宁晋县四中2018-2019学年高二上学期第二次月考试卷数学
- 格式:pdf
- 大小:630.31 KB
- 文档页数:16
宁晋县第四中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 等比数列{a n }中,a 4=2,a 5=5,则数列{lga n }的前8项和等于( )A .6B .5C .3D .42. 已知两点M (1,),N (﹣4,﹣),给出下列曲线方程:①4x+2y ﹣1=0; ②x 2+y 2=3; ③+y 2=1; ④﹣y 2=1.在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )A .①③B .②④C .①②③D .②③④3. 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为()A .2:1B .5:2C .1:4D .3:14. 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )A .B .C .D .5. 已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B 两点,且,则的值是()A .B .C .D .06. 执行右面的程序框图,如果输入的,则输出的属于( )[1,1]t ∈-S A. B. C. D.[0,2]e -(,2]e -¥-[0,5][3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用.7.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②相关指数R2来刻画回归的效果,R2值越小,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.其中正确命题的个数是()A.0B.1C.2D.38.利用计算机在区间(0,1)上产生随机数a,则不等式ln(3a﹣1)<0成立的概率是()A.B.C.D.9.函数y=f′(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0))处的切线为l:y=g(x)=f′(x0)(x﹣x0)+f(x0),F(x)=f(x)﹣g(x),如果函数y=f(x)在区间[a,b]上的图象如图所示,且a<x0<b,那么()A.F′(x0)=0,x=x0是F(x)的极大值点B.F′(x0)=0,x=x0是F(x)的极小值点C.F′(x0)≠0,x=x0不是F(x)极值点D.F′(x0)≠0,x=x0是F(x)极值点10.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是()A.相交B.相切C.相离D.不能确定11.△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,则=()A.B.C.D.±12.设a∈R,且(a﹣i)•2i(i为虚数单位)为正实数,则a等于()A.1B.0C.﹣1D.0或﹣1二、填空题13.如图,是一回形图,其回形通道的宽和OB1的长均为1,回形线与射线OA交于A1,A2,A3,…,若从点O到点A3的回形线为第1圈(长为7),从点A3到点A2的回形线为第2圈,从点A2到点A3的回形线为第3圈…依此类推,第8圈的长为 .14.抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分.已知P(400<X<450)=0.3,则P(550<X<600)= .15.已知数列的前项和是, 则数列的通项__________16.某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.17.直角坐标P (﹣1,1)的极坐标为(ρ>0,0<θ<π) .18.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .三、解答题19.(本小题满分12分)已知分别是椭圆:的两个焦点,且,点12,F F C 22221(0)x y a b a b+=>>12||2F F =在该椭圆上.(1)求椭圆的方程;C (2)设直线与以原点为圆心,为半径的圆上相切于第一象限,切点为,且直线与椭圆交于两l b M l P Q 、点,问是否为定值?如果是,求出定值,如不是,说明理由.22F P F Q PQ ++20.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;(2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.21.一艘客轮在航海中遇险,发出求救信号.在遇险地点南偏西方向10海里的处有一艘海A 45B 难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东,正以每小时9海里的速度向75一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;(2)若最短时间内两船在处相遇,如图,在中,求角的正弦值.C ABC ∆B22.(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图.[)[)[)0,0.5,0.5,1,,4,4.5(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.23.本小题满分12分某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.Ⅰ若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;Ⅱ商店记录了50天该商品的日需求量单位:件,整理得下表:日需求量n89101112频数91151051①假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;②若该店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[400,550]内的概率.24.已知数列{a n}与{b n},若a1=3且对任意正整数n满足a n+1﹣a n=2,数列{b n}的前n项和S n=n2+a n.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)求数列{}的前n项和T n.宁晋县第四中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵等比数列{a n}中a4=2,a5=5,∴a4•a5=2×5=10,∴数列{lga n}的前8项和S=lga1+lga2+…+lga8=lg(a1•a2…a8)=lg(a4•a5)4=4lg(a4•a5)=4lg10=4故选:D.【点评】本题考查等比数列的性质,涉及对数的运算,基本知识的考查.2.【答案】D【解析】解:要使这些曲线上存在点P满足|MP|=|NP|,需曲线与MN的垂直平分线相交.MN的中点坐标为(﹣,0),MN斜率为=∴MN的垂直平分线为y=﹣2(x+),∵①4x+2y﹣1=0与y=﹣2(x+),斜率相同,两直线平行,可知两直线无交点,进而可知①不符合题意.②x2+y2=3与y=﹣2(x+),联立,消去y得5x2﹣12x+6=0,△=144﹣4×5×6>0,可知②中的曲线与MN的垂直平分线有交点,③中的方程与y=﹣2(x+),联立,消去y得9x2﹣24x﹣16=0,△>0可知③中的曲线与MN的垂直平分线有交点,④中的方程与y=﹣2(x+),联立,消去y得7x2﹣24x+20=0,△>0可知④中的曲线与MN的垂直平分线有交点,故选D3.【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则πr2=×4πR2=,∴r=.∴球心到圆锥底面的距离为=.∴圆锥的高分别为和.∴两个圆锥的体积比为:=1:3.故选:D.4.【答案】C【解析】解:如图所示,△BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是△BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A={弦长超过圆内接等边三角形的边长}={弦中点在内切圆内},由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是.故选C.【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答.5.【答案】A【解析】解:取AB的中点C,连接OC,,则AC=,OA=1∴sin =sin∠AOC==所以:∠AOB=120°则•=1×1×cos120°=.故选A.6.【答案】B7.【答案】C【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.②相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此②不正确.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.综上可知:其中正确命题的是①③.故选:C.【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.8.【答案】C【解析】解:由ln(3a﹣1)<0得<a<,则用计算机在区间(0,1)上产生随机数a,不等式ln(3a﹣1)<0成立的概率是P=,故选:C.9.【答案】B【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),∴F'(x)=f'(x)﹣f′(x0)∴F'(x0)=0,又由a<x0<b,得出当a<x<x0时,f'(x)<f′(x0),F'(x)<0,当x0<x<b时,f'(x)<f′(x0),F'(x)>0,∴x=x0是F(x)的极小值点故选B.【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.10.【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MN⊥l于N根据圆锥曲线的统一定义,可得==e,可得∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,∵以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)∴圆M到l的距离|MN|>r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题.11.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.12.【答案】B【解析】解:∵(a﹣i)•2i=2ai+2为正实数,∴2a=0,解得a=0.故选:B.【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题.二、填空题13.【答案】 63 .【解析】解:∵第一圈长为:1+1+2+2+1=7第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23…第n圈长为:n+(2n﹣1)+2n+2n+n=8n﹣1故n=8时,第8圈的长为63,故答案为:63.【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.14.【答案】 0.3 .【解析】离散型随机变量的期望与方差.【专题】计算题;概率与统计.【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P(550<ξ<600).【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,∴正态分布曲线的对称轴为x=500,∵P(400<ξ<450)=0.3,∴根据对称性,可得P(550<ξ<600)=0.3.故答案为:0.3.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键.15.【答案】【解析】当时,当时,,两式相减得:令得,所以答案:16.【答案】 75 【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.17.【答案】 .【解析】解:ρ==,tanθ==﹣1,且0<θ<π,∴θ=.∴点P的极坐标为.故答案为:.18.【答案】 4 .【解析】解:由已知可得直线AF的方程为y=(x﹣1),联立直线与抛物线方程消元得:3x2﹣10x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4.故答案为:4.【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题.三、解答题19.【答案】【解析】【命题意图】本题考查椭圆方程与几何性质、直线与圆的位置关系等基础知识,意在考查逻辑思维能力、探索性能力、运算求解能力,以及方程思想、转化思想的应用.20.【答案】【解析】解:(1)∵P为等腰直角三角形PBC的直角顶点,且BC=2,∴∠PCB=,PC=,∵∠ACB=,∴∠ACP=,在△PAC 中,由余弦定理得:PA 2=AC 2+PC 2﹣2AC •PC •cos=5,整理得:PA=;(2)在△PBC 中,∠BPC=,∠PCB=θ,∴∠PBC=﹣θ,由正弦定理得: ==,∴PB=sin θ,PC=sin (﹣θ),∴△PBC 的面积S (θ)=PB •PCsin =sin (﹣θ)sin θ=sin (2θ+)﹣,θ∈(0,),则当θ=时,△PBC 面积的最大值为.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键. 21.【答案】(1)小时;(223【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在处相遇.C 在中,,,,.ABC ∆4575120BAC ∠=+=10AB =9AC t =21BC t =由余弦定理得:,2222cos BC AB AC AB AC BAC =+-∠A A所以,2221(21)10(9)2109()2t t t =+-⨯⨯⨯-化简得,解得或(舍去).2369100t t --=23t =512t =-所以,海难搜救艇追上客轮所需时间为小时.23(2)由,.2963AC =⨯=221143BC =⨯=在中,由正弦定理得.ABC∆sin 6sin120sin 14AC BAC B BC ∠==== A A 所以角B 考点:三角形的实际应用.【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,再根据正弦定理和余弦定理,即,AC BC 可求解此类问题,其中正确画出图形是解答的关键.22.【答案】(1);(2)万;(3).0.3a = 3.6 2.9【解析】(3)由图可得月均用水量不低于2.5吨的频率为:;()0.50.080.160.30.40.520.7385%⨯++++=<月均用水量低于3吨的频率为:;()0.50.080.160.30.40.520.30.8885%⨯+++++=>则吨.10.850.732.50.5 2.90.30.5x -=+⨯=⨯考点:频率分布直方图.23.【答案】【解析】:Ⅰ当日需求量时,利润为;10n ≥5010(10)3030200y n n =⨯+-⨯=+当需求量时,利润.10n <50(10)1060100y n n n =⨯--⨯=-所以利润与日需求量的函数关系式为:y n 30200,10,60100,10,n n n Ny n n n N+≥∈⎧=⎨-<∈⎩Ⅱ50天内有9天获得的利润380元,有11天获得的利润为440元,有15天获得利润为500元,有10天获得的利润为530元,有5天获得的利润为560元.①38094401150015530105605477.250⨯+⨯+⨯+⨯+⨯=② 若利润在区间内的概率为[400,550]111510185025P ++==24.【答案】【解析】解:(Ⅰ)由题意知数列{a n }是公差为2的等差数列,又∵a 1=3,∴a n =3+2(n ﹣1)=2n+1.列{b n }的前n 项和S n =n 2+a n =n 2+2n+1=(n+1)2当n=1时,b 1=S 1=4;当n ≥2时,.上式对b 1=4不成立.∴数列{b n }的通项公式:;(Ⅱ)n=1时,;n ≥2时,,∴.n=1仍然适合上式.综上,.【点评】本题考查了求数列的通项公式,训练了裂项法求数列的和,是中档题.。
宁晋县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .02. 已知平面向量与的夹角为,且||=1,|+2|=2,则||=( )A .1B .C .3D .23. 在等差数列{}n a 中,首项10,a =公差0d ≠,若1237k a a a a a =++++,则k =A 、22B 、23C 、24D 、254. 下列命题中的假命题是( )A .∀x ∈R ,2x ﹣1>0B .∃x ∈R ,lgx <1C .∀x ∈N +,(x ﹣1)2>0D .∃x ∈R ,tanx=25. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.656. 设有直线m 、n 和平面α、β,下列四个命题中,正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β C .若α⊥β,m ⊂α,则m ⊥βD .若α⊥β,m ⊥β,m ⊄α,则m ∥α7. 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )A .9.6B .7.68C .6.144D .4.91528. 设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .∅B .NC .[1,+∞)D .M9. 已知f (x ),g (x )都是R 上的奇函数,f (x )>0的解集为(a 2,b ),g (x )>0的解集为(,),且a 2<,则f (x )g (x )>0的解集为( )A .(﹣,﹣a 2)∪(a 2,)B .(﹣,a 2)∪(﹣a 2,)C .(﹣,﹣a 2)∪(a 2,b )D .(﹣b ,﹣a 2)∪(a 2,)10.在区域内任意取一点P (x ,y ),则x 2+y 2<1的概率是( )A .0B .C .D .11.在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,含2x 项的系数为( )(A )10 ( B ) 30 (C ) 45 (D ) 12012.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x +=-,且在区间[0,2]上是增函数,则 A 、(25)(11)(80)f f f -<< B 、(80)(11)(25)f f f <<- C 、(11)(80)(25)f f f <<- D 、(25)(80)(11)f f f -<<二、填空题13.若命题“∃x∈R,x2﹣2x+m≤0”是假命题,则m的取值范围是.14.已知变量x,y,满足,则z=log4(2x+y+4)的最大值为.15.对于集合M,定义函数对于两个集合A,B,定义集合A△B={x|f A(x)f B(x)=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A△B的结果为.16.在极坐标系中,直线l的方程为ρcosθ=5,则点(4,)到直线l的距离为.17.抛物线C1:y2=2px(p>0)与双曲线C2:交于A,B两点,C1与C2的两条渐近线分别交于异于原点的两点C,D,且AB,CD分别过C2,C1的焦点,则=.18.已知f(x),g(x)都是定义在R上的函数,且满足以下条件:①f(x)=a x g(x)(a>0,a≠1);②g(x)≠0;③f(x)g'(x)>f'(x)g(x);若,则a=.三、解答题19.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.(Ⅰ)求圆C的方程;(Ⅱ)若,求实数k的值;(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.20.已知函数f(x)=xlnx,求函数f(x)的最小值.21.已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.22.设函数f(x)=mx2﹣mx﹣1.(1)若对一切实数x,f(x)<0恒成立,求m的取值范围;(2)对于x∈[1,3],f(x)<﹣m+5恒成立,求m的取值范围.23.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.求证:PC⊥BC;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.24.已知数列a1,a2,…a30,其中a1,a2,…a10,是首项为1,公差为1的等差数列;列a10,a11,…a20,是公差为d的等差数列;a20,a21,…a30,是公差为d2的等差数列(d≠0).(1)若a20=40,求d;(2)试写出a30关于d的关系式,并求a30的取值范围;(3)续写已知数列,使得a30,a31,…a40,是公差为d3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?宁晋县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】 C 【解析】解:∵ =(sin 2θ)+(cos 2θ)(θ∈R ),且sin 2θ+cos 2θ=1,∴=(1﹣cos 2θ)+(cos 2θ)=+cos 2θ•(﹣),即﹣=cos 2θ•(﹣),可得=cos 2θ•,又∵cos 2θ∈[0,1],∴P 在线段OC 上,由于AB 边上的中线CO=2,因此(+)•=2•,设||=t ,t ∈[0,2],可得(+)•=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C .【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.2. 【答案】D【解析】解:由已知,|+2|2=12,即,所以||2+4||||×+4=12,所以||=2;故选D .【点评】本题考查了向量的模的求法;一般的,要求向量的模,先求向量的平方.3. 【答案】A【解析】1237k a a a a a =++++17672a d ⨯=+121(221)d a d ==+-, ∴22k =. 4. 【答案】C【解析】解:A .∀x ∈R ,2x ﹣1=0正确;B .当0<x <10时,lgx <1正确;C .当x=1,(x ﹣1)2=0,因此不正确;D .存在x ∈R ,tanx=2成立,正确.综上可知:只有C错误.故选:C.【点评】本题考查了指数函数与对数函数、正切函数的单调性,属于基础题.5.【答案】【解析】选D.由数据表知A是正确的,其样本中心为(2,4.5),代入y^=bx+2.6得b=0.95,即y^=0.95x+^=8.3时,则有8.3=0.95x+2.6,∴x=6,∴B正确.根据性质,随机误差e的均值为0,∴C正确.样2.6,当y本点(3,4.8)的残差e^=4.8-(0.95×3+2.6)=-0.65,∴D错误,故选D.6.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.7.【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(1﹣20%)x,结合程序框图易得当n=4时,S=15(1﹣20%)4=6.144.故选:C.8.【答案】B【解析】解:根据题意得:x+1≥0,解得x≥﹣1,∴函数的定义域M={x|x≥﹣1};∵集合N中的函数y=x2≥0,∴集合N={y|y≥0},则M∩N={y|y≥0}=N.故选B9.【答案】A【解析】解:∵f(x),g(x)都是R上的奇函数,f(x)>0的解集为(a2,b),g(x)>0的解集为(,),且a2<,∴f(x)<0的解集为(﹣b,﹣a2),g(x)<0的解集为(﹣,﹣),则不等式f(x)g(x)>0等价为或,即a2<x<或﹣<x<﹣a2,故不等式的解集为(﹣,﹣a2)∪(a2,),故选:A.【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)<0和g(x)<0的解集是解决本题的关键.10.【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y2<1表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,由几何概型的计算公式,可得点P(x,y)满足x2+y2<1的概率是=;故选C.【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算.11.【答案】C【解析】因为10101019102015201520151111(1)(1)(1)x x x C xx x x⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x项只能在10(1)x +展开式中,即为2210C x ,系数为21045.C =故选C . 12.【答案】D【解析】∵(4)()f x f x +=-,∴(8)(4)f x f x +=-+,∴(8)()f x f x +=, ∴()f x 的周期为8,∴(25)(1)f f -=-,)0()80(f f =,(11)(3)(14)(1)(1)f f f f f ==-+=--=,又∵奇函数)(x f 在区间[0,2]上是增函数,∴)(x f 在区间[2,2]-上是增函数, ∴(25)(80)(11)f f f -<<,故选D.二、填空题13.【答案】 m >1 .【解析】解:若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则命题“∀x ∈R ,x 2﹣2x+m >0”是真命题,即判别式△=4﹣4m <0, 解得m >1, 故答案为:m >114.【答案】【解析】解:作的可行域如图:易知可行域为一个三角形, 验证知在点A (1,2)时, z 1=2x+y+4取得最大值8, ∴z=log 4(2x+y+4)最大是, 故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.15.【答案】{1,6,10,12}.【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题.16.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为.∴点到直线l的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.17.【答案】.【解析】解:由题意,CD过C1的焦点,根据,得x C=,∴b=2a;由AB过C2的焦点,得A(c,),即A(c,4a),∵A(c,4a)在C1上,∴16a2=2pc,又c=a,∴a=,∴==.故答案为:.【点评】本题考查双曲线、抛物线的简单性质,考查学生的计算能力,属于中档题.18.【答案】.【解析】解:由得,所以.又由f(x)g'(x)>f'(x)g(x),即f(x)g'(x)﹣f'(x)g(x)>0,也就是,说明函数是减函数,即,故.故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察.三、解答题19.【答案】【解析】【分析】(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx﹣y+1=0的距离,即可求得实数k的值;方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及=x1•x2+y1•y2=,即可求得k的值;(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得,根据垂径定理和勾股定理得到,,再利用基本不等式,可求四边形PMQN面积的最大值;方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设,则,代入消元得(1+k2)x2+2kx﹣3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值.【解答】解:(I)设圆心C(a,a),半径为r.因为圆经过点A(﹣2,0),B(0,2),所以|AC|=|BC|=r,所以解得a=0,r=2,…(2分)所以圆C的方程是x2+y2=4.…(4分)(II)方法一:因为,…(6分)所以,∠POQ=120°,…(7分)所以圆心到直线l:kx﹣y+1=0的距离d=1,…(8分)又,所以k=0.…(9分)方法二:设P(x1,y1),Q(x2,y2),因为,代入消元得(1+k2)x2+2kx﹣3=0.…(6分)由题意得:…(7分)因为=x1•x2+y1•y2=﹣2,又,所以x1•x2+y1•y2=,…(8分)化简得:﹣5k2﹣3+3(k2+1)=0,所以k2=0,即k=0.…(9分)(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有,…(10分)又根据垂径定理和勾股定理得到,,…(11分)而,即…(13分)当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)方法二:设四边形PMQN的面积为S.当直线l的斜率k=0时,则l1的斜率不存在,此时.…(10分)当直线l的斜率k≠0时,设则,代入消元得(1+k2)x2+2kx﹣3=0所以同理得到.…(11分)=…(12分)因为,所以,…(13分)当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)20.【答案】【解析】解:函数的定义域为(0,+∞)求导函数,可得f′(x)=1+lnx令f′(x)=1+lnx=0,可得∴0<x<时,f′(x)<0,x>时,f′(x)>0∴时,函数取得极小值,也是函数的最小值∴f(x)min===﹣.【点评】本题考查导数知识的运用,考查函数的最值,考查学生分析解决问题的能力,属于中档题.21.【答案】【解析】解:(1)把直线y=x+m代入椭圆方程得:x2+4(x+m)2=4,即:5x2+8mx+4m2﹣4=0,△=(8m)2﹣4×5×(4m2﹣4)=﹣16m2+80=0解得:m=.(2)设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),则x1,x2是方程5x2+8mx+4m2﹣4=0的两根,由韦达定理可得:x1+x2=﹣,x1•x2=,∴|AB|====2;∴m=±.【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.22.【答案】【解析】解:(1)当m=0时,f(x)=﹣1<0恒成立,当m≠0时,若f(x)<0恒成立,则解得﹣4<m<0综上所述m的取值范围为(﹣4,0]﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)要x∈[1,3],f(x)<﹣m+5恒成立,即恒成立.令﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当m>0时,g(x)是增函数,所以g(x)max=g(3)=7m﹣6<0,解得.所以当m=0时,﹣6<0恒成立.当m<0时,g(x)是减函数.所以g(x)max=g(1)=m﹣6<0,解得m<6.所以m<0.综上所述,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键.23.【答案】【解析】解:(I)证明:∵PD⊥平面ABCD,∴PD⊥BC,又∵ABCD是正方形,∴BC⊥CD,∵PDICE=D,∴BC⊥平面PCD,又∵PC⊂面PBC,∴PC⊥BC.(II)解:∵BC⊥平面PCD,∴GC是三棱锥G﹣DEC的高.∵E是PC的中点,∴.∴.(III )连接AC ,取AC 中点O ,连接EO 、GO ,延长GO 交AD 于点M ,则PA ∥平面MEG . 下面证明之:∵E 为PC 的中点,O 是AC 的中点,∴EO ∥平面PA , 又∵EO ⊂平面MEG ,PA ⊄平面MEG ,∴PA ∥平面MEG , 在正方形ABCD 中,∵O 是AC 中点,∴△OCG ≌△OAM ,∴,∴所求AM 的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.24.【答案】【解析】解:(1)a 10=1+9=10.a 20=10+10d=40,∴d=3.(2)a 30=a 20+10d 2=10(1+d+d 2)(d ≠0),a 30=10,当d ∈(﹣∞,0)∪(0,+∞)时,a 30∈[7.5,+∞) (3)所给数列可推广为无穷数列{a n ],其中a 1,a 2,…,a 10是首项为1,公差为1的等差数列,当n ≥1时,数列a 10n ,a 10n+1,…,a 10(n+1)是公差为d n的等差数列.研究的问题可以是:试写出a 10(n+1)关于d 的关系式,并求a 10(n+1)的取值范围.研究的结论可以是:由a 40=a 30+10d 3=10(1+d+d 2+d 3),依此类推可得a 10(n+1)=10(1+d+…+d n)=. 当d >0时,a 10(n+1)的取值范围为(10,+∞)等.【点评】此题考查学生灵活运用等差数列的性质解决实际问题,会根据特例总结归纳出一般性的规律,是一道中档题.。
宁晋县民族中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知函数f(x+1)=3x+2,则f(x)的解析式是()A.3x﹣1 B.3x+1 C.3x+2 D.3x+42.459和357的最大公约数()A.3 B.9 C.17 D.513.已知函数f(x)=x2﹣,则函数y=f(x)的大致图象是()A.B.C.D.4.设S n为等差数列{a n}的前n项和,已知在S n中有S17<0,S18>0,那么S n中最小的是()A.S10B.S9C.S8D.S75.对“a,b,c是不全相等的正数”,给出两个判断:①(a﹣b)2+(b﹣c)2+(c﹣a)2≠0;②a≠b,b≠c,c≠a不能同时成立,下列说法正确的是()A.①对②错B.①错②对C.①对②对D.①错②错6.已知集合A,B,C中,A⊆B,A⊆C,若B={0,1,2,3},C={0,2,4},则A的子集最多有()A.2个B.4个C.6个D.8个7.若如图程序执行的结果是10,则输入的x的值是()A.0 B.10 C.﹣10 D.10或﹣108.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A .B .C .1D .9. 已知集合M={﹣1,0,1},N={x|x=2a ,a ∈M},则集合M ∩N=( ) A .{0} B .{0,﹣2} C .{﹣2,0,2} D .{0,2}10.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R A B =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D. {}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题. 11.“x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 12.将函数f (x )=sin2x 的图象向右平移个单位,得到函数y=g (x )的图象,则它的一个对称中心是( )A .B .C .D .二、填空题13.(文科)与直线10x -=垂直的直线的倾斜角为___________. 14.若的展开式中含有常数项,则n 的最小值等于 .15.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .16.若圆与双曲线C :的渐近线相切,则_____;双曲线C 的渐近线方程是____.17.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .18.设函数f (x )=的最大值为M ,最小值为m ,则M+m= .三、解答题19.已知函数f (x )=lnx ﹣ax ﹣b (a ,b ∈R )(Ⅰ)若函数f (x )在x=1处取得极值1,求a ,b 的值 (Ⅱ)讨论函数f (x )在区间(1,+∞)上的单调性(Ⅲ)对于函数f (x )图象上任意两点A (x 1,y 1),B (x 2,y 2)(x 1<x 2),不等式f ′(x 0)<k 恒成立,其中k 为直线AB 的斜率,x 0=λx 1+(1﹣λ)x 2,0<λ<1,求λ的取值范围.20.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.【命题意图】本题考查相交弦定理、三角形相似、切割线定理等基础知识,意在考查逻辑推理能力.21.已知等差数列{a n }满足a 2=0,a 6+a 8=10.(1)求数列{a n }的通项公式;(2)求数列{}的前n 项和.22.已知函数()f x =121xa +- (1)求()f x 的定义域.(2)是否存在实数a ,使()f x 是奇函数?若存在,求出a 的值;若不存在,请说明理由。
宁晋县高级中学2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .32. 在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a 为无理数,则在过点P (a ,﹣)的所有直线中( )A .有无穷多条直线,每条直线上至少存在两个有理点B .恰有n (n ≥2)条直线,每条直线上至少存在两个有理点C .有且仅有一条直线至少过两个有理点D .每条直线至多过一个有理点3. 设0<a <b 且a+b=1,则下列四数中最大的是( )A .a 2+b 2B .2abC .aD .4. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( ) A .90种 B .180种C .270种D .540种6. 下列函数中,定义域是R 且为增函数的是( )A.xy e -= B.3y x = C.ln y x = D.y x =7. 阅读下面的程序框图,则输出的S=( )A.14 B.20 C.30 D.558.已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且∠F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.2 B. C. D.49.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为()A.4 B.5 C.D.10.在等比数列{a n}中,已知a1=3,公比q=2,则a2和a8的等比中项为()A.48 B.±48 C.96 D.±9611.设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则的值为( )A .B .C .D .12.等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )二、填空题13.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF的重心到准线距离为 .14.设直线系M :xcos θ+(y ﹣2)sin θ=1(0≤θ≤2π),对于下列四个命题: A .M 中所有直线均经过一个定点B .存在定点P 不在M 中的任一条直线上C .对于任意整数n (n ≥3),存在正n 边形,其所有边均在M 中的直线上D .M 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号).15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若△ABC 不是直角三角形,则下列命题正确的是 (写出所有正确命题的编号)①tanA •tanB •tanC=tanA+tanB+tanC②tanA+tanB+tanC 的最小值为3③tanA ,tanB ,tanC 中存在两个数互为倒数 ④若tanA :tanB :tanC=1:2:3,则A=45°⑤当tanB ﹣1=时,则sin 2C ≥sinA •sinB .16.函数f (x )=(x >3)的最小值为 .17.设全集______.18.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .三、解答题19.(本题满分13分)已知圆1C 的圆心在坐标原点O ,且与直线1l :062=+-y x 相切,设点A 为圆上 一动点,⊥AM x 轴于点M ,且动点N 满足OM OA ON )2133(21-+=,设动点N 的轨迹为曲线C .(1)求曲线C 的方程;(2)若动直线2l :m kx y +=与曲线C 有且仅有一个公共点,过)0,1(1-F ,)0,1(2F 两点分别作21l P F ⊥,21l Q F ⊥,垂足分别为P ,Q ,且记1d 为点1F 到直线2l 的距离,2d 为点2F 到直线2l 的距离,3d 为点P到点Q 的距离,试探索321)(d d d ⋅+是否存在最值?若存在,请求出最值.20.如图,点A 是单位圆与x 轴正半轴的交点,B (﹣,). (I )若∠AOB=α,求cos α+sin α的值;(II )设点P 为单位圆上的一个动点,点Q 满足=+.若∠AOP=2θ,表示||,并求||的最大值.21.(本小题满分10分) 已知圆P 过点)0,1(A ,)0,4(B .(1)若圆P 还过点)2,6(-C ,求圆P 的方程; (2)若圆心P 的纵坐标为,求圆P 的方程.22.(本小题满分12分)111]在如图所示的几何体中,D 是AC 的中点,DB EF //. (1)已知BC AB =,CF AF =,求证:⊥AC 平面BEF ; (2)已知H G 、分别是EC 和FB 的中点,求证: //GH 平面ABC .23.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,C 2的极坐标方程为ρ=2sin (θ+π4).(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=3π4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面积.24.甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛.现已比赛了4场,且甲篮球队胜3场.已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为.(Ⅰ)求甲队分别以4:2,4:3获胜的概率;(Ⅱ)设X 表示决出冠军时比赛的场数,求X 的分布列及数学期望.宁晋县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】试题分析:()()()()2224(22)2225ai iai a a ii i i+-+++-==++-,对应点在第四象限,故40220aa+>⎧⎨-<⎩,A选项正确.考点:复数运算.2.【答案】C【解析】解:设一条直线上存在两个有理点A(x1,y1),B(x2,y2),由于也在此直线上,所以,当x1=x2时,有x1=x2=a为无理数,与假设矛盾,此时该直线不存在有理点;当x1≠x2时,直线的斜率存在,且有,又x2﹣a为无理数,而为有理数,所以只能是,且y2﹣y1=0,即;所以满足条件的直线只有一条,且直线方程是;所以,正确的选项为C.故选:C.【点评】本题考查了新定义的关于直线方程与直线斜率的应用问题,解题的关键是理解新定义的内容,寻找解题的途径,是难理解的题目.3.【答案】A【解析】解:∵0<a<b且a+b=1∴∴2b>1∴2ab﹣a=a(2b﹣1)>0,即2ab>a又a2+b2﹣2ab=(a﹣b)2>0∴a2+b2>2ab∴最大的一个数为a 2+b 2故选A4. 【答案】D【解析】解:∵“a 2>b 2”既不能推出“a >b ”; 反之,由“a >b ”也不能推出“a 2>b 2”. ∴“a 2>b 2”是“a >b ”的既不充分也不必要条件.故选D .5. 【答案】D【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C 31C 62C 21C 42=540种. 故选D .6. 【答案】B【解析】试题分析:对于A ,xy e =为增函数,y x =-为减函数,故xy e -=为减函数,对于B ,2'30y x =>,故3y x =为增函数,对于C ,函数定义域为0x >,不为R ,对于D ,函数y x =为偶函数,在(),0-∞上单调递减,在()0,∞上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.7. 【答案】C【解析】解:∵S 1=0,i 1=1; S 2=1,i 2=2; S 3=5,i 3=3; S 4=14,i 4=4; S 5=30,i=5>4 退出循环, 故答案为C .【点评】本题考查程序框图的运算,通过对框图的分析,得出运算过程,按照运算结果进行判断结果,属于基础题.8. 【答案】 C【解析】解:设椭圆的长半轴为a ,双曲线的实半轴为a 1,(a >a 1),半焦距为c , 由椭圆和双曲线的定义可知,设|MF 1|=r 1,|MF 2|=r 2,|F 1F 2|=2c , 椭圆和双曲线的离心率分别为e 1,e 2 ∵∠F 1MF 2=,∴由余弦定理可得4c 2=(r 1)2+(r 2)2﹣2r 1r 2cos ,①在椭圆中,①化简为即4c 2=4a 2﹣3r 1r 2,即=﹣1,②在双曲线中,①化简为即4c 2=4a 12+r 1r 2,即=1﹣,③联立②③得,+=4,由柯西不等式得(1+)(+)≥(1×+×)2,即(+)2≤×4=,即+≤,当且仅当e1=,e 2=时取等号.即取得最大值且为.故选C .【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键.难度较大.9. 【答案】D 【解析】试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:AC GC ==GE ==4,BG AD EF CE ====,所以最长为GC =考点:几何体的三视图及几何体的结构特征.10.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a和a8的等比中项为=±48.2故选:B.11.【答案】C【解析】解:F,F2为椭圆=1的两个焦点,可得F1(﹣,0),F2().a=2,b=1.1点P在椭圆上,若线段PF1的中点在y轴上,PF1⊥F1F2,|PF2|==,由勾股定理可得:|PF1|==.==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查计算能力.12.【答案】C【解析】解:若公比q=1,则B,C成立;故排除A,D;若公比q≠1,则A=S n=,B=S2n=,C=S3n=,B(B﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A(C﹣A)=(﹣)=(1﹣q n)(1﹣q n)(1+q n);故B(B﹣A)=A(C﹣A);故选:C.【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.二、填空题13.【答案】.【解析】解:∵F是抛物线y2=4x的焦点,∴F(1,0),准线方程x=﹣1,设M(x1,y1),N(x2,y2),∴|MF|+|NF|=x1+1+x2+1=6,解得x1+x2=4,∴△MNF的重心的横坐标为,∴△MNF的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.14.【答案】BC【解析】【分析】验证发现,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.M中所有直线均经过一个定点(0,2)是不对,可由圆的切线中存在平行线得出,B.存在定点P不在M中的任一条直线上,观察直线的方程即可得到点的坐标.C.对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,由直线系的几何意义可判断,D.M中的直线所能围成的正三角形面积一定相等,由它们是同一个圆的外切正三角形可判断出.【解答】解:因为点(0,2)到直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)中每条直线的距离d==1,直线系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π)表示圆x2+(y﹣2)2=1的切线的集合,A.由于直线系表示圆x2+(y﹣2)2=1的所有切线,其中存在两条切线平行,M中所有直线均经过一个定点(0,2)不可能,故A不正确;B.存在定点P不在M中的任一条直线上,观察知点M(0,2)即符合条件,故B正确;C.由于圆的所有外切正多边形的边都是圆的切线,所以对于任意整数n(n≥3),存在正n边形,其所有边均在M中的直线上,故C正确;D.如下图,M中的直线所能围成的正三角形有两类,其一是如△ABB′型,是圆的外切三角形,此类面积都相等,另一类是在圆同一侧,如△BDC型,此一类面积相等,但两类之间面积不等,所以面积大小不一定相等,故本命题不正确.故答案为:BC.15.【答案】①④⑤【解析】解:由题意知:A≠,B≠,C≠,且A+B+C=π∴tan(A+B)=tan(π﹣C)=﹣tanC,又∵tan(A+B)=,∴tanA+tanB=tan(A+B)(1﹣tanAtanB)=﹣tanC(1﹣tanAtanB)=﹣tanC+tanAtanBtanC,即tanA+tanB+tanC=tanAtanBtanC,故①正确;当A=,B=C=时,tanA+tanB+tanC=<3,故②错误;若tanA,tanB,tanC中存在两个数互为倒数,则对应的两个内角互余,则第三个内角为直角,这与已知矛盾,故③错误;由①,若tanA:tanB:tanC=1:2:3,则6tan3A=6tanA,则tanA=1,故A=45°,故④正确;当tanB﹣1=时,tanA•tanB=tanA+tanB+tanC,即tanC=,C=60°,此时sin2C=,sinA•sinB=sinA•sin(120°﹣A)=sinA•(cosA+sinA)=sinAcosA+sin2A=sin2A+﹣cos2A=sin(2A﹣30°)≤,则sin2C≥sinA•sinB.故⑤正确;故答案为:①④⑤【点评】本题以命题的真假判断为载体,考查了和角的正切公式,反证法,诱导公式等知识点,难度中档.16.【答案】12.【解析】解:因为x>3,所以f(x)>0由题意知:=﹣令t=∈(0,),h(t)==t﹣3t2因为h(t)=t﹣3t2的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)∈(0,]由h(t)=⇒f(x)=≥12故答案为:1217.【答案】{7,9}【解析】∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A)={4,6,7,9 },∴(∁U A)∩B={7,9},故答案为:{7,9}。
晋州市四中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知,则f{f[f (﹣2)]}的值为( ) A .0B .2C .4D .82. 有以下四个命题:①若=,则x=y . ②若lgx 有意义,则x >0.③若x=y ,则=.④若x >y ,则 x 2<y 2. 则是真命题的序号为( ) A .①② B .①③C .②③D .③④3. 若1sin()34πα-=,则cos(2)3πα+=A 、78-B 、14- C 、14 D 、784. 已知函数f (x+1)=3x+2,则f (x )的解析式是( )A .3x ﹣1B .3x+1C .3x+2D .3x+45. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 6. 圆心为(1,1)且过原点的圆的方程是( )A .2=1B .2=1C .2=2D .2=27. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2B .C .D .38. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( ) A .﹣12 B .﹣10 C .﹣8 D .﹣69. 已知函数f (x )=2x ,则f ′(x )=( )A .2xB .2x ln2C .2x +ln2D .10.已知函数()2sin()f x x ωϕ=+(0)2πϕ<<与y 轴的交点为(0,1),且图像上两对称轴之间的最小距离为2π,则使()()0f x t f x t +--+=成立的t 的最小值为( )1111] A .6π B .3π C .2πD .23π11.双曲线的渐近线方程是( )A .B .C .D .12.圆锥的高扩大到原来的 倍,底面半径缩短到原来的12,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的16二、填空题13.1785与840的最大约数为 .14.设函数f (x )=,则f (f (﹣2))的值为 .15.(x ﹣)6的展开式的常数项是 (应用数字作答).16.已知数列的前项和是, 则数列的通项__________17.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .18.设f (x )是(x 2+)6展开式的中间项,若f (x )≤mx 在区间[,]上恒成立,则实数m 的取值范围是 .三、解答题19.若已知,求sinx的值.20.有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:编号A1A2A3A4A5A6A7A8A9A10直径 1.51 1.49 1.49 1.51 1.49 1.51 1.47 1.46 1.53 1.47其中直径在区间[1.48,1.52]内的零件为一等品.(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(Ⅱ)从一等品零件中,随机抽取2个.(ⅰ)用零件的编号列出所有可能的抽取结果;(ⅱ)求这2个零件直径相等的概率.21.若数列{a n}的前n项和为S n,点(a n,S n)在y=x的图象上(n∈N*),(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若c1=0,且对任意正整数n都有,求证:对任意正整数n≥2,总有.22.设函数.(1)若x=1是f(x)的极大值点,求a的取值范围.(2)当a=0,b=﹣1时,函数F(x)=f(x)﹣λx2有唯一零点,求正数λ的值.23.巳知二次函数f(x)=ax2+bx+c和g(x)=ax2+bx+c•lnx(abc≠0).(Ⅰ)证明:当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)在同一函数图象上取任意两个不同的点A(x1,y1),B(x2,y2),线段AB的中点C(x0,y0),记直线AB的斜率为k若f(x)满足k=f′(x0),则称其为“K函数”.判断函数f(x)=ax2+bx+c与g(x)=ax2+bx+c•lnx 是否为“K函数”?并证明你的结论.24.如图,四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,.求证:PC⊥BC;(Ⅱ)求三棱锥C﹣DEG的体积;(Ⅲ)AD边上是否存在一点M,使得PA∥平面MEG.若存在,求AM的长;否则,说明理由.晋州市四中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C 【解析】解:∵﹣2<0 ∴f (﹣2)=0∴f (f (﹣2))=f (0) ∵0=0∴f (0)=2即f (f (﹣2))=f (0)=2 ∵2>0∴f (2)=22=4即f{f[(﹣2)]}=f (f (0))=f (2)=4 故选C .2. 【答案】A【解析】解:①若=,则,则x=y ,即①对;②若lgx 有意义,则x >0,即②对;③若x=y >0,则=,若x=y <0,则不成立,即③错;④若x >y >0,则 x 2>y 2,即④错. 故真命题的序号为①② 故选:A .3. 【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-4. 【答案】A【解析】∵f (x+1)=3x+2=3(x+1)﹣1∴f (x )=3x ﹣1 故答案是:A【点评】考察复合函数的转化,属于基础题.5. 【答案】A【解析】考点:1、集合的表示方法;2、集合的补集及交集.6.【答案】D【解析】解:由题意知圆半径r=,∴圆的方程为2=2.故选:D.【点评】本题考查圆的方程的求法,解题时要认真审题,注意圆的方程的求法,是基础题.7.【答案】D【解析】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选D.【点评】由三视图正确恢复原几何体是解题的关键.8.【答案】C【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,从而f′(x)的最小值为﹣9+1=﹣8.故选C.【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.9. 【答案】B【解析】解:f (x )=2x ,则f'(x )=2xln2, 故选:B .【点评】本题考查了导数运算法则,属于基础题.10.【答案】A 【解析】考点:三角函数的图象性质. 11.【答案】B【解析】解:∵双曲线标准方程为,其渐近线方程是=0,整理得y=±x . 故选:B .【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程.属于基础题.12.【答案】A 【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为2113V r h π=,将圆锥的高扩大到原来的倍,底面半径缩短到原来的12,则体积为222111(2)326V r h r h ππ=⨯=,所以122V V =,故选A.考点:圆锥的体积公式.1二、填空题13.【答案】105.【解析】解:1785=840×2+105,840=105×8+0.∴840与1785的最大公约数是105.故答案为10514.【答案】﹣4.【解析】解:∵函数f(x)=,∴f(﹣2)=4﹣2=,f(f(﹣2))=f()==﹣4.故答案为:﹣4.15.【答案】﹣160【解析】解:由于(x﹣)6展开式的通项公式为T r+1=•(﹣2)r•x6﹣2r,令6﹣2r=0,求得r=3,可得(x﹣)6展开式的常数项为﹣8=﹣160,故答案为:﹣160.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于基础题.16.【答案】【解析】当时,当时,,两式相减得:令得,所以答案:17.【答案】4或.【解析】解:设AB=2x,则AE=x,BC=,∴AC=,由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.18.【答案】[5,+∞).【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.【解答】解:由题意可得f(x)=x6=x3.由f(x)≤mx在区间[,]上恒成立,可得m≥x2在区间[,]上恒成立,由于x2在区间[,]上的最大值为5,故m≥5,即m的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.三、解答题19.【答案】【解析】解:∵,∴<<2π,∴sin()=﹣=﹣.∴sinx=sin[(x+)﹣]=sin()cos﹣cos()sin=﹣﹣=﹣.【点评】本题考查了两角和差的余弦函数公式,属于基础题.20.【答案】【解析】(Ⅰ)解:由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==;(Ⅱ)(i)一等品零件的编号为A1,A2,A3,A4,A5,A6.从这6个一等品零件中随机抽取2个,所有可能的结果有:{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6}共有15种.(ii)“从一等品零件中,随机抽取的2个零件直径相等”记为事件BB的所有可能结果有:{A1,A4},{A1,A6},{A4,A6},{A2,A3},{A2,A5},{A3,A5},共有6种.∴P(B)=.【点评】本小题主要考查用列举法计算随机事件所含的基本事件数及事件发生的概率等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.21.【答案】【解析】(I)解:∵点(a n,S n)在y=x的图象上(n∈N*),∴,当n≥2时,,∴,化为,当n=1时,,解得a1=.∴==.(2)证明:对任意正整数n都有=2n+1,∴c n=(c n﹣c n﹣1)+(c n﹣1﹣c n﹣2)+…+(c2﹣c1)+c1=(2n﹣1)+(2n﹣3)+…+3==(n+1)(n﹣1).∴当n≥2时,==.∴=+…+=<=,又=.∴.【点评】本题考查了等比数列的通项公式与等差数列的前n项和公式、“累加求和”、“裂项求和”、对数的运算性质、“放缩法”、递推式,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】解:(Ⅰ)f(x)的定义域为(0,+∞),,由f'(1)=0,得b=1﹣a.∴.…①若a≥0,由f'(x)=0,得x=1.当0<x<1时,f'(x)>0,此时f(x)单调递增;当x>1时,f'(x)<0,此时f(x)单调递减.所以x=1是f(x)的极大值点.…②若a<0,由f'(x)=0,得x=1,或x=.因为x=1是f(x)的极大值点,所以>1,解得﹣1<a<0.综合①②:a的取值范围是a>﹣1.…(Ⅱ)因为函数F(x)=f(x)﹣λx2有唯一零点,即λx2﹣lnx﹣x=0有唯一实数解,设g(x)=λx2﹣lnx﹣x,则.令g'(x)=0,2λx2﹣x﹣1=0.因为λ>0,所以△=1+8λ>0,方程有两异号根设为x1<0,x2>0.因为x>0,所以x1应舍去.当x∈(0,x2)时,g'(x)<0,g(x)在(0,x2)上单调递减;当x∈(x2,+∞)时,g'(x)>0,g(x)在(x2,+∞)单调递增.当x=x2时,g'(x2)=0,g(x)取最小值g(x2).…因为g(x)=0有唯一解,所以g(x2)=0,则即因为λ>0,所以2lnx2+x2﹣1=0(*)设函数h(x)=2lnx+x﹣1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.因为h(1)=0,所以方程(*)的解为x2=1,代入方程组解得λ=1.…【点评】本题考查函数的单调性、极值、零点等知识点的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.23.【答案】【解析】解:(Ⅰ)证明:如果g(x)是定义域(0,+∞)上的增函数,则有g′(x)=2ax+b+=>0;从而有2ax2+bx+c>0对任意x∈(0,+∞)恒成立;又∵a<0,则结合二次函数的图象可得,2ax2+bx+c>0对任意x∈(0,+∞)恒成立不可能,故当a<0时,无论b为何值,函数g(x)在定义域内不可能总为增函数;(Ⅱ)函数f(x)=ax2+bx+c是“K函数”,g(x)=ax2+bx+c•lnx不是“K函数”,事实上,对于二次函数f(x)=ax2+bx+c,k==a(x1+x2)+b=2ax0+b;又f′(x0)=2ax0+b,故k=f′(x0);故函数f(x)=ax2+bx+c是“K函数”;对于函数g(x)=ax2+bx+c•lnx,不妨设0<x1<x2,则k==2ax0+b+;而g′(x0)=2ax0+b+;故=,化简可得,=;设t=,则0<t<1,lnt=;设s(t)=lnt﹣;则s′(t)=>0;则s(t)=lnt﹣是(0,1)上的增函数,故s(t)<s(1)=0;则lnt≠;故g(x)=ax2+bx+c•lnx不是“K函数”.【点评】本题考查了导数的综合应用及学生对新定义的接受能力,属于中档题.24.【答案】【解析】解:(I)证明:∵PD⊥平面ABCD,∴PD⊥BC,又∵ABCD是正方形,∴BC⊥CD,∵PDICE=D,∴BC⊥平面PCD,又∵PC⊂面PBC,∴PC⊥BC.(II)解:∵BC⊥平面PCD,∴GC是三棱锥G﹣DEC的高.∵E是PC的中点,∴.∴.(III )连接AC ,取AC 中点O ,连接EO 、GO ,延长GO 交AD 于点M ,则PA ∥平面MEG . 下面证明之:∵E 为PC 的中点,O 是AC 的中点,∴EO ∥平面PA , 又∵EO ⊂平面MEG ,PA ⊄平面MEG ,∴PA ∥平面MEG , 在正方形ABCD 中,∵O 是AC 中点,∴△OCG ≌△OAM ,∴,∴所求AM 的长为.【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想.。
宁晋县高中2018-2019学年高二下学期第二次月考试卷数学一、选择题1. 在函数y=中,若f (x )=1,则x 的值是( )A .1B .1或 C .±1 D.2. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( ) A .0<a <1 B.﹣≤a≤ C .﹣1≤a ≤1 D .﹣2≤a ≤23. 在ABC ∆中,若60A ∠=,45B ∠=,BC =AC =( ) A. B.C. D4. 已知点P (1,﹣),则它的极坐标是( )A.B.C.D.5. 设函数f (x )=,f (﹣2)+f (log 210)=( )A .11B .8C .5D .26. 某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( )A .2 B. C. D .37.设函数,则有( )A .f (x)是奇函数, B .f (x)是奇函数, y=b xC .f (x)是偶函数D .f (x)是偶函数,8. 设x ,y ∈R,且满足,则x+y=( )班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .1B .2C .3D .49. 已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到10.设m ,n 是两条不同直线,α,β是两个不同的平面,下列命题正确的是( ) A .m ∥α,n ∥β且α∥β,则m ∥n B .m ⊥α,n ⊥β且α⊥β,则m ⊥n C .m ⊥α,n ⊂β,m ⊥n ,则α⊥β D .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β11.在△ABC 中,,则这个三角形一定是( )A .等腰三角形B .直角三角形C .等腰直角三角D .等腰或直角三角形12.定义在[1,+∞)上的函数f (x )满足:①当2≤x ≤4时,f (x )=1﹣|x ﹣3|;②f (2x )=cf (x )(c 为正常数),若函数的所有极大值点都落在同一直线上,则常数c 的值是( )A .1B .±2C .或3D .1或2二、填空题13.正方体ABCD ﹣A 1B 1C 1D 1中,平面AB 1D 1和平面BC 1D 的位置关系为 .14.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题 (3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)15.已知定义在R 上的奇函数()f x 满足(4)()f x f x +=,且(0,2)x ∈时2()1f x x =+,则(7)f 的值为 ▲ .16.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )>0,则使得f(x )>0成立的x 的取值范围是 .17.△ABC 中,,BC=3,,则∠C=.18.某工程队有5项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后立即进 行那么安排这5项工程的不同排法种数是 .(用数字作答)三、解答题19.已知椭圆C1:+=1(a>b>0)的离心率e=,且经过点(1,),抛物线C2:x2=2py(p>0)的焦点F与椭圆C1的一个焦点重合.(Ⅰ)过F的直线与抛物线C2交于M,N两点,过M,N分别作抛物线C2的切线l1,l2,求直线l1,l2的交点Q的轨迹方程;(Ⅱ)从圆O:x2+y2=5上任意一点P作椭圆C1的两条切线,切点为A,B,证明:∠APB为定值,并求出这个定值.20.已知函数f(x)=a﹣,(1)若a=1,求f(0)的值;(2)探究f(x)的单调性,并证明你的结论;(3)若函数f(x)为奇函数,判断|f(ax)|与f(2)的大小.21.设M是焦距为2的椭圆E:+=1(a>b>0)上一点,A、B是椭圆E的左、右顶点,直线MA与MB的斜率分别为k1,k2,且k1k2=﹣.(1)求椭圆E的方程;(2)已知椭圆E:+=1(a>b>0)上点N(x0,y0)处切线方程为+=1,若P是直线x=2上任意一点,从P向椭圆E作切线,切点分别为C、D,求证直线CD恒过定点,并求出该定点坐标.22.19.已知函数f(x)=ln.23.已知f(x)=x2﹣3ax+2a2.(1)若实数a=1时,求不等式f(x)≤0的解集;(2)求不等式f(x)<0的解集.24.如图,椭圆C:+=1(a>b>0)的离心率e=,且椭圆C的短轴长为2.(Ⅰ)求椭圆C的方程;(Ⅱ)设P,M,N椭圆C上的三个动点.(i)若直线MN过点D(0,﹣),且P点是椭圆C的上顶点,求△PMN面积的最大值;(ii)试探究:是否存在△PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由.25.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?26.已知函数且f(1)=2.(1)求实数k的值及函数的定义域;(2)判断函数在(1,+∞)上的单调性,并用定义加以证明.宁晋县高中2018-2019学年高二下学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵函数y=中,f(x)=1,∴当x≤﹣1时,x+2=1,解得x=﹣1;当﹣1<x<2时,x2=1,解得x=1或x=﹣1(舍);当x≥2时,2x=1,解得x=(舍).综上得x=±1故选:C.2.【答案】B【解析】解:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2=图象如图,∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a≤故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.3.【答案】B【解析】考点:正弦定理的应用.4.【答案】C【解析】解:∵点P的直角坐标为,∴ρ==2.再由1=ρcosθ,﹣=ρsinθ,可得,结合所给的选项,可取θ=﹣,即点P的极坐标为(2,),故选C.【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.5.【答案】B【解析】解:∵f(x)=,∴f(﹣2)=1+log24=1+2=3,=5,∴f(﹣2)+f(log210)=3+5=8.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.6.【答案】D【解析】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选D.【点评】由三视图正确恢复原几何体是解题的关键.7.【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称.又f(﹣x)===f(x),所以f(x)为偶函数.而f()===﹣=﹣f(x),故选C.【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.8.【答案】D【解析】解:∵(x﹣2)3+2x+sin(x﹣2)=2,∴(x﹣2)3+2(x﹣2)+sin(x﹣2)=2﹣4=﹣2,∵(y﹣2)3+2y+sin(y﹣2)=6,∴(y﹣2)3+2(y﹣2)+sin(y﹣2)=6﹣4=2,设f(t)=t3+2t+sint,则f(t)为奇函数,且f'(t)=3t2+2+cost>0,即函数f(t)单调递增.由题意可知f(x﹣2)=﹣2,f(y﹣2)=2,即f(x﹣2)+f(y﹣2)=2﹣2=0,即f(x﹣2)=﹣f(y﹣2)=f(2﹣y),∵函数f(t)单调递增∴x﹣2=2﹣y,即x+y=4,故选:D.【点评】本题主要考查函数奇偶性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.9.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.10.【答案】B【解析】解:对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面,故A错;对于B,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m 与n相交,且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题B正确.对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C 不正确;对于D,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以D不成立.故选B.【点评】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力,基本知识的应用题目.11.【答案】A【解析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得:b=c.即三角形一定为等腰三角形.故选:A.12.【答案】D【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则f(x)=f(2x)=(1﹣|2x﹣3|),此时当x=时,函数取极大值;当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1;当4<x≤8时,2<≤4,则f(x)=cf()=c(1﹣|﹣3|),此时当x=6时,函数取极大值c.∵函数的所有极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴=,解得c=1或2.故选D.【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.二、填空题13.【答案】平行.【解析】解:∵AB1∥C1D,AD1∥BC1,AB1⊂平面AB1D1,AD1⊂平面AB1D1,AB1∩AD1=AC1D⊂平面BC1D,BC1⊂平面BC1D,C1D∩BC1=C1由面面平行的判定理我们易得平面AB1D1∥平面BC1D故答案为:平行.【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法.14.【答案】(4)【解析】解:(1)命题p :菱形的对角线互相垂直平分,为真命题.命题q :菱形的对角线相等为假命题;则p ∨q 是真命题,故(1)错误,(2)命题“若x 2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x 2﹣4x+3<0得1<x <3,则“1<x <3”是“x 2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.15.【答案】2- 【解析】1111]试题分析:(4)()T 4f x f x +=⇒=,所以(7)(1)(1) 2.f f f =-=-=- 考点:利用函数性质求值16.【答案】 (﹣2,0)∪(2,+∞) .【解析】解:设g (x )=,则g (x )的导数为:g ′(x )=,∵当x >0时总有xf ′(x )﹣f (x )>0成立, 即当x >0时,g ′(x )>0,∴当x >0时,函数g (x )为增函数,又∵g (﹣x )====g (x ),∴函数g (x )为定义域上的偶函数, ∴x <0时,函数g (x )是减函数,又∵g (﹣2)==0=g (2),∴x >0时,由f (x )>0,得:g (x )>g (2),解得:x >2, x <0时,由f (x )>0,得:g (x )<g (﹣2),解得:x >﹣2, ∴f (x )>0成立的x 的取值范围是:(﹣2,0)∪(2,+∞). 故答案为:(﹣2,0)∪(2,+∞).17.【答案】【解析】解:由,a=BC=3,c=,根据正弦定理=得:sinC==,又C为三角形的内角,且c<a,∴0<∠C<,则∠C=.故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.18.【答案】12【解析】解:安排甲工程放在第一位置时,乙丙与剩下的两个工程共有种方法,同理甲在第二位置共有2×2种方法,甲在第三位置时,共有2种方法.由加法原理可得:+4+2=12种.故答案为:12.【点评】本题考查了排列与乘法原理,优先安排除了甲乙丙3个工程后剩下的2个工程的方案是解题的关键,属于中档题.三、解答题19.【答案】【解析】解:(Ⅰ)设椭圆的半焦距为c,则,即,则,椭圆方程为,将点的坐标代入得c2=1,故所求的椭圆方程为焦点坐标为(0,±1),故抛物线方程为x2=4y…设直线MN:y=kx+1,M(x1,y1),N(x2,y2),代入抛物线方程得x2﹣4kx﹣4=0,则x1+x2=4k,x1x2=﹣4,由于,所以,故直线l1的斜率为,l1的方程为,即,同理l2的方程为,令,即,显然x1≠x2,故,即点Q的横坐标是,点Q的纵坐标是,即点Q(2k,﹣1),故点Q的轨迹方程是y=﹣1…(Ⅱ)证明:①当两切线的之一的斜率不存在时,根据对称性,设点P在第一象限,则此时P点横坐标为,代入圆的方程得P点的纵坐标为,此时两条切线方程分别为,此时,若∠APB的大小为定值,则这个定值只能是…②当两条切线的斜率都存在时,即时,设P(x0,y0),切线的斜率为k,则切线方程为y﹣y0=k(x﹣x0),与椭圆方程联立消元得…由于直线y﹣y0=k(x﹣x0)是椭圆的切线,故,整理得…切线PA,PB的斜率k1,k2是上述方程的两个实根,故,…点P在圆x2+y2=5上,故,所以k1k2=﹣1,所以.综上可知:∠APB的大小为定值,得证…【点评】本题考查直线与椭圆的综合应用,椭圆以及抛物线的方程的求法,考查转化是以及计算能力.20.【答案】【解析】解:(1)a=1时:f(0)=1﹣=;(2)∵f(x)的定义域为R∴任取x1x2∈R且x1<x2则f(x1)﹣f(x2)=a﹣﹣a+=.∵y=2x在R是单调递增且x1<x2∴0<2x1<2x2,∴2x1﹣2x2<0,2x1+1>0,2x2+1>0,∴f(x1)﹣f(x2)<0即f(x1)<f(x2),∴f(x)在R上单调递增.(3)∵f(x)是奇函数∴f(﹣x)=﹣f(x),即a﹣=﹣a+,解得:a=1.∴f(ax)=f(x)又∵f(x)在R上单调递增∴x>2或x<﹣2时:|f(x)|>f(2),x=±2时:|f(x)|=f(2),﹣2<x<2时:|f(x)|<f(2).【点评】本题考查的是函数单调性、奇偶性等知识的综合问题.在解答的过程当中充分体现了计算的能力、单调性定义的应用以及问题转化的能力.值得同学们体会和反思.21.【答案】【解析】(1)解:设A(﹣a,0),B(a,0),M(m,n),则+=1,即n2=b2•,由k1k2=﹣,即•=﹣,即有=﹣,即为a2=2b2,又c2=a2﹣b2=1,解得a2=2,b2=1.即有椭圆E的方程为+y2=1;(2)证明:设点P(2,t),切点C(x1,y1),D(x2,y2),则两切线方程PC,PD分别为:+y1y=1,+y2y=1,由于P点在切线PC,PD上,故P(2,t)满足+y1y=1,+y2y=1,得:x1+y1t=1,x2+y2t=1,故C(x1,y1),D(x2,y2)均满足方程x+ty=1,即x+ty=1为CD的直线方程.令y=0,则x=1,故CD过定点(1,0).【点评】本题主要考查椭圆的简单性质、直线与椭圆的位置关系,导数的几何意义等基本知识,考查运算能力和综合解题能力.解题时要注意运算能力的培养.22.【答案】【解析】解:(1)∵f(x)是奇函数,∴设x>0,则﹣x<0,∴f(﹣x)=(﹣x)2﹣mx=﹣f(x)=﹣(﹣x2+2x)从而m=2.(2)由f(x)的图象知,若函数f(x)在区间[﹣1,a﹣2]上单调递增,则﹣1≤a﹣2≤1∴1≤a≤3【点评】本题主要考查函数奇偶性的应用以及函数单调性的判断,利用数形结合是解决本题的关键.23.【答案】【解析】解:(1)当a=1时,依题意得x2﹣3x+2≤0因式分解为:(x﹣2)(x﹣1)≤0,解得:x≥1或x≤2.∴1≤x≤2.不等式的解集为{x|1≤x≤2}.(2)依题意得x2﹣3ax+2a2<0∴(x﹣a)(x﹣2a)<0…对应方程(x﹣a)(x﹣2a)=0得x1=a,x2=2a当a=0时,x∈∅.当a>0时,a<2a,∴a<x<2a;当a<0时,a>2a,∴2a<x<a;综上所述,当a=0时,原不等式的解集为∅;当a>0时,原不等式的解集为{x|a<x<2a};当a<0时,原不等式的解集为{x|2a<x<a};24.【答案】【解析】解:(Ⅰ)由题意得解得a=2,b=1,所以椭圆方程为.(Ⅱ)(i)由已知,直线MN的斜率存在,设直线MN方程为y=kx﹣,M(x1,y1),N(x2,y2).由得(1+4k2)x2﹣4kx﹣3=0,∴x1+x2=,x1x2=,又.所以S△PMN=|PD|•|x1﹣x2|==.令t=,则t≥,k2=所以S△PMN=,令h(t)=,t∈[,+∞),则h′(t)=1﹣=>0,所以h(t)在[,+∞),单调递增,则t=,即k=0时,h(t)的最小值,为h()=,所以△PMN面积的最大值为.(ii)假设存在△PMN是以O为中心的等边三角形.(1)当P在y轴上时,P的坐标为(0,1),则M,N关于y轴对称,MN的中点Q在y轴上.又O为△PMN的中心,所以,可知Q(0,﹣),M(﹣,),N(,).从而|MN|=,|PM|=,|MN|≠|PM|,与△PMN为等边三角形矛盾.(2)当P在x轴上时,同理可知,|MN|≠|PM|,与△PMN为等边三角形矛盾.(3)当P不在坐标轴时,设P(x0,y0),MN的中点为Q,则k OP=,又O为△PMN的中心,则,可知.设M(x1,y1),N(x2,y2),则x1+x2=2x Q=﹣x0,y1+y2=2y Q=﹣y0,又x12+4y12=4,x22+4y22=4,两式相减得k MN=,从而k MN=.所以k OP•k MN=•()=≠﹣1,所以OP与MN不垂直,与等边△PMN矛盾.综上所述,不存在△PMN是以O为中心的等边三角形.【点评】本小题考查点到直线的距离公式、椭圆的性质、直线与椭圆的位置关系等基础知识,考查运算求解能力、推理论证能力、分析解决问题能力,考查函数与方程思想、数形结合思想、特殊与一般思想、化归与转化思想25.【答案】【解析】解:(1)当x=1时,f(1)=p(1)=37.当2≤x≤12时,且x≤12)验证x=1符合f(x)=﹣3x2+40x,∴f(x)=﹣3x2+40x(x∈N*且x≤12).该商场预计销售该商品的月利润为g(x)=(﹣3x2+40x)(185﹣150﹣2x)=6x3﹣185x2+1400x,(x∈N*且x≤12),令h(x)=6x3﹣185x2+1400x(1≤x≤12),h'(x)=18x2﹣370x+1400,令h'(x)=0,解得(舍去).>0;当5<x≤12时,h'(x)<0.∴当x=5时,h(x)取最大值h(5)=3125.max=g(5)=3125(元).综上,5月份的月利润最大是3125元.【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.26.【答案】【解析】解:(1)f(1)=1+k=2;∴k=1,,定义域为{x∈R|x≠0};(2)为增函数;证明:设x1>x2>1,则:==;∵x1>x2>1;∴x1﹣x2>0,,;∴f(x1)>f(x2);∴f(x)在(1,+∞)上为增函数.。
宁晋县外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知f(x)为R上的偶函数,对任意x∈R都有f(x+6)=f(x)+f(3),x1,x2∈[0,3],x1≠x2时,有成立,下列结论中错误的是()A.f(3)=0B.直线x=﹣6是函数y=f(x)的图象的一条对称轴C.函数y=f(x)在[﹣9,9]上有四个零点D.函数y=f(x)在[﹣9,﹣6]上为增函数2.一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是()A.4πB.12πC.16πD.48π3.设S n是等比数列{a n}的前n项和,S4=5S2,则的值为()A.﹣2或﹣1 B.1或2 C.±2或﹣1 D.±1或24.α是第四象限角,,则sinα=()A.B.C.D.5.下列正方体或四面体中,P、Q、R、S分别是所在棱的中点,这四个点不共面的一个图形是()6.如图是一个多面体的三视图,则其全面积为()A.B.C.D.7.在等差数列{a n}中,a1=2,a3+a5=8,则a7=()A.3 B.6 C.7 D.88.已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I(A∩B)等于()A.{3,4} B.{1,2,5,6} C.{1,2,3,4,5,6} D.∅9.已知a,b都是实数,那么“a2>b2”是“a>b”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件10.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m n+的值是()A.10B.11C.12D.13【命题意图】本题考查样本平均数、中位数、茎叶图等基础知识,意在考查识图能力和计算能力.-的六条棱所在的直线中,异面直线共有()111]11.如图所示,在三棱锥P ABCA.2对B.3对C.4对D.6对12.已知一个算法的程序框图如图所示,当输出的结果为21时,则输入的值为( )A .2B .1-C .1-或2D .1-或10二、填空题13.曲线在点(3,3)处的切线与轴x 的交点的坐标为 .14.已知点A (﹣1,1),B (1,2),C (﹣2,﹣1),D (3,4),求向量在方向上的投影.15.已知=1﹣bi ,其中a ,b 是实数,i 是虚数单位,则|a ﹣bi|= .16.i 是虚数单位,若复数(1﹣2i )(a+i )是纯虚数,则实数a 的值为 .17.【2017-2018第一学期东台安丰中学高三第一次月考】在平面直角坐标系xOy 中,直线l 与函数()()2220f x x a x =+>和()()3220g x x a x =+>均相切(其中a 为常数),切点分别为()11,A x y 和()22,B x y ,则12x x +的值为__________.18.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .三、解答题19.(本小题满分12分)已知直三棱柱111C B A ABC -中,上底面是斜边为AC 的直角三角形,F E 、分别是11AC B A 、的中点.(1)求证://EF 平面ABC ; (2)求证:平面⊥AEF 平面B B AA 11.20.已知a>0,b>0,a+b=1,求证:(Ⅰ)++≥8;(Ⅱ)(1+)(1+)≥9.21.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.22.已知关x的一元二次函数f(x)=ax2﹣bx+1,设集合P={1,2,3}Q={﹣1,1,2,3,4},分别从集合P 和Q中随机取一个数a和b得到数对(a,b).(1)列举出所有的数对(a,b)并求函数y=f(x)有零点的概率;(2)求函数y=f(x)在区间[1,+∞)上是增函数的概率.23.已知双曲线C :与点P (1,2).(1)求过点P (1,2)且与曲线C 只有一个交点的直线方程;(2)是否存在过点P 的弦AB ,使AB 的中点为P ,若存在,求出弦AB 所在的直线方程,若不存在,请说明理由.24.已知函数()f x =121x a +- (1)求()f x 的定义域.(2)是否存在实数a ,使()f x 是奇函数?若存在,求出a 的值;若不存在,请说明理由。
宁晋县第四高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 为得到函数的图象,只需将函数y=sin2x 的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位2. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( ) A .3 B .72 C .23 D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.3. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件4. 给出下列两个结论:①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;则判断正确的是( ) A .①对②错 B .①错②对 C .①②都对D .①②都错5. 设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .∅B .NC .[1,+∞)D .M6. ,AD BE 分别是ABC ∆的中线,若1AD BE ==,且AD 与BE 的夹角为120,则AB AC ⋅=( ) (A ) 13 ( B ) 49 (C ) 23 (D ) 897. 已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C .D .8.点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是△AF1F2的内心.若,则该椭圆的离心率为()A.B.C.D.9.已知命题p:“若直线a与平面α内两条直线垂直,则直线a与平面α垂直”,命题q:“存在两个相交平面垂直于同一条直线”,则下列命题中的真命题为()A.p∧q B.p∨q C.¬p∨q D.p∧¬q10.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)11.已知2,0()2,0ax x xf xx x⎧+>=⎨-≤⎩,若不等式(2)()f x f x-≥对一切x R∈恒成立,则a的最大值为()A.716-B.916-C.12-D.14-12.下列说法正确的是()A.类比推理是由特殊到一般的推理B.演绎推理是特殊到一般的推理C.归纳推理是个别到一般的推理D.合情推理可以作为证明的步骤二、填空题13.抛物线y=x2的焦点坐标为()A.(0,)B.(,0)C.(0,4) D.(0,2)14.一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60°,行驶4小时后,到达C处,看到这个灯塔B在北偏东15°,这时船与灯塔相距为海里.15.计算:×5﹣1=.16.一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是.17.正六棱台的两底面边长分别为1cm,2cm,高是1cm,它的侧面积为.18.函数y=sin2x﹣2sinx的值域是y∈.三、解答题19.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.20.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.21.(本小题满分12分)已知函数21()xf xx+=,数列{}n a满足:12a=,11nna fa+⎛⎫= ⎪⎝⎭(Nn*∈).(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.22.一个圆柱形圆木的底面半径为1m ,长为10m ,将此圆木沿轴所在的平面剖成两个部分,现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形ABCD (如图所示,其中O 为圆心,C ,D 在半圆上),设∠BOC=θ,直四棱柱木梁的体积为V (单位:m 3),侧面积为S (单位:m 2).(Ⅰ)分别求V 与S 关于θ的函数表达式; (Ⅱ)求侧面积S 的最大值; (Ⅲ)求θ的值,使体积V 最大.23.已知函数f (x )=lg (x 2﹣5x+6)和的定义域分别是集合A 、B ,(1)求集合A ,B ; (2)求集合A ∪B ,A ∩B .24.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值;(2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]宁晋县第四高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】A【解析】解:∵,只需将函数y=sin2x 的图象向左平移个单位得到函数的图象.故选A .【点评】本题主要考查诱导公式和三角函数的平移.属基础题.2. 【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为2221118222PC PA AC PA =+=+,所以由球的体积可得2341243(8)3216PA ππ+=,解得72PA =,故选B .3. 【答案】C【解析】解:由a 2b >ab 2得ab (a ﹣b )>0, 若a ﹣b >0,即a >b ,则ab >0,则<成立,若a ﹣b <0,即a <b ,则ab <0,则a <0,b >0,则<成立, 若<则,即ab (a ﹣b )>0,即a 2b >ab 2成立,即“a 2b >ab 2”是“<”的充要条件, 故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键.4. 【答案】C【解析】解:①命题p 是一个特称命题,它的否定是全称命题,¬p 是全称命题,所以①正确.②根据逆否命题的定义可知②正确. 故选C .【点评】考查特称命题,全称命题,和逆否命题的概念.5. 【答案】B【解析】解:根据题意得:x+1≥0,解得x ≥﹣1, ∴函数的定义域M={x|x ≥﹣1};∵集合N 中的函数y=x 2≥0,∴集合N={y|y ≥0}, 则M ∩N={y|y ≥0}=N .故选B6. 【答案】C【解析】由1(),21(2),2AD AB AC BE AB AC ⎧=+⎪⎪⎨⎪=-+⎪⎩解得2233,4233AB AD BE AC AD BE⎧=-⎪⎪⎨⎪=+⎪⎩ 22422()()33333AB AC AD BE AD BE ⋅=-⋅+=.7. 【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分) 由z=2x+y ,得y=﹣2x+z ,平移直线y=﹣2x+z ,由图象可知当直线y=﹣2x+z 经过点C 时,直线y=﹣2x+z 的截距最小,此时z 最小. 即2x+y=1,由,解得,即C (1,﹣1),∵点C 也在直线y=a (x ﹣3)上, ∴﹣1=﹣2a , 解得a=.故选:C .【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.8.【答案】B【解析】解:设△AF1F2的内切圆半径为r,则S△IAF1=|AF1|r,S△IAF2=|AF2|r,S△IF1F2=|F1F2|r,∵,∴|AF1|r=2×|F1F2|r﹣|AF2|r,整理,得|AF|+|AF2|=2|F1F2|.∴a=2,1∴椭圆的离心率e===.故选:B.9.【答案】C【解析】解:根据线面垂直的定义知若直线a与平面α内两条相交直线垂直,则直线a与平面α垂直,当两条直线不相交时,结论不成立,即命题p为假命题.垂直于同一条直线的两个平面是平行的,故命题存在两个相交平面垂直于同一条直线为假命题.,即命题q 为假命题.则¬p∨q为真命题,其余都为假命题,故选:C.【点评】本题主要考查复合命题真假之间的判断,分别判断命题p,q的真假是解决本题的关键.10.【答案】D【解析】解:∵f(x)=ax3﹣3x2+1,∴f ′(x )=3ax 2﹣6x=3x (ax ﹣2),f (0)=1;①当a=0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立; ③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f (x )=ax 3﹣3x 2+1在(﹣∞,0)上没有零点;而当x=时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上取得最小值;故f ()=﹣3•+1>0;故a <﹣2; 综上所述,实数a 的取值范围是(﹣∞,﹣2); 故选:D .11.【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 12.【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C .【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.二、填空题13.【答案】D【解析】解:把抛物线y=x 2方程化为标准形式为x 2=8y ,∴焦点坐标为(0,2).故选:D .【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.14.【答案】24【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:BC==24海里,则这时船与灯塔的距离为24海里.故答案为:24.15.【答案】9.【解析】解:×5﹣1=×=×=(﹣5)×(﹣9)×=9,∴×5﹣1=9,故答案为:9.16.【答案】.【解析】解:由题意可得,2a,2b,2c成等差数列∴2b=a+c∴4b2=a2+2ac+c2①∵b2=a2﹣c2②①②联立可得,5c2+2ac﹣3a2=0∵∴5e2+2e﹣3=0∵0<e<1∴故答案为:【点评】本题主要考查了椭圆的性质的应用,解题中要椭圆离心率的取值范围的应用,属于中档试题17.【答案】cm2.【解析】解:如图所示,是正六棱台的一部分,侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm.取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形.根据正六棱台的性质得OC=,OC1==,1∴CC1==.又知上、下底面周长分别为c=6AB=6cm,c′=6A1B1=12cm.∴正六棱台的侧面积:S=.==(cm2).故答案为:cm2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.18.【答案】[﹣1,3].【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].故答案为[﹣1,3].【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.三、解答题19.【答案】【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为﹣=1(λ≠0),由题意可得c2=4|λ|+9|λ|=13,解得λ=±1.即有双曲线的方程为﹣=1或﹣=1.20.【答案】【解析】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a >0,则当x ∈(0,)时,f ′(x )>0,当x ∈(,+∞)时,f ′(x )<0,所以f (x )在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a ≤0时,f (x )在(0,+∞)上无最大值;当a >0时,f (x )在x=取得最大值,最大值为f()=﹣lna+a ﹣1,∵f()>2a ﹣2, ∴lna+a ﹣1<0,令g (a )=lna+a ﹣1, ∵g (a )在(0,+∞)单调递增,g (1)=0,∴当0<a <1时,g (a )<0, 当a >1时,g (a )>0, ∴a 的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.21.【答案】【解析】(1)∵211()2x f x x x +==+,∴11()2n n na f a a +==+. 即12n n a a +-=,所以数列{}n a 是以首项为2,公差为2的等差数列, ∴1(1)22(1)2n a a n d n n =+-=+-=. (5分) (2)∵数列{}n a 是等差数列,∴1()(22)(1)22n n a a n n nS n n ++===+, ∴1111(1)1n S n n n n ==-++. (8分) ∴1231111n n T S S S S =++++11111111()()()()1223341n n =-+-+-++-+ 111n =-+1n n =+. (12分) 22.【答案】【解析】解:(Ⅰ)木梁的侧面积S=10(AB+2BC+CD )=10(2+4sin +2cos θ)=20(cos θ+2sin +1),θ∈(0,),梯形ABCD 的面积S ABCD =﹣sin θ=sin θcos θ+sin θ,θ∈(0,),体积V (θ)=10(sin θcos θ+sin θ),θ∈(0,);(Ⅱ)木梁的侧面积S=10(AB+2BC+CD )=10(2+4sin +2cos θ)=20(cos +1),θ∈(0,),设g (θ)=cos +1,g (θ)=﹣2sin 2+2sin+2,∴当sin =,θ∈(0,),即θ=时,木梁的侧面积s 最大.所以θ=时,木梁的侧面积s 最大为40m 2.(Ⅲ)V ′(θ)=10(2cos 2θ+cos θ﹣1)=10(2cos θ﹣1)(cos θ+1)令V ′(θ)=0,得cos θ=,或cos θ=﹣1(舍)∵θ∈(0,),∴θ=.当θ∈(0,)时,<cos θ<1,V ′(θ)>0,V (θ)为增函数;当θ∈(,)时,0<cos θ<,V ′(θ)>0,V (θ)为减函数.∴当θ=时,体积V 最大.23.【答案】【解析】解:(1)由x 2﹣5x+6>0,即(x ﹣2)(x ﹣3)>0, 解得:x >3或x <2,即A={x|x >3或x <2}, 由g (x )=,得到﹣1≥0,当x >0时,整理得:4﹣x ≥0,即x ≤4; 当x <0时,整理得:4﹣x ≤0,无解,综上,不等式的解集为0<x ≤4,即B={x|0<x ≤4}; (2)∵A={x|x >3或x <2},B={x|0<x ≤4}, ∴A ∪B=R ,A ∩B={x|0<x <2或3<x ≤4}.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.24.【答案】(1)最大值为,最小值为32;(2)14.【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16f x x π=--再利用()sin()(0,||)2f x A x b πωϕωϕ=++><的性质可求在[0,]2π上的最值;(2)利用()0f B =,可得B ,再由余弦定理可得AC ,再据正弦定理可得sin A .1试题解析:(2)因为()0f B =,即sin(2)16B π-= ∵(0,)B π∈,∴112(,)666B πππ-∈-,∴262B ππ-=,∴3B π= 又在ABC ∆中,由余弦定理得,22212cos 49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=,所以AC .由正弦定理得:sin sin b a B A =3sin sin 3A =,所以sin A =.考点:1.辅助角公式;2.()sin()(0,||)2f x A x b πωϕωϕ=++><性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.。
宁晋县第四高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 在数列中,,,则该数列中相邻两项的乘积为负数的项是{}n a 115a =*1332()n n a a n N +=-∈()A .和B .和C .和D .和21a 22a 22a 23a 23a 24a 24a 25a 2. 下列结论正确的是()A .若直线l ∥平面α,直线l ∥平面β,则α∥β.B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α 3. 直径为6的球的表面积和体积分别是( )A .B .C .D .144,144ππ144,36ππ36,144ππ36,36ππ4. 已知,,其中是虚数单位,则的虚部为( )i z 311-=i z +=32i 21z z A .B .C .D .1-54i -i 54【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.5. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( )A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.6. 如图,在平面直角坐标系中,锐角α、β及角α+β的终边分别与单位圆O 交于A ,B ,C 三点.分别作AA'、BB'、CC'垂直于x 轴,若以|AA'|、|BB'|、|CC'|为三边长构造三角形,则此三角形的外接圆面积为()A.B.C.D.π7.459和357的最大公约数()A.3B.9C.17D.518.已知复数z满足zi=1﹣i,(i为虚数单位),则|z|=()A.1B.2C.3D.9.函数f(x)=sinωx+acosωx(a>0,ω>0)在x=处取最小值﹣2,则ω的一个可能取值是()A.2B.3C.7D.910.在数列{a n}中,a1=3,a n+1a n+2=2a n+1+2a n(n∈N+),则该数列的前2015项的和是()A.7049B.7052C.14098D.1410111.设x,y∈R,且x+y=4,则5x+5y的最小值是()A.9B.25C.162D.5012.直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的离心率为()A.B.C.D.二、填空题13.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .14.已知函数,则的值是_______,的最小正周期是______.22tan ()1tan x f x x =-()3f π()f x 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.15.设是空间中给定的个不同的点,则使成立的点的个数有_________个.16.已知f (x )=,x ≥0,若f 1(x )=f (x ),f n+1(x )=f (f n (x )),n ∈N +,则f 2015(x )的表达式为 .17.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .18.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹为曲线E ,给出以下命题: ①m ,使曲线E 过坐标原点;∃ ②对m ,曲线E 与x 轴有三个交点;∀ ③曲线E 只关于y 轴对称,但不关于x 轴对称;④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为+4;⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN的面积不大于m 。
宁晋县四中2018-2019学年高二上学期第二次月考试卷数学班级__________姓名__________ 分数__________一、选择题1. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( )A .4B .6C .8D .102. 已知直线l 1 经过A (﹣3,4),B (﹣8,﹣1)两点,直线l 2的倾斜角为135°,那么l 1与l 2( )A .垂直B .平行C .重合D .相交但不垂直3. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为( )A .64B .32C .D .6433234. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( )A .B .﹣C .3D .﹣35. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( )A .{5}B .{1,2,5}C .{1,2,3,4,5}D .∅6. 若将函数y=tan (ωx+)(ω>0)的图象向右平移个单位长度后,与函数y=tan (ωx+)的图象重合,则ω的最小值为( )A .B .C .D .7. 已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误 的是( )A .若m ∥β,则m ∥lB .若m ∥l ,则m ∥βC .若m ⊥β,则m ⊥lD .若m ⊥l ,则m ⊥β8. 已知α是三角形的一个内角,且,则这个三角形是()A .钝角三角形B .锐角三角形C .不等腰的直角三角形D .等腰直角三角形9. 已知命题p ;对任意x ∈R ,2x 2﹣2x+1≤0;命题q :存在x ∈R ,sinx+cosx=,则下列判断:①p 且q 是真命题;②p 或q 是真命题;③q 是假命题;④¬p 是真命题,其中正确的是( )A .①④B .②③C .③④D .②④10.“x 2﹣4x <0”的一个充分不必要条件为( )A .0<x <4B .0<x <2C .x >0D .x <411.方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线12.设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1B .﹣≤a ≤C .﹣1≤a ≤1D .﹣2≤a ≤2二、填空题13.若直线:与直线:垂直,则.012=--ay x 2l 02=+y x =a 14.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间()ln 4f x x x =+-内,则正整数的值为________.()1k k +,k 15.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i <m 中的整数m 的值是 .16.已知双曲线x 2﹣y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为 . 17.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ>②存在这样的函数,图象上任意两点之间的“弯曲度”为常数;③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)18.如图,在三棱锥中,,,,为等边三角形,则P ABC -PA PB PC ==PA PB ⊥PA PC ⊥PBC △PC 与平面所成角的正弦值为______________.ABC【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.三、解答题19.(本小题满分10分)求经过点的直线,且使到它的距离相等的直线()1,2P ()()2,3,0,5A B -方程.20.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A 万元,则超出部分按log 5(2A+1)进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出奖金y 关于销售利润x 的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?21.(本题满分15分)正项数列满足,.}{n a 121223+++=+n n n n a a a a 11=a (1)证明:对任意的,;*N n ∈12+≤n n a a (2)记数列的前项和为,证明:对任意的,.}{n a n n S *N n ∈32121<≤--n n S 【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.22.(本题满分15分)已知函数,当时,恒成立.c bx ax x f ++=2)(1≤x 1)(≤x f (1)若,,求实数的取值范围;1=a c b =b (2)若,当时,求的最大值.a bx cx x g +-=2)(1≤x )(x g 【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.23.设集合.{}()(){}222|320,|2150A x x x B x x a x a =-+==+-+-=(1)若,求实数的值;{}2A B = (2),求实数的取值范围.1111]A B A = 24.在平面直角坐标系xOy 中,F 1、F 2分别为椭圆C : =1(a >b >0)的左、右焦点,B 为短轴的一个端点,E 是椭圆C 上的一点,满足,且△EF 1F 2的周长为.(1)求椭圆C 的方程;(2)设点M 是线段OF 2上的一点,过点F 2且与x 轴不垂直的直线l 交椭圆C 于P 、Q 两点,若△MPQ 是以M 为顶点的等腰三角形,求点M 到直线l 距离的取值范围.宁晋县四中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】【解析】解析:选D.双曲线C 的方程为-=1,其焦点为(±2,0),由题意得=2,x 22y 22p 2∴p =4,即拋物线方程为y 2=8x ,双曲线C 的渐近线方程为y =±x ,由,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.{y 2=8x y =±x)2. 【答案】A【解析】解:由题意可得直线l 1的斜率k 1==1,又∵直线l 2的倾斜角为135°,∴其斜率k 2=tan135°=﹣1,显然满足k 1•k 2=﹣1,∴l 1与l 2垂直故选A 3. 【答案】B 【解析】试题分析:由题意可知三视图复原的几何体是一个放倒的三棱柱,三棱柱的底面是直角边长为的等腰直角三角形,高为的三棱柱, 所以几何体的体积为:,故选B. 1444322⨯⨯⨯=考点:1、几何体的三视图;2、棱柱的体积公式.【方法点睛】本题主要考查利几何体的三视图、棱柱的体积公式,属于难题.三视图问题是考查学生空间想象能力及抽象思维能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,解题时不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.4. 【答案】A【解析】解:设幂函数为y=x α,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x ﹣3,由f (x )=27,得:x ﹣3=27,所以x=.故选A . 5. 【答案】B【解析】解:∵C U A={1,5}∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.故选B.6.【答案】D【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)∴﹣ω+kπ=∴ω=k+(k∈Z),又∵ω>0∴ωmin=.故选D.7.【答案】D【解析】【分析】由题设条件,平面α∩β=l,m是α内不同于l的直线,结合四个选项中的条件,对结论进行证明,找出不能推出结论的即可【解答】解:A选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面;综上D选项中的命题是错误的故选D8.【答案】A【解析】解:∵(sinα+cosα)2=,∴2sinαcosα=﹣,∵α是三角形的一个内角,则sinα>0,∴cosα<0,∴α为钝角,∴这个三角形为钝角三角形.故选A.【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.9.【答案】D【解析】解:∵命题p;对任意x∈R,2x2﹣2x+1≤0是假命题,命题q:存在x∈R,sinx+cosx=是真命题,∴①不正确,②正确,③不正确,④正确.故选D.10.【答案】B【解析】解:不等式x2﹣4x<0整理,得x(x﹣4)<0∴不等式的解集为A={x|0<x<4},因此,不等式x2﹣4x<0成立的一个充分不必要条件,对应的x范围应该是集合A的真子集.写出一个使不等式x2﹣4x<0成立的充分不必要条件可以是:0<x<2,故选:B.11.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.12.【答案】B【解析】解:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2=图象如图,∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a≤故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题. 二、填空题13.【答案】1【解析】试题分析:两直线垂直满足,解得,故填:1.()02-12=⨯+⨯a 1=a 考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,,,当两直线垂直时,需满足,当两直线平行时,0:1111=++c y b x a l 0:2222=++c y b x a l 02121=+b b a a 需满足且,或是,当直线是斜截式直线方程时,两直线垂直01221=-b a b a 1221c b c b ≠212121c cb b a a ≠=,两直线平行时,,.1121-=k k 21k k =21b b ≠14.【答案】2【解析】15.【答案】 6 .【解析】解:第一次循环:S=0+=,i=1+1=2;第二次循环:S=+=,i=2+1=3;第三次循环:S=+=,i=3+1=4;第四次循环:S=+=,i=4+1=5;第五次循环:S=+=,i=5+1=6;输出S ,不满足判断框中的条件;∴判断框中的条件为i <6?故答案为:6.【点评】本题考查程序框图,尤其考查循环结构.对循环体每次循环需要进行分析并找出内在规律.本题属于基础题 16.【答案】 .【解析】解:∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2.∵双曲线方程为x 2﹣y 2=1,∴a 2=b 2=1,c 2=a 2+b 2=2,可得F 1F 2=2∴|PF 1|2+|PF 2|2=|F 1F 2|2=8又∵P 为双曲线x 2﹣y 2=1上一点,∴|PF 1|﹣|PF 2|=±2a=±2,(|PF 1|﹣|PF 2|)2=4因此(|PF 1|+|PF 2|)2=2(|PF 1|2+|PF 2|2)﹣(|PF 1|﹣|PF 2|)2=12∴|PF 1|+|PF 2|的值为故答案为:【点评】本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题. 17.【答案】②③【解析】试题分析:①错:(1,1),(2,5),|||7,A B A B AB k k =-=(,)A B ϕ∴=<②对:如1y =;③对;(,)2A B ϕ==≤;④错;(,)A B ϕ==11,(,)A B ϕ==>因为1(,)t A B ϕ<恒成立,故1t ≤.故答案为②③.111]考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.18.【解析】三、解答题19.【答案】或.420x y --=1x =【解析】20.【答案】【解析】解:(1)由题意,当销售利润不超过8万元时,按销售利润的1%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励,∴0<x≤8时,y=0.15x;x>8时,y=1.2+log5(2x﹣15)∴奖金y关于销售利润x的关系式y=(2)由题意知1.2+log5(2x﹣15)=3.2,解得x=20.所以,小江的销售利润是20万元.【点评】本题以实际问题为载体,考查函数模型的构建,考查学生的计算能力,属于中档题.21.【答案】(1)详见解析;(2)详见解析.22.【答案】【解析】(1);(2).]0222[-2(1)由且,得,1=a c b =42()(222b b b x b bx x x f -++=++=当时,,得,…………3分1=x 11)1(≤++=b b f 01≤≤-b 故的对称轴,当时,,………… 5分 )(x f 21,0[2∈-=b x 1≤x 2min max ()(124()(1)11b b f x f b f x f ⎧=-=-≥-⎪⎨⎪=-=≤⎩解得,综上,实数的取值范围为;…………7分222222+≤≤-b b ]0222[-,…………13分112≤+=且当,,时,若,则恒成立,2a =0b =1c =-1≤x 112)(2≤-=x x f 且当时,取到最大值.的最大值为2.…………15分0=x 2)(2+-=x x g 2)(x g 23.【答案】(1)或;(2).1a =5a =-3a >【解析】(2) .{}{}1,2,1,2A A B == ①无实根,, 解得; ()()22,2150B x a x a =∅+-+-=0∆<3a >② 中只含有一个元素,仅有一个实根, B ()()222150x a x a +-+-=故舍去;{}{}0,3,2,2,1,2a B A B ∆===-=- ③中只含有两个元素,使 两个实根为和, B ()()222150x a x a +-+-=需要满足方程组无根,故舍去, 综上所述]()2212121=a 5a ⎧+=--⎪⎨⨯-⎪⎩3a >考点:集合的运算及其应用.24.【答案】【解析】(本小题满分12分)解:(1)由已知F 1(﹣c ,0),设B (0,b ),即=(﹣c ,0),=(0,b ),∴=(﹣c ,),即E (﹣c ,),∴,得,①…又△PF 1F 2的周长为2(),∴2a+2c=2+2,②…又①②得:c=1,a=,∴b=1,∴所求椭圆C 的方程为:=1.…(2)设点M (m ,0),(0<m <1),直线l 的方程为y=k (x ﹣1),k ≠0,由,消去y ,得:(1+2k 2)x 2﹣4k 2x+2k 2﹣2=0,设P (x 1,y 1),Q (x 2,y 2),PQ 中点为N (x 0,y 0),则,∴y 1+y 2=k (x 1+x 2﹣2)=,∴, =,即N (),…∵△MPQ 是以M 为顶点的等腰三角形,∴MN ⊥PQ ,即=﹣1,∴m=∈(0,),…设点M 到直线l :kx ﹣y ﹣k=0距离为d ,则d2==<=,∴d∈(0,),即点M到直线距离的取值范围是(0,).…【点评】本题考查椭圆方程的求法,考查点到直线的距离的取值范围的求法,解题时要认真审题,注意韦达定理、中点坐标公式、点到直线的距离公式的合理运用.。