>,又21()1n n n n a f a a a +==-+.22121(1)0n n n n n a a a a a +∴-=-+=->,11n n a a +∴>>由211n n n a a a +=-+,得11=(1)n n n a a a +--,111111(1)1n nnnnaa a a a+∴==----,即111111nnn aa a+=---122013122320132014111111111()()()111111S a aaa aaaaa∴=+++=-+-++-------12014201411111122a a a=-=-<---又1211242637211S a a>++==>即12S <<,故S 的整数部分为. l4分。
2013年佛山二模理科数学试题2013.4.18本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生要务必填写答题卷上密封线内的有关项目.2.选择题每小题选出答案后,用铅笔把答案代号填在答题卷对应的空格内. 3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.请考生保持答题卷的整洁.考试结束后,将答题卷交回.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知{}{}24,Z ,13M x x x N x x =-≤≤∈=-<<,则M N = A .()1,3-B .[2,1)-C .{}0,1,2D .{}2,1,0--2.已知复数z 的实部为1,且2z =,则复数z 的虚部是A. BC. D. 3.已知数列}{n a 是等差数列,若3,244113==+a a a ,则数列}{n a 的公差等于 A .1B .3C .5D .64. 为了解一片速生林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ).根据所得数据画出了样本的频率分布直方图(如右),那么在这100株树木中,底部周长小于110cm 的株数是A .30B .60C .70D .80 5.函数()sin 2f x x ππ⎛⎫=+⎪⎝⎭,]11[,-∈x ,则 A .()f x 为偶函数,且在]10[,上单调递减;90 110 周长(cm)100 120130第4题图B .()f x 为偶函数,且在]10[,上单调递增;C .()f x 为奇函数,且在]01[,-上单调递增;D .()f x 为奇函数,且在]01[,-上单调递减. 6.下列命题中假.命题..是 A .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行; B .垂直于同一条直线的两条直线相互垂直;C .若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;D .若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行.7.直线0102=-+y x 与不等式组024320x y x y x y ≥⎧⎪≥⎪⎨-≥-⎪⎪+≤⎩表示的平面区域的公共点有A .0 个B .1 个C .2个D .无数个 8.将边长为2的等边三角形P A B 沿x 轴滚动,某时刻P 与坐标原点重合(如图),设顶点(,)P x y 的轨迹方程是()y f x =,关于函数()y f x =的有下列说法:①()f x 的值域为[0,2]; ②()f x 是周期函数;③( 1.9)()(2013)f f f π-<<; ④609()2f x dx π=⎰.其中正确的说法个数为:A.0B.1C.2D.3二、填空题:本大共7小题,考生作答6小题,每小题5分,满分30分.O P A 第8题图(一)必做题(9~13题)9.命题“∃0x ∈R ,0x e ≤0”的否定是 .10. 已知向量,a b满足1,==a b ()-⊥a b a , 向量a 与b 的夹角为 .11.若二项式()12nx +展开式中3x 的系数等于2x 的系数的4倍,则n 等于 . 12.已知圆C 经过点(0,3)A 和(3,2)B ,且圆心C 在直线y x =上,则圆C 的方程为 .13.将集合{22s t +|0s t ≤<且,s t Z ∈}中的元素按上小下大, 左小右大的顺序排成如图的三角形数表,将数表中位于第i 行第j 列的数记为i j b (0i j ≥>),则65b = . (二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程)在极坐标系中,设曲线1:2sin C ρθ=与2:2cos C ρθ= 的交点分别为A B 、,则线段A B 的垂直平分线的 极坐标方程为 .15.(几何证明选讲)如图,圆O 的直径9A B =,直线C E 与圆O相切于点C , AD C E ⊥于D ,若1AD =,设A B C θ∠=, 则sin θ=______.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤. 16.(本题满分12分)在平面直角坐标系xOy 中,以O x 为始边,角α的终边与单位圆O 的交点B 在第一象限,已知(1,3)A -.(1)若O A O B ⊥,求tan α的值;35691012第13题图DC第15题图(2)若B 点横坐标为45,求AOB S ∆.17.(本题满分12分)市民李生居住在甲地,工作在乙地,他的小孩就读的小学在丙地,三地之间的道路情况如图所示.假设工作日不走其它道路,只在图示的道路中往返,每次在路口选择道路是随机的.同一条道路去程与回程是否堵车相互独立. 假设李生早上需要先开车送小孩去丙地小学,再返回经甲地赶去乙地上班.假设道路A 、B 、D 上下班时间往返出现拥堵的概率都是110,道路C 、E 上下班时间往返出现拥堵的概率都是15,只要遇到拥堵上学和上班的都会迟到. (1)求李生小孩按时到校的概率; (2)李生是否有七成把握能够按时上班? (3)设ξ表示李生下班时从单位乙到达小学丙遇到 拥堵的次数,求ξ的均值.18.(本题满分14分)如图甲,设正方形A B C D 的边长为3,点E F 、分别在A B C D 、上,并且满足22A E E B C F F D ==,,如图乙,将直角梯形A E F D 沿E F 折到11A EFD 的位置,使点1A 在平面EBC F 上的射影G 恰好在B C 上. (1)证明:1//A E 平面1CD F ;(2)求平面B E F C 与平面11A EFD 所成二面角的余弦值.乙甲丙ABDE第17题图BE CD F图甲1A EFBC1DG图乙A第18题图19.(本题满分14分)在平面直角坐标系内,动圆C 过定点()1,0F ,且与定直线1x =-相切. (1)求动圆圆心C 的轨迹2C 的方程;(2)中心在O 的椭圆1C 的一个焦点为F ,直线l 过点(4,0)M .若坐标原点O 关于直线l 的对称点P 在曲线2C 上,且直线l 与椭圆1C 有公共点,求椭圆1C 的长轴长取得最小值时的椭圆方程.20.(本题满分14分)某水域一艘装载浓硫酸的货船发生侧翻,导致浓硫酸泄漏,对河水造成了污染.为减少对环境的影响,环保部门迅速反应,及时向污染河道投入固体碱,1个单位的固体碱在水中逐渐溶化,水中的碱浓度()f x 与时间x (小时)的关系可近似地表示为:620363()1 366x x x f x x x ⎧--≤<⎪⎪+=⎨⎪-≤≤⎪⎩,只有当污染河道水中碱的浓度不低于13时,才能对污染产生有效的抑制作用.(1)如果只投放1个单位的固体碱,则能够维持有效的抑制作用的时间有多长? (2)第一次投放1单位固体碱后,当污染河道水中的碱浓度减少到13时,马上再投放1个单位的固体碱,设第二次投放后......水中碱浓度为()g x ,求()g x 的函数式及水中碱浓度的最大值.(此时水中碱浓度为两次投放的浓度的累加..)21.(本题满分14分)设函数1220()xf x x e-=⋅,记0()f x 的导函数01()()f x f x '=,1()f x 的导函数12()()f x f x '=,2()f x 的导函数23()()f x f x '=,…,1()n f x -的导函数1()()n n f x f x -'=,1,2,n = .(1)求3(0)f ; (2)用n 表示(0)n f ;(3)设231(0)(0)(0)n n S f f f +=+++ ,是否存在*n N ∈使n S 最大?证明你的结论.2013年佛山二模理科数学试题评分参考一、填空题 CDBCABBC二、填空题9.∀x ∈R ,x e >0 10.4π11.8 12.()()22115x y -+-=13.8014.sin 42πρθ⎛⎫+= ⎪⎝⎭(或1cos sin =+θρθρ) 15.13三、解答题16.⑴解法1、由题可知:(1,3)A -,(cos ,sin )B αα, ……1分(1,3)O A =-,(cos ,sin )O B αα= (2)分O A O B ⊥,得0O A O ⋅= ……3分∴cos 3sin 0αα-+=,1tan 3α=……4分解法2、 由题可知:(A -,(cos ,sin )B αα ……1分3O A k =-,tan OB k α= ……2分∵O A O B⊥,∴1OA O BK K ⋅=- ……3分 3tan 1α-=-,得1tan 3α=……4分解法3、 设) , (y x B ,(列关于x 、y 的方程组2分,解方程组求得x 、y 的值1分,求正切1分) ⑵解法1、由⑴OA ==, 记AOx β∠=, (,)2πβπ∈∴sin10β==,cos 10β==-(每式1分) ……6分∵1O B = 4cos 5α=,得3s i n 5α==(列式计算各1分) ……8分43sin sin()10510510AO B βα∠=-=+=(列式计算各1分) ……10分∴11sin 12210AOB S AO BO AO B ∆=∠=⨯⨯32=(列式计算各1分) ……12分解法2、由题意得:A O 的直线方程为30x y += ……6分则3sin 5α==即43(,)55B (列式计算各1分) ……8分则点B到直线A O的距离为d==(列式计算各1分)……10分又OA==,∴113322102AO BS AO d∆=⨯=⨯=(每式1分)…12分解法3、3sin5α==即43(,)55B(每式1分)……6分即:(O A=-,43(,)55O B=,……7分OA==,1O B=,4313cos10O A O BAO BO A O B-⨯+⨯⋅∠===9分(模长、角的余弦各1分)∴sin10AO B∠==……10分则113sin122102AO BS AO BO AO B∆=∠=⨯⨯=(列式计算各1分)……12分解法4、根据坐标的几何意义求面积(求B点的坐标2分,求三角形边长2分,求某个内角的余弦与正弦各1分,面积表达式1分,结果1分)17.⑴因为道路D、E上班时间往返出现拥堵的概率分别是110和15,因此从甲到丙遇到拥堵的概率是111130.152102520⋅+⋅==(列式计算各1分)……2分所以李生小孩能够按时到校的概率是10.1-=;……3分⑵甲到丙没有遇到拥堵的概率是1720,……4分丙到甲没有遇到拥堵的概率也是1720, ……5分 甲到乙遇到拥堵的概率是11111123103103515⋅+⋅+⋅=, ……6分甲到乙没有遇到拥堵的概率是21311515-=,李生上班途中均没有遇到拥堵的概率是17171337570.82020156000⋅⋅=<,所以李生没有八成把握能够按时上班(计算结论各1分)……8分⑶依题意ξ可以取. ……9分 (0)P ξ==13172211520300⋅=,(1)P ξ==2171337315201520300⋅+⋅=,(2)P ξ==2361520300⋅=,…11分分布列是:22173685170+1+2=30030030030060E ξ=⨯⨯⨯=.……12分18.⑴证明:在图甲中,易知//AE D F ,从而在图乙中有11//A E D F , ……1分因为1A E ⊄平面1C D F ,1D F ⊂平面1C D F ,所以1//A E 平面1C D F (条件2分)……4分⑵解法1、如图,在图乙中作G H E F ⊥,垂足为H ,连接1A H ,由于1A G ⊥平面E B C F ,则1A G EF ⊥, ……5分所以E F ⊥平面1A G H ,则1EF A H ⊥, ……6分ABE CDF图甲1A EFB1DG图乙 GMHH所以1A H G ∠平面B E F C 与平面11A EFD 所成二面角的平面角, ……8分图甲中有EF AH ⊥,又G H EF ⊥,则AGH 、、三点共线, ……9分设C F 的中点为M ,则1M F =,易证A B G EM F ∆≅∆,所以,1BG M F ==,AG =11分(三角形全等1分)又由A B G A H E ∆∆ ,得1AB AE A H AH AG===, (12)分于是,HG AG AH =-=, (13)分在1Rt A G H ∆中,112cos 3H G A G H A H∠==,即所求二面角的余弦值为23.……14分解法2、如图,在图乙中作G H E F ⊥,垂足为H ,连接1A H ,由于1A G ⊥平面E B C F ,则1A G EF⊥, (5)分所以E F ⊥平面1A G H ,则1EF A H ⊥,图甲中有EF AH ⊥,又G H E F ⊥,则AG H 、、三点共线, ……6分设C F 的中点为M ,则1M F =,易证AB G E M F ∆≅∆,所以1BG M F ==,则AG =又由A B G A H E ∆∆ ,得1AB AE A H AH AG===, (7)分于是,HG AG AH =-=在1Rt A G H ∆中,1A G === (8)分作//G T B E 交E F 于点T ,则T G G C ⊥,以点G 为原点,分别以1G C G T G A 、、所在直线为x y z 、、轴,建立如图丙所示的空间直角坐标系,则(0,0,0)G 、(1,1,0)E -、(2,2,0)F、1(0,A,则1(1,3,0)(1,1,EF EA ==-,(坐标系、坐标、向量各1分) ……11分显然,1(00,2)G A =是平面B E F C的一个法向量, ……12分设(,,)n x y z = 是平面11A EFD 的一个法向量,则130,n E F x y n E A x y ⎧=+=⎪⎨=-++=⎪⎩,即3,x y z =-⎧⎪⎨=-⎪⎩,不妨取1y =-,则(,1,22)n =-, ……13分设平面B E F C 与平面11A EFD 所成二面角为θ,可以看出,θ为锐角,所以,112cos 3||||G A n G A n θ===,所以,平面B E F C 与平面11A EFD 所成二面角的余弦值为23. ……14分19.⑴由题可知,圆心C 到定点()1,0F 的距离与到定直线1x =-的距离相等 ……2分由抛物线定义知,C 的轨迹2C 是以()1,0F 为焦点,直线1x =-为准线的抛物线 ……4分(确定“曲线是抛物线”1分,说明抛物线特征1分) 所以动圆圆心C 的轨迹2C 的方程为24y x =. (5)分⑵解法1、设(,)P m n ,则O P 中点为(,)22m n, 因为O P 、两点关于直线(4)y k x =-对称,所以(4)221n m k n k m⎧=-⎪⎪⎨⎪⋅=-⎪⎩,即80km n k m nk -=⎧⎨+=⎩,解之得2228181k m kk n k ⎧=⎪⎪+⎨⎪=-⎪+⎩(中点1分,方程组2分,化简1分) ……8分将其代入抛物线方程,得:222288()411k kkk-=⋅++,所以21k =. (9)分联立2222(4)1y k x x yab =-⎧⎪⎨+=⎪⎩,消去y,得:2222222()8160b a x a x a a b +-+-= ……11分由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, ……12分注意到221b a =-,即2217a ≥,所以2a ≥,即24a ≥……13分因此,椭圆1C 长轴长的最小值为.此时椭圆的方程为22+1171522xy=. (14)分解法2、设2,4m P m ⎛⎫⎪⎝⎭,因为O P 、两点关于直线l对称,则=4OM M P =, ……6分即4=,解之得4m =± ……7分即(4,4)P ±,根据对称性,不妨设点P 在第四象限,且直线与抛物线交于,A B.则11AB O Pk k =-=,于是直线l 方程为4y x =-(斜率1分,方程1分) ……9分联立222241y x x yab =-⎧⎪⎨+=⎪⎩,消去y,得:2222222()8160b a x a x a a b +-+-= ……11分由2222222(8)4()(16)0a b a a a b ∆=--+-≥,得2216a b +≥, ……12分注意到221b a =-,即2217a ≥,所以2a ≥,即24a ≥ (13)分因此,椭圆1C 长轴长的最小值为. 此时椭圆的方程为22+1171522xy=. ……14分20.⑴由题意知03612 633x x x ≤<⎧⎪⎨--≥⎪+⎩或361163x x ≤≤⎧⎪⎨-≥⎪⎩……2分解得13x ≤<或34x ≤≤,即14x ≤≤ ……3分能够维持有效的抑制作用的时间:413-=小时. ……4分⑵由⑴知,4x =时第二次投入1单位固体碱,显然()g x 的定义域为410x ≤≤ (5)分当46x ≤≤时,第一次投放1单位固体碱还有残留,故()g x =1 6x ⎛⎫-⎪⎝⎭+(4)626(4)3x x ⎡⎤---⎢⎥-+⎣⎦=116331x x ---;……6分当610x <≤时,第一次投放1单位固体碱已无残留,故当67x <≤时,(4)6()26(4)3x g x x -=---+=86361x x ---; ……7分当710x <≤时,45()1636x x g x -=-=- ; ……8分所以114633186()673615 71036x x x xg x x x xx ⎧--≤≤⎪-⎪⎪=--<≤⎨-⎪⎪-<≤⎪⎩ ……9分当46x ≤≤时,116()331x g x x =---=101610()3313x x --+≤--103-当且仅当1631x x -=-时取“=”,即1[4,6]x =+(函数值与自变量值各1分)……11分当610x <≤时,第一次投放1单位固体碱已无残留,当67x <≤时, 2261(5)(7)()0(1)66(1)x x g x x x +-'=-=>--,所以()g x 为增函数;当710x <≤时,()g x 为减函数;故m ax ()g x =1(7)2g =, ……12分又101(03266--=>,所以当1x =+时,水中碱浓度的最大值为103-……13分答:第一次投放1单位固体碱能够维持有效的抑制作用的时间为3小时;第一次投放12+小时后, 水中碱浓度的达到最大值为103-……14分21.⑴易得,()1221122xf x x x e -⎛⎫=-+ ⎪⎝⎭, ……1分()12221224xf x x x e -⎛⎫=-+ ⎪⎝⎭……2分()122313382xf x x x e -⎛⎫=-+- ⎪⎝⎭,所以3(0)3f =-……3分⑵不失一般性,设函数()21111()x n n n n f x a x b x c e λ----=++⋅的导函数为()2()xn n n n f x a x b x c eλ=++⋅,其中1,2,n = ,常数0λ≠,0001,0a b c ===.对1()n f x -求导得:211111()[(2)xn n n n n f x axa b λλλλ-----'=⋅++⋅+ (4)分 故由1()()n n f x f x -'=得:1n n a a λ-=⋅ ①,112n n n b a b λ--=+⋅②, ……5分 11n n n c b c λ--=+⋅ ③⎧⎪⎨⎪⎩由①得:,nn a n Nλ=∈, ……6分 代入②得:112n n n b b λλ--=⋅+⋅,即112nn nn b b λλλ--=+,其中1,2,n =故得:12,n n b n n N λ-=⋅∈. ……7分代入③得:212n n n c n c λλ--=⋅+⋅,即1212nn nn c c nλλλ--=+,其中1,2,n = .故得:2(1)n n c n n λ-=-⋅, ……8分 因此(0)n f =2(1),n n c n n n N λ-=-⋅∈. 将12λ=-代入得:21(0)(1)()2n n f nn -=--,其中n N∈. ……9分(2)由(1)知111(0)(1)()2n n f n n -+=+-,当2(1,2,)n k k == 时,21221211(0)2(21)()02k k k k S S f k k --+-==+⋅-<,2212210,k k k k S S S S --∴-<<,故当nS 最大时,n为奇数. ……10分当21(2)n k k =+≥时,21(0)(k k k k S S f f+-++-=+ ……11分 又2221(0)(21)(22)()2k k f k k +=++-,21211(0)2(21)()2k k f k k -+=+-221222111(0)(0)(21)(22)()2(21)()22kk k k f f k k k k -++∴+=++-++-211(21)(1)()2k k k -=+--<,2121k k S S +-∴<,因此数列{}21(1,2,)k S k+= 是递减数列 ……12分又12(0)2S f ==,3234(0)(0)(0)2S f f f =++=, ……13分 故当1n =或3n =时,n S 取最大值132S S ==. ……14分。
广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编9:圆锥曲线一、选择题1 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )椭圆221x m y +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为 ( )A .14B .12C .2D .4【答案】A2 .(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)定义:关于x 的不等式||x A B-<的解集叫A 的B 邻域.已知2a b +-的a b +邻域为区间(2,8)-,其中a b 、分别为椭圆12222=+by ax 的长半轴和短半轴.若此椭圆的一焦点与抛物线x y542=的焦点重合,则椭圆的方程为 ( )A .13822=+yxB .14922=+yxC .18922=+yxD .191622=+yx【答案】B3 .(广东省海珠区2013届高三上学期综合测试一数学(理)试题)已知椭圆()2222:10x y C a b ab+=>>的离心率为,双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为.A 22184xy+= .B 221126xy+= .C221168xy+= .D 221205xy+=【答案】B4 .(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)若抛物线22y p x =的焦点与双曲线22122xy-=的右焦点重合,则p 的值为 ( )A .2-B .2C .4-D .4【答案】D 双曲线22122xy-=的右焦点为(2,0),所以抛物线22y p x =的焦点为(2,0),则4p =.5 .(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))设F 1,F 2是椭圆)0(12222>>=+b a by ax 的左右焦点,若直线x =m a (m >1)上存在一点P,使ΔF 2PF 1是底角为300的等腰三角形,则m 的取值范围是( )AD .【答案】A6 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知双曲线22221x y ab-=的渐近线方程为y =,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A .12B.2C .2D .1【答案】A7 .(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))方程||||169x x y y +=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:①f(x)在R 上单调递减;②函数F(x)=4f(x)+3x 不存在零点;③函数y=f(x)的值域是R;④f(x)的图象不经过第一象限,其中正确的个数是 ( ) A .1个 B .2个C .3个D .4个 【答案】D二、填空题8 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)已知双曲线22221(0b 0)x y a ab-=>,>和椭圆22xy=1169+有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________.【答案】22143xy-=9.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)已知双曲线22221(0,0)x y a b ab-=>>的一条渐近线方程为20x y +=,则双曲线的离心率e 的值为__________ .【答案】210.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)双曲线的焦点在x 轴上,实轴长为4,离心率为3,则该双曲线的标准方程为___,渐近线方程为___.【答案】221432xy-=y =±11.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知动点P 在抛物线y 2=4x 上,那么使得点P 到定点Q(2,,-1)的距离与点P 到抛物线焦点的距离之和最小的点P 的坐标为___【答案】)1,41(-12.(广东省梅州市2013届高三3月总复习质检数学(理)试题)已知双曲线22221(0,0)x y a b ab-=>>的两条近线的夹角为3π,则双曲线的离心率为___313.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))已知点A 是抛物线C 1:y 2=2px(p>0)与双曲线C 2:22221(0,0)x y a b ab-=>>的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p,则双曲线的离心率等于____14.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知双曲线221x k y -=的一个焦点是0),则其渐近线方程为________. 【答案】2y x =±;15.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))已知圆C 经过直线220x y -+=与坐标轴的两个交点,且经过抛物线28y x =的焦点,则圆C 的方程为______________.【答案】22115()()222x y -+-=[或2220x y x y +---=];易得圆心坐标为11(,)22,半径为r =, 故所求圆的方程为22115()()222x y -+-=【或2220x y x y +---=. 】16.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )在平面直角坐标系Oxy 中,若双曲线14222=+-m ymx的焦距为8,则=m _______.【答案】3(未排除4-,给3分)17.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)已知抛物线24x y =上一点P 到焦点F 的距离是5,则点P 的横坐标是_____.【答案】4±18.(广东省韶关市2013届高三4月第二次调研测试数学理试题)设点P 是双曲线22221(0,0)x y a b ab-=>>与圆2222x y a b +=+在第一象限的交点,其中12,F F 分别是双曲线的左、右焦点,若21tan 3PF F ∠=,则双曲线的离心率为______________.19.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)下图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降2米后水面宽________米.【答案】20.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)过双曲线221916xy-=的右焦点,且平行于经过一、三象限的渐近线的直线方程是 ________.【答案】双曲线221916xy-=的右焦点为(5,0),渐近线的方程为43y x =±,所以所求直线方程为4(5),3y x =-即43200x y --=.三、解答题 21.(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )在平面直角坐标系xoy 中,设点F (1,0),直线l :1x =-,点P 在直线l 上移动,R 是线段P F 与y 轴的交点,,R Q F P P Q l ⊥⊥.(Ⅰ)求动点Q 的轨迹的方程;(Ⅱ) 记Q 的轨迹的方程为E ,过点F 作两条互相垂直的曲线E 的弦AB 、CD ,设AB 、CD 的中点分别为N M ,.求证:直线MN 必过定点)0,3(R .【答案】解:(Ⅰ)依题意知,直线l 的方程为:1x =-.点R 是线段F P 的中点,且R Q ⊥F P ,∴R Q 是线段F P 的垂直平分线∴P Q 是点Q 到直线l 的距离.∵点Q 在线段F P 的垂直平分线,∴P Q Q F =故动点Q 的轨迹E 是以F 为焦点,l 为准线的抛物线,其方程为:24(0)y x x =>(Ⅱ) 设()()B B A A y x B y x A ,,,,()()N N M M y x N y x M ,,,,直线AB 的方程为)1(-=x k y则⎪⎩⎪⎨⎧==)2(4)1(422BB AA x y x y(1)—(2)得ky y B A 4=+,即ky M 2=,代入方程)1(-=x k y ,解得122+=kx M . 所以点M 的坐标为222(1,)kk+ 同理可得:N 的坐标为2(21,2)k k +-. 直线MN 的斜率为21kk x x y y k NM N M MN -=--=,方程为)12(1222---=+kx kk k y ,整理得)3()1(2-=-x k k y ,显然,不论k 为何值,(3,0)均满足方程, 所以直线MN 恒过定点R (3,0).1422.(广东省汕头一中2013年高三4月模拟考试数学理试题 )在平面直角坐标系中,已知点()2,0A 、()2,0B -,P 是平面内一动点,直线P A 、P B 的斜率之积为34-.(1)求动点P 的轨迹C 的方程;(2)过点1,02⎛⎫⎪⎝⎭作直线l 与轨迹C 交于E 、F 两点,线段E F 的中点为M ,求直线M A 的斜率k 的取值范围.2013年4月汕头一中高三模拟考【答案】(1)依题意,有3224P A P B y y k k x x ⋅=⋅=--+(2x≠±), -----------------------------化简得:22143xy+= (2x ≠±),为所求动点P 的轨迹C 的方程------------------------(2)依题意,可设(,)Mx y 、(,)E x m y n ++、(,)F xm y n --,则有2222()()143()()143x m y n x m y n ⎧+++=⎪⎪⎨--⎪+=⎪⎩,两式相减,得4430014342E F m x n n x y k m yx -+=⇒==-=-,由此得点M 的轨迹方程为:226830x yx +-=(0x≠).------------------------------设直线M A :2xm y =+(其中1mk=),则22222(68)211806830x m y m y m y x y x =+⎧⇒+++=⎨+-=⎩, ------------------------------故由22(21)72(68)0||8m mm ∆=-+≥⇒≥,即18k≥,解得:k 的取值范围是11,88⎡⎤-⎢⎥⎣⎦. ---------------------------23.(广东省汕头一中2013年高三4月模拟考试数学理试题 )已知抛物线C :212x y =,过焦点F 的动直线l 交抛物线于A 、B 两点,O 为坐标原点.(1)求证:O A O B ⋅为定值;(2)设M 是线段A B 的中点,过M 作x 轴的垂线交抛物线C 于点N ,证明:抛物线C 在点N 处的切线与A B 平行.【答案】(1)设直线l的方程为:18y k x =+,()11,A x y ,()22,B x y .-------------------------由21218x y y k x ⎧=⎪⎪⎨⎪=+⎪⎩得:2110264x k x --=,∴12116x x =------------------------- ∴()2121212123464O A O B x x y y x x x x ⋅=+=+=-为定值----------------------------(2)由(1)得:点M 的横坐标为4k ,∴点N 的横坐标为4k ----------------------------∵'4y x = ∴4'|k x y k == ----------------------------∴平行另解:设()00,N x y ,则12024x x k x +==,220028ky x ==----------------------------设抛物线C 在点N 处的切线为284kk y m x ⎛⎫-=- ⎪⎝⎭ 由228412k k y m x x y ⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪=⎪⎩得:2202816m m k k x x -+-= ------------------------------- ∴22404816mm k k ⎛⎫∆=--= ⎪⎝⎭,解得:m k = ------------------------------- ∴平行24.(广东省东莞市2013届高三第二次模拟数学理试题)已知椭圆22122:1(0)x y C a b ab+=>>的离心率为e =,直线:2l y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆O 相切.(1)求椭圆C 1的方程;(2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F ,且垂直于椭圆的长轴,动直线2l 垂直于1l ,垂足为点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设2C 与x 轴交于点Q ,不同的两点R 、S 在2C 上,且满足0=⋅RS QR ,求||QS的取值范围.【答案】解:(1)由直线:2l y x =+与圆222x y b +=相切,b =,即b =由e =得222213b e a=-=,所以a =所以椭圆的方程是221:132xyC +=(2)由条件,知2||||MF MP =,即动点M 到定点2F 的距离等于它到直线1:1l x =-的距离,由抛物线的定义得点M 的轨迹2C 的方程是x y 42=(3)由(2),知(0,0)Q ,设221212,,,44y y R y S y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,∴222121121,,,44y y y QR y RS y y ⎛⎫⎛⎫-==- ⎪ ⎪⎝⎭⎝⎭由0=⋅RS QR ,得()()222121121016y yy y y y -+-=∵12y y ≠,∴21116y y y ⎛⎫=-+⎪⎝⎭,∴222121256323264y y y =++≥+=,当且仅当2121256y y =,即14y =±时等号成立又||QS == ∵2264y ≥,∴当2264y =,即28y =±时,min ||QS =, 故||QS的取值范围是)⎡+∞⎣25.(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)已知两圆222212:20,:(1)4C x yx C x y+-=++=的圆心分别为12,C C ,P为一个动点,且12||||P C P C +=(1)求动点P 的轨迹M 的方程;(2)是否存在过点(2,0)A 的直线l 与轨迹M 交于不同的两点C 、D,使得11||||C C C D =?若存在,求直线l 的方程;若不存在,请说明理由.【答案】解:(1)两圆的圆心坐标分别为1(1,0),C 和2(1,0)C-∵1212||||||2P C P C C C +=>=∴根据椭圆的定义可知,动点P 的轨迹为以原点为中心,1(1,0),C 和2(1,0)C -为焦点,长轴长为2a =的椭圆, 1,1a c b =====∴椭圆的方程为2212xy+=,即动点P 的轨迹M 的方程为2212xy+=(2)(i)当直线l 的斜率不存在时,易知点(2,0)A 在椭圆M 的外部,直线l 与椭圆M 无交点,所以直线l 不存在.(ii)设直线l 斜率存在,设为k ,则直线l 的方程为(2)y k x =-由方程组2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(21)8820k x k x k +-+-=①依题意28(21)0k ∆=-->解得22k -<<当22k -<<时,设交点1122(,),(,)C x y D x y ,CD 的中点为00(,)N x y ,方程①的解为12224242x x kk==++ ,则212024221x x k x k+==+∴2002242(2)22121k ky k x k k k ⎛⎫-=-=-= ⎪++⎝⎭要使11||||C C C D =,必须1C N l ⊥,即11CNk k ⋅=-∴222212114021kk k kk--+⋅=--+,即2102k k -+=②∵1114102∆=-⨯=-<或,∴2102kk -+=无解所以不存在直线,使得11||||C C C D =综上所述,不存在直线l ,使得11||||C C C D =26.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)已知椭圆2222:1(0)x y C a b ab+=>>3,.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l的距离为2,求A O B △面积的最大值.【答案】(2)设11()A x y ,,22()B x y ,.27.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)己知斜率为1的直线l 与双曲线2222:1x y Cab-=(0a >,0b >),相交于B 、D 两点,且B D 的中点为(1,3)M(1)求双曲线C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,||||17D FB F ⋅=,证明:过A 、B 、D 三点的圆与x 轴相切.【答案】解:(1)由题设知,直线l 的方程为2y x =+代入双曲线C 的方程,并化简得:2222222()440b a x a x a a b----=设11(,)B x y ,22(,)D x y ,则212224ax x b a+=-,22212224aa bx x b a +⋅=- ①由(1,3)M为B D 的中点知:1212x x +=,故2221412ab a⋅=-,即223b a= ②所以2223ca a-=,即224c a= 故2c ea==所以双曲线C 的离心率为2e = (注:本题也可用点差法解决) (2)由①、②知,双曲线C 的方程为:22233x ya-= (,0)A a ,(2,0)F a ,122x x +=,2124302ax x +⋅=-<1|||2|B F x a ====-同理2|||2|D Fx a =-2222121212|||||(2)(2)||42()||864||548|B F D F x a x a x x a x x a a a a a a ⋅=--=-++=----=++又因为||||17D F B F ⋅= 且25480a a ++>所以254817a a ++= 解得:1a=,95a =-(舍去)12|||6B D x x =-===连结M A ,则由(1,0)A ,(1,3)M 知||3M A =,从而||||||M A M B M D ==,且M A x⊥轴,因此以M 为圆心,M A 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切. 所以过A 、B 、D 三点的圆与x 轴相切28.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))已知直线33=+-y x 经过椭圆C :12222=+by ax (0>>b a )的一个顶点B 和一个焦点F .⑴求椭圆的标准方程;⑵设P 是椭圆C 上动点,求||||||PB PF -的取值范围,并求||||||PB PF -取最小值时点P 的坐标.【答案】【答案】⑴依题意,)1 , 0(B ,)0 , 3(-F , 所以1=b ,3=c ,222=+=cba ,所以椭圆的标准方程为1422=+yx5分.⑵||||||||0BF PB PF ≤-≤,当且仅当||||PB PF =时,0||||||=-PB PF ,当且仅当P 是直线BF 与椭圆C 的交点时,||||||||BF PB PF =- ,2||=BF ,所以||||||PB PF -的取值范围是]2 , 0[ .设) , (n m P ,由||||PB PF =得013=++n m ,由⎪⎩⎪⎨⎧=++=+0131422n m n m ,解得⎩⎨⎧-==10n m 或⎪⎪⎩⎪⎪⎨⎧=-=13111338n m ,所求点P 为)1 , 0(-P 和)1311, 1338(-P .29.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)在平面直角坐标系xOy 中,动点P到两点(0),0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)是否存在△AOB 面积的最大值,若存在,求出△AOB 的面积;若不存在,说明理由.【答案】解.(Ⅰ)由椭圆定义可知,点P 的轨迹C是以(0),0)为焦点,长半轴长为2 的椭圆.故曲线C 的方程为2214xy +=(Ⅱ)存在△AOB 面积的最大值因为直线l 过点(1,0)E -,可设直线l 的方程为 1x my =-或0y =(舍).则221,4 1.x y x my ⎧+=⎪⎨⎪=-⎩整理得 22(4)230m y my +--=由22(2)12(4)0m m ∆=++>. 设1122()()A x y B x y ,,,.解得1y =2y =则21||y y -=因为1212AOBS OE y y ∆=⋅-==设1()g t t t=+,t =t ≥.则()g t在区间)+∞上为增函数.所以()g t ≥.所以AOB S ∆≤当且仅当0m =时取等号,即max ()AOB S ∆=.所以AOB S ∆30.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)〔本小题满分14分)如图.已知椭圆22221(0)xy a b ab+=>>的长轴为AB,过点B 的直线l 与x 轴垂直,椭圆的离心率e =为椭圆的左焦点且11AF F B=1 .(I)求椭圆的标准方程;(II)设P 是椭圆上异于A 、B 的任意一点,PH⊥x 轴,H 为垂足,延长HP 到点Q 使得HP=PQ.连接AQ 并延长交直线l 于点M.N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.【答案】解:(Ⅰ)易知A )0,(a -, B )0,(a )0,(1c F -1)()0,(11=+⋅-=⋅∴c a c a B F AF1222==-∴bca又23=e 43122222=-==∴aa ac e ,解得42=a1422=+∴y x 所求椭圆方程为:(Ⅱ)设),(00y x P 则)2,(00y x Q )22(≠-≠x x 及 2200+=∴x y k AQ所以直线AQ 方程)2(22:00++=x x y y)28,2(00+∴x y M )24,2(00+∴x y N4222242000000-=--+=∴x y x x y x y k QN又点P 的坐标满足椭圆方程得到:442020=+y x ,所以 2244y x -=-0200200024242y x y y x x y x k QN -=-=-=∴∴直线 QN 的方程:)(220000x x y x y y --=-化简整理得到:442202000=+=+y x y y x x 即4200=+y y x x 所以 点O 到直线QN 的距离244220=+=y x d∴直线QN 与AB 为直径的圆O 相切.31.(广东省梅州市2013届高三3月总复习质检数学(理)试题)(本小题满分14分)已知F 1,F 2分别是椭圆C:22221(0)y x a b ab+=>>的上、下焦点,其中F 1也是抛物线C 1:24x y =的焦点,点M 是C 1与C 2在第二象限的交点,且15||3MF =.(1)求椭圆C 1的方程;(2)已知A(b,0),B(0,a),直线y=kx(k>0)与AB 相交于点D,与椭圆C 1相交于点E,F 两点,求四边形AEBF 面积的最大值. 【答案】32.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))如图,已知点M0(x0,y0)是椭圆C:222yx+=1上的动点,以M0为切点的切线l0与直线y=2相交于点P.(1)过点M0且l0与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;(2)在y轴上是否存在定点T,使得以PM0为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.【答案】解:(1)由椭圆得:y=,'y=1222(22)x x---切线的斜率为2x-,所以,直线l1的方程为:00)2y y x xx-=-, 与y轴交点纵坐标为22因为11x-≤≤,所以,201x≤≤,20222x≤-≤,所以,当切点在第一、二象限时l1与y轴交点纵坐标的取值范围为:02y≤≤则对称性可知l1与y轴交点纵坐标的取值范围为:22y-≤≤.(2)依题意,可得∠PTM0=90°,设存在T(0,t),M0(x0,y0)由(1)得点P的坐标(22000222y y xx-+,2),由P T M T=可求得t=1所以存在点T(0,1)满足条件.33.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知椭圆1C:22221x ya b+= (0a b>>)的离心率为3,连接椭圆的四个顶点得到的四边形的面积为(1)求椭圆1C的方程;(2)设椭圆1C的左焦点为1F,右焦点为2F,直线1l过点1F且垂直于椭圆的长轴,动直线2l垂直1l于点P ,线段2P F 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设O 为坐标原点,取2C 上不同于O 的点S ,以OS 为直径作圆与2C 相交另外一点R ,求该圆面积的最小值时点S 的坐标.【答案】解:(1)解:由3e =得223a c =,再由222c a b =-,解得2a =由题意可知1222a b ⋅⋅=,即a b ⋅=解方程组2a ab ⎧=⎪⎨⎪=⎩得a b ==所以椭圆C 1的方程是22132xy+=(2)因为2M P M F =,所以动点M 到定直线1:1l x =-的距离等于它到定点2F (1,0)的距离,所以动点M 的轨迹2C 是以1l 为准线,2F 为焦点的抛物线, 所以点M 的轨迹2C 的方程为24y x =(3)因为以O S 为直径的圆与2C 相交于点R ,所以∠ORS = 90°,即0O R S R ⋅=设S (1x ,1y ),R (2x ,2y ),S R =(2x -1x ,2y -1y ),O R=(2x ,2y )所以222221*********()()()()016y y y O R S R x x x y y y y y y -⋅=-+-=+-= 因为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+ ⎪⎝⎭所以221222256323264y y y =++≥=,当且仅当2222256y y =即22y =16,y 2=±4时等号成立圆的直径|OS===因为21y ≥64,所以当21y =64即1y =±8时,m inO S=,所以所求圆的面积的最小时,点S 的坐标为(16,±8)34.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))如图(6),设点)0,(1c F -、)0,(2c F 分别是椭圆)1(1:222>=+a yax C 的左、右焦点,P 为椭圆C 上任意一点,且12PF PF ⋅uuu r uuu r最小值为0.(1)求椭圆C 的方程;(2)若动直线12,l l 均与椭圆C 相切,且12//l l ,试探究在x 轴上是否存在定点B ,点B 到12,l l 的距离之积恒为1?若存在,请求出点B 坐标;若不存在,请说明理由.图(6)F 2F 1oyx【答案】解:(1)设),(y x P ,则有),(1y c x P F +=,),(2y c x P F -=[]a a x c x aa cy x PF PF ,,11222222221-∈-+-=-+=⋅由12PF PF ⋅uuu r uuu r最小值为0得210122=⇒=⇒=-a c c ,∴椭圆C 的方程为1222=+yx(2)①当直线12,l l 斜率存在时,设其方程为,y kx m y kx n =+=+把1l 的方程代入椭圆方程得222(12)4220k x mkx m +++-=∵直线1l 与椭圆C 相切,∴2222164(12)(22)0k m k m ∆=-+-=,化简得2212m k =+同理,2212n k =+∴22m n =,若m n =,则12,l l 重合,不合题意,∴m n =- 设在x 轴上存在点(,0)B t ,点B 到直线12,l l 的距离之积为1,则1=,即2222||1k t m k -=+,--- 把2212k m +=代入并去绝对值整理,22(3)2k t -=或者22(1)0k t -=前式显然不恒成立;而要使得后式对任意的k R ∈恒成立则210t -=,解得1t =±;--------------------------------------------------------- ②当直线12,l l 斜率不存在时,其方程为x =x =,定点(1,0)-到直线12,l l的距离之积为1)1-+=; 定点(1,0)到直线12,l l的距离之积为1)1+-=; 综上所述,满足题意的定点B 为(1,0)-或(1,0)35.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )已知椭圆C 的中心在原点O ,离心率23=e ,右焦点为)0 , 3( F .⑴求椭圆C 的方程;⑵设椭圆的上顶点为A ,在椭圆C 上是否存在点P ,使得向量OA OP +与FA 共线?若存在,求直线AP 的方程;若不存在,简要说明理由.【答案】解:⑴设椭圆C 的方程为22221(0)x y a b ab+=>>, 椭圆C 的离心率23=e ,右焦点为)0 , 3( F ,∴c c a==,222a b c =+,∴2,1,a b c ===故椭圆C 的方程为2214xy +=⑵假设椭圆C 上是存在点P (00,x y ),使得向量OA OP +与FA 共线,00(,1)OP OA x y +=+,(FA =,∴011y +=,即001)x y =+,(1)又 点P (00,x y )在椭圆2214xy +=上,∴22014x y += (2)由⑴、⑵组成方程组解得0001x y =⎧⎨=-⎩,或0017x y ⎧=⎪⎪⎨⎪=⎪⎩∴(0,1)P -,或1()7P , 当点P 的坐标为(0,1)-时,直线AP 的方程为0y =,当点P的坐标为1()7P 时,直线AP440y -+=,故直线AP 的方程为0y =440y -+=36.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点D (0, 2 )为圆心,1为半径的圆相切,又知双曲线C 的一个焦点与D 关于直线y =x 对称. (Ⅰ)求双曲线C 的方程;(Ⅱ)设直线y =mx +1与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围;(Ⅲ)若Q 是双曲线C 上的任一点,F 1F 2为双曲线C 的左,右两个焦点,从F 1引∠F 1QF 2的平分线的垂线,垂足为N ,试求点N 的轨迹方程.【答案】解:(Ⅰ)设双曲线C 的渐近线方程为y =kx ,则kx -y =0∵该直线与圆x 2+(y - 2 )2=1相切,有|- 2 |k 2 + 1= 1 ⇒ k =±1.∴双曲线C 的两条渐近线方程为y =±x , 故设双曲线C 的方程为 x 2a 2-y2a 2= 1 . 易求得双曲线C 的一个焦点为 ( 2 ,0),∴2a 2=2,a 2=1.∴双曲线C 的方程为x 2-y 2=1.(Ⅱ)由 ⎩⎨⎧ y =mx +1 x 2-y 2=1得(1-m 2)x 2-2mx -2=0. 令f (x )= (1-m 2)x 2-2mx -2直线与双曲线左支交于两点,等价于方程f (x )=0在(-∞,0)上有两个不等实根. 因此 ⎩⎪⎨⎪⎧ △>02m1-m 2 <0-21-m2 >0 解得1<m < 2 .又AB 中点为(m 1-m 2 ,11-m2 ),∴直线l 的方程为y =1-2m 2+m +2 (x +2). 令x =0,得b =2-2m 2+m +2=2-2(m -14 )2+178.∵1<m < 2 ,∴-2(m -14 )2+178 ∈ (-2+ 2 , 1),∴b ∈ (-∞,-2- 2 )∪(2,+∞).(Ⅲ)若Q 在双曲线的右支上,则延长2QF 到T ,使||||1QF QT =, 若Q 在双曲线的左支上,则在QF 2上取一点T ,使| QT |=|QF 1 |.根据双曲线的定义| TF 2 |=2,所以点T 在以F 2( 2 ,0)为圆心,2为半径的圆上,即点T 的轨迹方程是(x - 2 )2+y 2=4 (x ≠ 0) ①由于点N 是线段F 1T 的中点,设N (x ,y ),T (x T ,y T ).则 ⎩⎪⎨⎪⎧ x =x T - 22y =yT2,即 ⎩⎨⎧ x T =2x + 2 y T = 2y.代入①并整理得点N 的轨迹方程为x 2+y 2=1.(x ≠ -22) (或者用几何意义得到| NO |=12| F 2T |=1, 得点N 的轨迹方程为x 2+y 2=1.)37.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(本小题满分14分)设抛物线()2:20C x py p =>的焦点为F ,()()000,0A x y x ≠是抛物线C 上的一定点. (1)已知直线l 过抛物线C 的焦点F ,且与C 的对称轴垂直,l 与C 交于,Q R 两点, S 为C 的准线上一点,若QRS ∆的面积为4,求p 的值;(2)过点A 作倾斜角互补的两条直线AM ,AN ,与抛物线C 的交点分别为()11,,M x y ()22,N x y .若直线AM ,AN 的斜率都存在,证明:直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.【答案】(本小题主要考查直线、抛物线、对称等知识,考查数形结合、化归与转化、方程的思想方法,考查数学探究能力以及运算求解能力) 解: (1)由题设0,2p F ⎛⎫ ⎪⎝⎭,设1,,2p Q x ⎛⎫ ⎪⎝⎭则1,2p R x ⎛⎫- ⎪⎝⎭QR =2p ===.∴由QRS ∆的面积为4,得:1242p p ⨯⨯=,得: 2.p =(2)由题意()100,A x y -首先求抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.解法一:设抛物线在1A 处的切线的斜率为k ,则其方程为()00y k x x y =++ 联立()0022y k x x y x py⎧=++⎪⎨=⎪⎩得2002220x pkx px k py ---=将2002py x =代入上式得:2200220x pkx px k x ---=()()22002420pk px k x ∆=-++=即2220020p k px k x ++=即()200pk x +=得0.x k p=-即抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率为0.x p-解法二:由22x py =得212y x p=,∴'x y p=∴抛物线C 在点A 关于对称轴的对称点()100,A x y -处的切线的斜率为0.x p-再求直线MN 的斜率.解法一:设直线AM 的斜率为1k ,则由题意直线AN 的斜率为1k -直线AM 的的方程为()010y y k x x -=-,则直线AN 的的方程为()010y y k x x -=--.联立()21002x py y k x x y ⎧=⎪⎨=-+⎪⎩得221100220x pk x pk x x -+-=(1)方程(1)有两个根01,x x ,∴()()2210102420pk px k x ∆=--->∴0,1x =0112x x pk +=,即1102x pk x =-,同理可得2102x pk x =--直线MN 的斜率222121122121222MN x x y y x x ppk x x x x p--+===--0022x x pp-==-∴直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率解法二:AM AN k k =-01020102y y y y x x x x --∴=---将22212012,,222x x x y y y ppp===分别代入上式得:22221201022222x x x x pp ppx x x x --=---,整理得0122x x x =+∴直线MN 的斜率222121122121222MN x x y y x x ppk x x x x p--+===--0022x x pp-==-∴直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.38.(广东省广州市2013届高三调研测试数学(理)试题)如图5, 已知抛物线2P yx:=,直线A B 与抛物线P 交于A B ,两点,O A O B ^,O A O B O C uur uuu r uuu r+=,O C 与A B 交于点M .(1) 求点M 的轨迹方程;求四边形A O B C 的面积的最小值.,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识) 解法一: (1)解:设()()()221122Mx y A yy Byy ,,,,,,∵O A O B O C +=,∴M 是线段A B 的中点 ∴()222121212222yy y y y y x +-+==,①122y y y +=. ②∵O A O B ⊥, ∴0O A O B ⋅=.∴2212120y y y y += 依题意知120y y ≠,∴121y y =-. ③把②、③代入①得:2422yx +=,即()2112yx =-∴点M 的轨迹方程为()2112yx =-(2)解:依题意得四边形A O B C 是矩形,∴四边形A O B C 的面积为S O A O B ==⋅===∵22121222y y y y +≥=,当且仅当12y y=时,等号成立,∴2S ≥=∴四边形A O B C 的面积的最小值为2 解法二:(1)解:依题意,知直线O A O B ,的斜率存在,设直线O A 的斜率为k , 由于O A O B ⊥,则直线O B 的斜率为1k-故直线O A 的方程为y k x =,直线O B 的方程为1y x k=-.由2y k x yx ,.⎧=⎨=⎩ 消去y ,得220k xx -=.解得0x =或21x k=∴点A 的坐标为211k k,⎛⎫⎪⎝⎭同理得点B 的坐标为()2k k ,-∵O A O B O C +=,∴M 是线段A B 的中点 设点M 的坐标为()x y ,,则221212k k x kky ,.⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩消去k ,得()2112yx =-∴点M 的轨迹方程为()2112yx =-(2)解:依题意得四边形A O B C 是矩形, ∴四边形A O B C 的面积为S O A O B ==⋅=≥2=当且仅当221kk=,即21k=时,等号成立∴四边形A O B C 的面积的最小值为239.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)已知椭圆1C 的中心在坐标原点,两个焦点分别为1(2,0)F -,2F ()20,,点(2,3)A 在椭圆1C 上,过点A 的直线L 与抛物线22:4C x y =交于B C ,两点,抛物线2C 在点B C ,处的切线分别为12l l ,,且1l 与2l 交于点P .(1) 求椭圆1C 的方程;(2) 是否存在满足1212P F P F A F A F +=+的点P ? 若存在,指出这样的点P 有几个(不必求出点P 的坐标); 若不存在,说明理由.【答案】(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识) (1) 解法1:设椭圆1C 的方程为22221x y ab+=()0a b >>,依题意: 222222231,4.a b a b ⎧+=⎪⎨⎪=+⎩解得: 2216,12.a b ⎧=⎪⎨=⎪⎩ ∴ 椭圆1C 的方程为2211612xy+=解法2:设椭圆1C 的方程为22221x y ab+=()0a b >>,根据椭圆的定义得1228a A F A F =+=,即4a =, ∵2c =, ∴22212b a c =-=∴椭圆1C 的方程为2211612xy+=(2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x BC --=,)413,2(211x x BA --=,∵C B A ,,三点共线, (苏元高考吧:)∴B C B A //∴()()()222211211113244x x x xx x ⎛⎫--=-- ⎪⎝⎭,化简得:1212212x x x x ()+-=. ①由24xy=,即214y x ,=得y '=12x∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ②同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③设点),(y x P ,由②③得:=-211412x x x 222412x x x -,而21x x ≠,则 )(2121x x x += 代入②得 2141x x y =,则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y . 若1212P F P F A F A F +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上, ∵直线3-=x y 经过椭圆1C 内一点(3,0), ∴直线3-=x y 与椭圆1C 交于两点∴满足条件1212P F P F A F A F +=+ 的点P 有两个 解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24xy=,即214y x ,=得y '=12x∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=∵21141x y =, ∴112y x x y -=. ∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① 同理, 20202y x x y -=. ②综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x x y -=002∵经过),(),,(2211y x C y x B 的直线是唯一的,∴直线L 的方程为y x x y -=002,∵点)3,2(A 在直线L 上, ∴300-=x y ∴点P 的轨迹方程为3-=x y若1212P F P F A F A F +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上, ∵直线3-=x y 经过椭圆1C 内一点(3,0), ∴直线3-=x y 与椭圆1C 交于两点∴满足条件1212P F P F A F A F +=+ 的点P 有两个 解法3:显然直线L 的斜率存在,设直线L 的方程为()23y kx =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x k x k -+-=设()()1122B x y Cxy ,,,,则12124812x x k x x k ,+==-由24xy=,即214y x ,=得y '=12x∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+=∵21141x y =, ∴211124x y x x =-.同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =-由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩∴()223P k k ,-∵1212P F P F A F A F +=+,∴点P 在椭圆22111612xyC :+=上∴()()2222311612k k -+=.化简得271230kk --=.(*)由()2124732280Δ=-⨯⨯-=>,可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个40.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)已知点(4,0)M 、(1,0)N ,若动点P 满足6||M N M P N P =⋅.(1)求动点P 的轨迹C ; (2)在曲线C 上求一点Q ,使点Q 到直线l :2120x y +-=的距离最小.【答案】解:(1)设动点(,)P x y ,又点(4,0)M 、(1,0)N ,∴(4,)M P x y =-,(3,0)M N =-,(1,)N P x y =-由6||M N M P N P =⋅,得3(4)x --=∴222(816)4(21)4x x x x y -+=-++,故223412x y +=,即22143xy+=,∴轨迹C 是焦点为(1,0)±、长轴长24a =的椭圆;评分说明:只求出轨迹方程,没有说明曲线类型或交代不规范的扣1分.(2)椭圆C 上的点Q 到直线l 的距离的最值等于平行于直线l :2120x y +-=且与椭圆C 相切的直线1l 与直线l 的距离. 设直线1l 的方程为20(12)x y m m ++=≠-由22341220x y x y m ⎧+=⎨++=⎩,消去y 得2242120x m x m ++-= (*). 依题意得0∆=,即0)12(16422=--m m ,故216m =,解得4m =±.当4m =时,直线1l :240x y ++=,直线l 与1l的距离|412|15d +==.当4m =-时,直线1l :240x y +-=,直线l 与1l的距离5d ==.55<,故曲线C 上的点Q 到直线l5当4m =-时,方程(*)化为24840x x -+=,即2(1)0x -=,解得1x =. 由1240y +-=,得32y =,故3(1,)2Q .∴曲线C 上的点3(1,)2Q 到直线l 的距离最小41.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)设椭圆22221(0,0)x y a b ba+=>>的离心率为12,其左焦点E 与抛物线21:4C x y =-的焦点相同.(Ⅰ)求此椭圆的方程;(Ⅱ)若过此椭圆的右焦点F 的直线与曲线C 只有一个交点P ,则(1)求直线的方程;(2)椭圆上是否存在点(,)M x y ,使得12MPF S ∆=,若存在,请说明一共有几个点;若不存在,请说明理由.【答案】解:(Ⅰ)抛物线C 的焦点为(1,0)E -,它是题设椭圆的左焦点.离心率为112b=,所以,2b =.由2221b a -=求得a =因此,所求椭圆的方程为22143xy+= (*)(Ⅱ)(1)椭圆的右焦点为(1,0)F ,过点F 与y 轴平行的直线显然与曲线C 没有交点.设直线的斜率为k ,① 若0k =,则直线0y =过点(1,0)F 且与曲线C 只有一个交点(0,0),此时直线 的方程为0y =;② 若0k ≠,因直线过点(1,0)F ,故可设其方程为(1)y k x =-,将其代入24y x =-消去y ,得22222(2)0k x k x k --+=.因为直线与曲线C 只有一个交点P ,所以判别式22224(2)40k k k --⋅=,于是1k =±,从而直线的方程为1y x =-或1y x =-+.因此,所求的直线的方程为0y =或1y x =-或1y x =-+.(2)由(1)可求出点P 的坐标是(0,0)或(1,2)-或(1,2)--. ①若点P 的坐标是(0,0),则1PF =.于是12MPF S ∆==112y ⨯⨯,从而1y =±,代入(*)式联立:221431x y y ⎧+=⎪⎨⎪=⎩或221431x yy ⎧+=⎪⎨⎪=-⎩,求得x =此时满足条件的点M 有4个: 1,1,1,1⎫⎛⎫⎫⎛⎫--⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎭⎝⎭⎭⎝⎭. ②若点P 的坐标是(1,2)-,则PF =点M 到直线:1y x =-+于是有11122MPF S y ∆==⨯+-,从而112x y +-=±,与(*)式联立:22143112x y x y ⎧+=⎪⎪⎨⎪+-=⎪⎩或22143112x yx y ⎧+=⎪⎪⎨⎪+-=-⎪⎩解之,可求出满足条件的点M 有4个:,,1115,714⎛⎫- ⎪⎝⎭,31,2⎛⎫- ⎪⎝⎭. ③ 若点P 的坐标是(1,2)--,则PF =点(,)M x y 到直线:1y x =-于是有11122MPF S y ∆==⨯--,从而112x y --=±,与(*)式联立:22143112x y x y ⎧+=⎪⎪⎨⎪--=⎪⎩或22143112x yx y ⎧+=⎪⎪⎨⎪--=-⎪⎩,解之,可求出满足条件的点M 有4个:,,1115,714⎛⎫ ⎪⎝⎭,31,2⎛⎫-- ⎪⎝⎭. 综合①②③,以上12个点各不相同且均在该椭圆上,因此,满足条件的点M 共有12个.图上椭圆上的12个点即为所求.42.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))已知抛物线C:y 2=4x, F是抛物线的焦点,设A(x 1,y 1),B (x 2 ,y 2)是C 上异于 原点O 的两个不重合点,OA 丄OB ,且AB 与x 轴交于点T (1) 求x 1x 2的值;(2) 求T 的坐标;(3) 当点A 在C 上运动时,动点R 满足:FR FB FA =+,求点R 的轨迹方程.。