七年级数学下《平面直角坐标系》单元检测卷
- 格式:doc
- 大小:60.83 KB
- 文档页数:3
一、选择题1.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( )A .()2,0-B .()2,2-C .()2,0D .()5,12.已知点32,)6(M a a -+.若点M 到两坐标轴的距离相等,则a 的值为( ) A .4B .6-C .1-或4D .6-或233.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)4.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( ) A .3 B .1C .1或3D .2或35.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( ) A .(-2,3) B .(2,-3)C .(3,2)D .不能确定6.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2)7.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗8.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,59.如图,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为( )A .(1,3)B .(5,1)C .(1,3)或(3,5)D .(1,3)或(5,1)10.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求. A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭11.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上B .线段BO 上C .线段OC 上D .线段CD 上12.如图,△ABC 的顶点坐标分别为A(1,0),B(4,0),C(1,4),将△ABC 沿x 轴向右平移,当点C 落在直线y =2x -6上时,线段BC 扫过的面积为( )A .4B .8C .82D .16二、填空题13.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)14.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.15.在平面直角坐标系中,与点A (5,﹣1)关于y 轴对称的点的坐标是_____. 16.已知点A(3a ﹣6,a+4),B(﹣3,2),AB ∥y 轴,点P 为直线AB 上一点,且PA =2PB ,则点P 的坐标为_____.17.如图,若棋盘中“帅”的坐标是(0,1),“卒”的坐标是(2,2),则“马”的坐标是________.18.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.19.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 20.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.三、解答题21.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 . 22.如图,△ABC 在直角坐标系中, (1)请写出△ABC 各点的坐标.(2)若把△ABC 向上平移2个单位,再向左平移1个单位得到△A ′B ′C ′,写出A ′、B ′、C ′的坐标.(3)求出三角形ABC 的面积.23.如图,中国象棋中对“象”的走法有一定的限制,只能走“田”字.若此时“象”的坐标为()2,4--“帅”的坐标为()0,4-,建立直角坐标系并试写出此“象”下一步可能走到的各位置的坐标.24.在平面直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,2).(1)将△ABC 向右平移6个单位长度,再向下平移4个单位长度,得到△A 'B ′C ′.请画出平移后的△A ′B ′C ′,并写出点的坐标A ′( , )、B ′( , )、C ′( , ); (2)求出△A ′B ′C ′的面积;(3)若连接AA ′、CC ′,则这两条线段之间的关系是 .25.如图,三角形ABC 三个顶点坐标分别是()4,3A ,()3,1B ,()1,2C ,三角形ABC 内任意一点(),M m n .(1)将三角形ABC 平移得到三角形111A B C ,点C 的对应点为()14,4C ,请画出三角形111A B C 并写出1A 的坐标;(2)若三角形PQR 是三角形ABC 经过某种变换后得到的图形.点A 的对应点为P ,点B 的对应点为Q ,点C 的对应点为R .观察变换前后各对应点之间的关系,若点M 经过这种变换后的对应为N ,则点N 的坐标为(______,______)(用含m ,n 的式子表示)26.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2+5-b =0,过C 作CB ⊥x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据点A 的平移规律,求出点'C 的坐标即可. 【详解】∵()15A -,向右平移2个单位,向下平移1个单位得到()'14A ,, ∴()01C ,向右平移2个单位,向下平移1个单位得到()'20C ,, 故选:C .【点睛】此题考查点的坐标的平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.2.C解析:C 【分析】由点M 到两坐标轴的距离相等可得出32=6a a -+,求出a 的值即可. 【详解】解:∵点M 到两坐标轴的距离相等, ∴32=6a a -+∴32=6a a -+,()32=-6a a -+ ∴a=4或a=-1. 故选C . 【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出32=6a a -+,注意不要漏解.3.D解析:D 【分析】根据题意,可以画出相应的图形,然后即可发现点所在的位置变化特点,即可得到小球第2020次碰到球桌边时,小球的位置. 【详解】如图,小球第一次碰到球桌边时,小球的位置是(0,1) 小球第二次碰到球桌边时,小球的位置是(3,4) 小球第三次碰到球桌边时,小球的位置是(7,0) 小球第四次碰到球桌边时,小球的位置是(8,1) 小球第五次碰到球桌边时,小球的位置是(5,4) 小球第六次碰到球桌边时,小球的位置是(1,0) ……∵2020÷6=336 (4)∴小球第2020次碰到球桌边时,小球的位置是(8,1) 故选D【点睛】本题考查坐标位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答.4.C解析:C【分析】根据点A到x轴的距离与到y轴的距离相等可得3m-5=m+1或3m-5=-(m+1),解出m的值.【详解】解:∵点A到x轴的距离与到y轴的距离相等,∴3m-5=m+1或3m-5=-(m+1),解得:m=3或1,故选:C.【点睛】本题考查了点的坐标,关键是掌握到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值.5.B解析:B【分析】根据第四象限内的点的坐标第四象限(+,-),可得答案.【详解】解:M到x轴的距离为3,到y轴距离为2,且在第四象限内,则点M的坐标为(2,-3),故选:B.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.C解析:C【分析】以将向右平移1个单位,向上平移2个单位为坐标原点建立平面直角坐标系,然后写出炮的坐标即可.解:建立平面直角坐标系如图,炮(-2,1). 故选C . 【点睛】本题考查了坐标确定位置,准确确定出原点的位置是解题的关键.7.A解析:A 【分析】根据题意可以画出相应的平面直角坐标系,从而可以解答本题. 【详解】由题意可得,建立的平面直角坐标系如图所示,则在第三象限的棋子有“车”(21)--,一个棋子, 故选:A . 【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,画出相应的平面直角坐标系.注意:第三象限点的坐标特征()--, . 8.D解析:D 【分析】根据平行四边形的性质可知:平行四边形的对边平行且相等,连接各个顶点,数形结合,可以做出D 点可能的坐标,利用排除法即可求得答案. 【详解】解:数形结合可得点D 的坐标可能是(﹣3,﹣1),(7,﹣1),(1,5);但不可能是故选:D . 【点睛】本题考查平行四边形的性质和直角坐标系,考查学生解题的综合能力,解题的关键是在直角坐标系中画出可能的平行四边形.9.D解析:D 【分析】分两种情况考虑:①A 点移动到C 点,则向右移动一位,向上移动两位,另一个点同等平移即可;②B 点移动到C 点,则向右移动三位,再向上移动一位,另一个点同等平移即可. 【详解】 分两种情况考虑:①A 点移动到C 点,则向右移动一位,向上移动两位,则B 点平移后坐标为()1,3 ; ②B 点移动到C 点,则向右移动三位,再向上移动一位,则A 点平移后坐标为()5,1. 故答案选:D . 【点睛】本题考查坐标系中点的平移变换,掌握点的变换情况以及分类讨论是解题关键.10.D解析:D 【分析】先根据点P 和P′的坐标得出坐标的变化规律,再根据规律逐一判断即可得答案. 【详解】∵点()1,2P 平移后的坐标是,3()3P '﹣, ∴平移前后点的坐标变化规律为横坐标减去4,纵坐标加上1, A.()3,24(,2)→-,横坐标加1,纵坐标减4,故该选项不符合题意,B.()(104),5,--→-,横坐标减4,纵坐标减4,故该选项不符合题意,C.(1.2,5)→(-3.2,6),横坐标减4.8,纵坐标减1,故该选项不符合题意,D.122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭,横坐标减4,纵坐标加1,故该选项符合题意,故选:D.【点睛】本题考查了坐标与图形变化-平移,根据点P与P′的坐标,得出平移前后点的坐标变化规律是解题的关键.11.B解析:B【分析】根据被开方数越大算术平方根越大,可得5的范围,根据不等式的性质,可得答案.【详解】由被开方数越大算术平方根越大,得2<5<3,由不等式的性质得:-1<2-5<0.故选B.【点睛】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.12.D解析:D【解析】试题如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C 在直线y=2x-6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x-6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD-OA=5-1=4,则线段BC扫过的面积S=S平行四边形BCFE=CF•FD=16.故选D.二、填空题13.北偏东75°【分析】依据物体位置利用平行线的性质解答【详解】如图有题意得∠CAB=∵AC∥BD∴∠DBA=∠CAB=∴小明在小华北偏东75°方向故答案为:北偏东75°【点睛】此题考查了两个物体的位置解析:北偏东75°【分析】依据物体位置,利用平行线的性质解答.【详解】如图,有题意得∠CAB=75︒,∵AC ∥BD ,∴∠DBA=∠CAB=75︒,∴小明在小华北偏东75°方向,故答案为:北偏东75°..【点睛】此题考查了两个物体的位置的相对性,两直线平行内错角相等,分别以小明和小华的位置为观测点利用平行线的性质解决问题是解题的关键.14.【分析】设点P 的坐标为先根据点P 的位置可得再根据点到坐标轴的距离即可得【详解】设点P 的坐标为点位于轴上方轴左侧点P 距离轴4个单位长度距离轴2个单位长度即则点P 的坐标为故答案为:【点睛】本题考查了点到 解析:(2,4)-【分析】设点P 的坐标为(,)a b ,先根据点P 的位置可得0,0a b <>,再根据点到坐标轴的距离即可得.【详解】设点P 的坐标为(,)a b ,点P 位于x 轴上方,y 轴左侧,0,0a b ∴<>,点P 距离x 轴4个单位长度,距离y 轴2个单位长度,4,2b a ∴==,4,2b a ∴=-=,即2,4a b =-=,则点P 的坐标为(2,4)-,故答案为:(2,4)-.本题考查了点到坐标轴的距离、点坐标,掌握理解点到坐标轴的距离是解题关键. 15.(-5-1)【分析】考查平面直角坐标系点的对称性质【详解】解:点A (mn )关于y 轴对称点的坐标A′(-mn )∴点A (5-1)关于y 轴对称的点的坐标为(-5-1)故答案为:(-5-1)【点睛】此题考查解析:(-5,-1).【分析】考查平面直角坐标系点的对称性质.【详解】解:点A (m ,n )关于y 轴对称点的坐标A′(-m ,n )∴点A (5,-1)关于y 轴对称的点的坐标为(-5,-1).故答案为:(-5,-1).【点睛】此题考查平面直角坐标系点对称的应用.16.(﹣33)或(﹣3﹣1)【分析】由轴可知的横坐标相等故即可求出得根据已知分在线段上和在线段延长线两种情况求出即可得到两种情况下的坐标【详解】解:∵AB ∥y 轴∴3a ﹣6=﹣3解得a =1∴A (﹣35)∵解析:(﹣3,3) 或(﹣3,﹣1)【分析】由//AB y 轴可知AB 的横坐标相等,故363a -=-,即可求出1a =,得3AB =,根据已知2PA PB =,分P 在线段AB 上和在线段AB 延长线两种情况求出PA ,即可得到两种情况下P 的坐标.【详解】解:∵AB ∥y 轴,∴3a ﹣6=﹣3,解得a =1,∴A (﹣3,5),∵B 点坐标为(﹣3,2),∴AB =3,B 在A 的下方,①当P 在线段AB 上时,∵PA =2PB∴PA =23AB =2, ∴此时P 坐标为(﹣3,3),②当P 在AB 延长线时,∵PA =2PB ,即AB =PB ,∴PA =2AB ,∴此时P 坐标为(﹣3,﹣1);故答案为(﹣3,3)或(﹣3,﹣1).本题主要考查了坐标与图形的性质,掌握平行于y 轴的直线上所有点横坐标相等是解题的关键,并根据A 、B 两点的距离及相对位置,分类求解.17.(-22)【分析】根据帅和卒的坐标得出原点的位置即可求得马的坐标【详解】如图所示:马的坐标是:(-22)故答案为(-22)【点睛】本题考查了坐标确定位置正确得出原点的位置是解题关键解析:(-2,2)【分析】根据“帅”和“卒”的坐标得出原点的位置,即可求得“马”的坐标.【详解】如图所示:“马”的坐标是:(-2,2).故答案为(-2,2).【点睛】本题考查了坐标确定位置,正确得出原点的位置是解题关键.18.2021【分析】根据跳动的规律第偶数跳动至点的坐标横坐标是次数的一半加上1纵坐标是次数的一半奇数次数跳动与该偶数次跳动的横坐标下相反数加上1纵坐标相同分别求出点和点即可求解【详解】解:∵第二次跳动至 解析:2021【分析】根据跳动的规律,第偶数跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次数跳动与该偶数次跳动的横坐标下相反数加上1,纵坐标相同,分别求出点2019A 和点2020A 即可求解.【详解】解:∵第二次跳动至点的坐标为(2,1)第四次跳动至点的坐标为(3,2),第六次跳动至点的坐标为(4,3)第八次跳动至点的坐标为(5,4),第2n 次跳动至点的坐标是(1,)n n +,则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点的坐标是(1010,1010)-∵点2019A 和点2020A 的纵坐标相同,∴点2019A 和点2020A 之间的距离=1011(1010)2021--=故答案为:2021【点睛】本题主要考查了坐标与图形的性质,以及图形的变换问题,结合图形得到偶数次数跳动的点的横坐标与纵坐标的变换情况是解题的关键.19.7或﹣4【分析】根据题意可以求得a 的值然后再对t 进行讨论即可求得t 的值【详解】由题意可得水平底a=1﹣(﹣2)=3当t >2时h=t ﹣1则3(t ﹣1)=18解得t=7;当1≤t≤2时h=2﹣1=1≠6解析:7或﹣4.【分析】根据题意可以求得a 的值,然后再对t 进行讨论,即可求得t 的值.【详解】由题意可得,“水平底”a =1﹣(﹣2)=3,当t >2时,h =t ﹣1,则3(t ﹣1)=18,解得,t =7;当1≤t ≤2时,h =2﹣1=1≠6,故此种情况不符合题意;当t <1时,h =2﹣t ,则3(2﹣t )=18,解得t =﹣4,故答案为:7或﹣4.【点睛】本题考查了坐标与图形的性质,解答本题的关键是明确题目中的新定义,利用新定义解答问题.20.四【分析】根据直角坐标系象限坐标特征即可判断【详解】解:∵在第二象限在第三象限∴;;;=∴∴在第四象限故答案为:四【点睛】本题属于新定义提醒以及考察了直角坐标系点的特征关键在于坐标系的点的特征是关键 解析:四【分析】根据直角坐标系象限坐标特征即可判断.【详解】解:∵()11,A x y 在第二象限,()22,B x y 在第三象限∴10x <; 20x <; 10y >;20y <*A B =()()()11221221,*,,x y x y x y x y =∴1221,00x y x y ><∴*A B 在第四象限故答案为:四【点睛】本题属于新定义提醒,以及考察了直角坐标系点的特征,关键在于坐标系的点的特征是关键.三、解答题21.(1)3,4,2;(2)平行【分析】(1)根据坐标得表示方法可得到点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,根据点A 坐标即可求得点A 到原点O 的距离;(2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【详解】(1)点A 到原点O 的距离是3,点B 到x 轴的距离是4,点B 到y 轴的距离是2; (2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【点睛】本题考查点的坐标,熟练掌握利用平面直角坐标系写出点的坐标和确定点的位置是解题的关键.22.(1)A (﹣2,﹣2),B (3,1),C (0,2);(2)A ′(﹣3,0),B ′(2,3),C (﹣1,4);(3)7.【分析】(1)根据点的坐标的定义即可写出答案;(2)根据上加下减,左减右加的原则写出答案即可;(3)先将三角形补成一个矩形,再减去三个直角三角形的面积即可.【详解】解:(1)点A 、B 、C 分别在第三象限、第一象限和y 轴的正半轴上,则A (﹣2,﹣2),B (3,1),C (0,2);(2)∵把△ABC 向上平移2个单位,再向左平移1个单位得到△A ′B ′C ′,∴横坐标减1,纵坐标加2,即A ′(﹣3,0),B ′(2,3),C (﹣1,4);(3)S △ABC =4×5﹣12×5×3﹣12×4×2﹣12×1×3 =20﹣7.5﹣4﹣1.5=7.【点睛】本题考查了点的坐标的确定,三角形面积的求法以及坐标图形的变换-平移,是基础知识要熟练掌握.23.下一步“象”可能走到的位置的坐标为()0,2-、()4,2--【分析】由于中国象棋中的“象”,在图中的坐标为(−2,−4),而根据中国象棋中的“象”的走法可以确定下一步它可能走到的位置的坐标.【详解】解:建立坐标系,如图:∵中国象棋中的“象”,在图中的坐标为()2,4--,且象走田字,∴下一步它可能走到的位置的坐标为()0,2-、()4,2--.【点睛】此题把数学问题和实际生活结合起来,既考查了生活中的知识,也考查了利用数学知识解决实际问题的能力,要求学生生活经验比较丰富才能很好完成这些题目.24.(1)△A ′B ′C ′见解析;3,﹣2;1,﹣3;4,﹣4;(2)52;(3)AA ′∥CC ′,AA ′=CC ′ 【分析】(1)先根据平移的方式描出平移后点A ′、B ′、C ′的坐标,再顺次连接各点即得平移后的△A ′B ′C ′,进一步即可写出平移后各点的坐标;(2)用△A ′B ′C ′所在的长方形的面积减去周围三个三角形的面积求解即可;(3)根据平移的性质解答即可.【详解】解:(1)△A ′B ′C ′如图所示;点A ′(3,﹣2)、B ′(1,﹣3)、C ′(4,﹣4). 故答案为:3,﹣2;1,﹣3;4,﹣4;(2)S △A ′B ′C ′=3×2﹣12×2×1﹣12×1×2﹣12×1×3=6﹣1﹣1﹣32=52; (3)由平移的性质可知,AA ′∥CC ′,AA ′=CC ′.故答案为:AA ′∥CC ′,AA ′=CC ′.【点睛】本题考查了坐标系中平移作图和平移的性质,属于常考题型,熟练掌握平移的相关知识是解题的关键.25.(1)画图见解析,点1A 的坐标是(7,5);(2)﹣m ,﹣n【分析】(1)由点C 与其对应点C 1的坐标得出平移方式是先向右平移3个单位,再向上平移2个单位,进而可得点A 1、B 1的坐标,描点后再顺次连接即可;(2)对比点A 、B 、C 与其对应点P 、Q 、R 可得这种变换的方式,从而可得答案.【详解】解:(1)△111A B C 如图所示,点1A 的坐标是(7,5);(2)由于点A (4,3)的对应点P (﹣4,﹣3),点B (3,1)的对应点Q (﹣3,﹣1),点C (1,2)的对应点R (﹣1,﹣2),所以经过这种变换,对应点的横、纵坐标均互为相反数,因为点(),M m n ,所以点N 的坐标为(﹣m ,﹣n );故答案为:﹣m ,﹣n .【点睛】本题考查了平移变换与平移作图,属于常见题型,熟练掌握平移的性质是解题的关键. 26.(1)﹣5,5,20;(2)45°;(3)存在,P (0,6)或(0,﹣2)【分析】(1)根据非负数的性质求出a 、b ,得A 、B 、C 坐标即可解决问题.(2)如图2,过E 作EF ∥AC ,根据平行线的性质和角平分线的定义得结论;(3)存在两种情况:点P 在y 轴的正半轴和负半轴上,设P (0,t ),根据面积差列方程可得t 的值,可得对应点P 的坐标.【详解】(1)∵(a +5)2+5-b =0,又∵(a +5)2≥0,5-b ≥0,∴a =﹣5,b =5,∵CB ⊥x 轴,∴点A 坐标(﹣5,0),点B 坐标(5,0),点C 坐标(5,4),∴S △ABC =12×10×4=20, 故答案为:﹣5,5,20;(2)∵BD ∥AC ,∴∠CAB =∠ABD ,过E 作EF ∥AC ,如图2,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠CAE =12∠CAB =12=∠AEF ,∠DEF =∠BDE =12∠ODB , ∴∠AED =∠AEF +∠DEF =12(∠CAB +∠ODB )=1()2ABD ODB ∠+∠=45°;(3)存在,设P (0,t ),分两种情况:①当P 在y 轴正半轴上时,如图3,过P 作MN ∥x 轴,AN ∥y 轴,BM ∥y 轴,则NA=t ,MC=t-4,MN=AB=10,∵S △APC =S 梯形MNAC ﹣S △ANP ﹣S △CMP =S △ABC =20, ∴10(4)55(4)20222t t t t +----=, 解得t =6,②当P 在y 轴负半轴上时,如图4,过P 作MN ∥x 轴,AN ∥y 轴,BM ∥y 轴,则NA=-t ,MC=4-t ,MN=AB=10,∵S △APC =S 梯形MNAC ﹣S △ANP ﹣S △CMP =20∴10(4)5()5(4)20222t t t t -+-----=, 解得t =﹣2,∴P (0,6)或(0,﹣2).【点睛】 本题考查了坐标与图形的性质、非负数的性质、平行线的性质、角平分线的定义、三角形的面积等知识,解题的关键是添加常用辅助线,灵活运用这些知识,学会利用方程的思想思考并解决问题.。
人教版初中数学七年级下册第七章《平面直角坐标系》检测卷(含答案)一、选择题(每小题3分,共30分)1. 若有序数对(3a-1,2b+5)与(8,9)表示的位置相同,则a+b的值为( )A. 2B. 3C. 4D. 52. 如图,小手盖住的点的坐标可能为( )A. (5,2)B. (-6,3)C. (-4,-6)D. (3,-4)第2题第3题3. 雷达二维平面定位的主要原理是:测量目标的两个信息——距离和角度,目标的表示方法为(γ,α),其中,γ表示目标与探测器的距离;α表示以正东为始边,逆时针旋转后的角度.如图,雷达探测器显示在点A,B,C处有目标出现,其中,目标A的位置表示为A(5,30°),目标B的位置表示为B(4,150°).用这种方法表示目标C的位置,正确的是( )A. (-3,300°)B. (3,60°)C. (3,300°)D. (-3,60°)4. 把点A(-2,1)向上平移2个单位长度,再向右平移3个单位长度后得到点B,点B 的坐标是( )A. (-5,3)B. (1,3)C. (1,-3)D. (-5,-1)5. 在平面直角坐标系中,点P(2,x2)在( )A. 第一象限B. 第四象限C. 第一或者第四象限D. 以上说法都不对6. 如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误的是( )A. 炎陵位于株洲市区南偏东约35°的方向上B. 醴陵位于攸县的北偏东约16°的方向上C. 株洲县位于茶陵的南偏东约40°的方向上D. 株洲市区位于攸县的北偏西约21°的方向上第6题第7题7. 象棋在中国有着三千多年的历史,属于二人对抗性游戏的一种.由于用具简单,趣味性强,成为流行极为广泛的棋艺活动.如图是一方的棋盘,如果“帅”的坐标是(0,1),“卒”的坐标是(2,2),那么“马”的坐标是( )A. (-2,1)B. (2,-2)C. (-2,2)D. (2,2)8. 点M在y轴的左侧,到x轴、y轴的距离分别是3和5,则点M的坐标是( )A. (-5,3)B. (-5,-3)C. (5,3)或(-5,3)D. (-5,3)或(-5,-3)9. 已知A(-4,3),B(0,0),C(-2,-1),则三角形ABC的面积为( )A. 3B. 4C. 5D. 610. 如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P的坐标是( )A. (2019,0)B. (2019,1)C. (2019,2)D.(2018,0)二、填空题(每小题3分,共24分)11. 若将7门6楼简记为(7,6),则6门7楼可简记为,(8,5)表示的意义是.12. 平面直角坐标系内有一点P(x,y),若点P在横轴上,则y ;若点P在纵轴上,则x ;若点P为坐标原点,则x 且y .13. 已知A(-1,4),B(-4,4),则线段AB的长为.14. 若点(m-4,1-2m)在第三象限内,则m的取值范围是.15. 如图,线段OB,OC,OA的长度分别是1,2,3,且OC平分∠AOB.若将A点表示为(3,30°),B点表示为(1,120°),则C点可表示为.第15题第16题16. 如图,在平面直角坐标系xOy中,将线段AB平移得到线段MN.若点A(-1,3)的对应点为M(2,5),则点B(-3,-1)的对应点N的坐标是.17. 已知长方形ABCD在平面直角坐标系中的位置如图所示,将长方形ABCD沿x轴向左平移到使点C与坐标原点重合后,再沿y轴向下平移到使点D与坐标原点重合,此时点A的坐标是,点B坐标是,点C坐标是.第17题第18题18. 如图,在平面直角坐标系中,A,B的坐标分别为(3,0),(0,2),将线段AB平移至A1B1,则a+b的值为.三、解答题(共66分)19. (8分)如图是某市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度),如果以O为原点建立平面直角坐标系,用(2,2.5)表示金凤广场的位置,用(11,7)表示动物园的位置.根据此规定:(1)湖心岛、光岳楼、山陕会馆的位置如何表示?(2)(11,7)和(7,11)是同一个位置吗?为什么?20. (8分)如图所示,三角形ABC三点坐标分别为A(-3,4),B(-4,1),C(-1,2).(1)说明三角形ABC平移到三角形A1B1C1的过程,并求出点A1,B1,C1的坐标;(2)由三角形ABC平移到三角形A2B2C2又是怎样平移的?并求出点A2,B2,C2的坐标.21. (9分)某次海战中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?22. (9分)在平面直角坐标系中,描出点A(-1,3),B(-3,1),C(-1,-1),D(3,1),E(7,3),F(7,-1),并连接AB,BC,CD,DA,DE,DF,形成一个图案.(1)每个点的横坐标保持不变,纵坐标变为原来的一半,再按原来的要求连接各点,观察所得图案与原来的图案,发现有什么变化?(2)纵坐标保持不变,横坐标分别增加3呢?23. (10分)已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大5;(3)点P到x轴的距离为2,且在第四象限.24. (10分)如图,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘同一实数a,将得到的点先向右平移m个单位长度,再向上平移n个单位长度(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.25. (10分)如图,A(-1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求三角形ABC的面积;(3)在y轴上是否存在点P,使以A,人教版七年级下册第七章《平面直角坐标系》单元测试卷一、选择题(每小题5分,共25分)1、在平面直角坐标系中,若点P的坐标为(3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2、课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)3、若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(3,0)或(-3,0)C.(0,3)D.(0,3)或(0,-3)4、线段CD是由线段AB平移得到的.点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)5、若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)二、填空题(每小题5分,共25分)6、如果点M(3,x)在第一象限,则x的取值范围是.7、点A在y轴上,位于原点的上方,距离坐标原点5个单位长度,则此点的坐标为.8、小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3)、(-2,3),则移动后猫眼的坐标为.9、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为.10、如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.三、解答题(共50分)11、写出如图中“小鱼”上所标各点的坐标.12、如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.13、王明从A处出发向北偏东40°走30m,到达B处;李刚也从A处出发,向南偏东50°走了40m,到达C处.(1)用1cm表示10m,画出A,B,C三处的位置;(2)在图上量出B处和C处之间的距离,再说出王明和李刚两人实际相距多少米.14、如图,把△ABC向上平移4个单位长度,再向右平移2个单位得△A1B1C1,解答下列各题:(1)在图上画出△A1B1C1;(2)写出点A1,B1,C1的坐标.15、在平行四边形ACBO中,AO=5,则点B坐标为(-2,4).(1) 写出点C坐标;(2) 求出平行四边形ACBO面积.《平面直角坐标系》单元测试卷参考答案一、选择题1、A2、D3、B4、C5、B二、填空题6、x>07、(0,5)8、(-4,6)、(-2,6)9、(3,2) 10、(5,﹣5)三、解答题11、解:A(-2,0),B(0,-2),C(2,1),D(2,1),E(0,2), O(0,0). 12、解:图略.体育场(-4,3),文化宫(-3,1),宾馆(2,2),市人教版七年级数学下册第八章二元一次方程组单元提升检测题一、选择题(共9题;共27分)1.以为解的二元一次方程是()A. 2x-3y=-13B. y=2x+5C. y-4x=5D. x=y-32.下列4组数值,哪个是二元一次方程2x+3y=5的解?()A. B. C. D.3.二元一次方程组的解是()A. B. C. D.4.我们知道方程组的解是,现给出另一个方程组,它的解是A. B. C. D.5.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A. B. C. D.6.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是()A. 14B. 13C. 12D. 157.已知是二元一次方程组的解,则a+b的值是()A. 2B. -2C. 4D. -48.由方程组可得出x与y的关系是( )A. 2x+y=4B. 2x-y=4C. 2x+y=-4D. 2x-y=-49.如果方程组的解x,y的值相同,则m的值是( )A. 1B. -1C. 2D. -2二、填空题(共6题;共24分)10.有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需31.5元;若购铅笔4支,练习本10本,圆珠笔1支共需42元,那么购铅笔、练习本、圆珠笔各1件共需________元·11.已知关于x,y的二元一次方程组的解互为相反数,则k的值是________.12.已知方程组的解x,y满足x+3y=3,则m的值是________.13.已知a、b、c满足,则a=________,b=________,c=________.14.已知方程组由于甲看错了方程①中a得到方程组的解为,乙看错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.15.若a﹣3b=2,3a﹣b=6,则b﹣a的值为________.三、解答题(共7题;共49分)16.解二元一次方程组:.17.已知方程,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为.18.已知方程组由于甲看错了方程①中的a,得到方程组的解为乙看错了方程②中的b,得到方程组的解为试求出a,b的值.19.如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.20.列方程或方程组解应用题:“地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分﹣21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动.21.先阅读下列材料,再解决问题:解方程组时,如果我们直接消元,那么会很麻烦,但若用下面的解法,则要简便得多.解方程组解:①-②得,即③③×16得④②-④得,将代入③得,所以原方程组的解是.根据上述材料,解答问题:若的值满足方程组,试求代数式的值.22.已知方程组的解能使等式4x﹣6y=2成立,求m的值.答案一、选择题1. A2. B3. B4. D5. D6. C7. B8. A9. B二、填空题10. 10.5 11. -1 12. 1 13.2;2;-4 14.15.-2三、解答题16.解:②﹣①得:3x=6,解得:x=2,把x=2代入①得y=﹣1,∴原方程组的解为.17.x-y=318. 解:根据题意是②方程的解,是①方程的解,∴解得19.解:∵∠1= ∠2,∠1+∠2=162°,∴∠1=54°,∠2=108°.∵∠1和∠3是对顶角,∴∠3=∠1=54°∵∠2和∠4是邻补角,∴∠4=180°-∠2=180°-108°=72°20.解:设中国内地去年有x个城市参加了此项活动,今年有y个城市参加了此项活动.依题意,得,解得:,答:去年有33个城市参加了此项活动,今年有86个城市参加了此项活动21.解:①-②得,即③,③×2007得④,②-④得,将代入③得,故原方程组的解是;所以22.解:将2x+3y=7与4x﹣6y=2联立得:解得:x=2,y=1.把x=2,y=1代入5x﹣7y=m﹣1得:m﹣1=10﹣7,解得m=4.人教版数学七年级下册第八章《二元一次方程组》测试题一、选择题(每小题只有一个正确答案)1.下列各方程组中,属于二元一次方程组的是( )A. B. C. D.2.下列各组数中,方程2x-y=3和3x+4y=10的公共解是( )A. B. C. D.3.用代入法解方程组有以下步骤:①由(1),得y=(3);②由(3)代入(1),得7x-2×=3;③整理得3=3;④∴x可取一切有理数,原方程组有无数个解以上解法,造成错误的一步是( )A.① B.② C.③ D.④4.一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则x,y的值为( )A. B. C. D.5.|3x-y-4|+|4x+y-3|=0,那么x与y的值分别为( )A. B. C. D.6.从方程组中求x与y的关系是( )A.x+y=-1 B.x+y=1 C. 2x-y=7 D.x+y=97.如果ax+2y=1是关于x,y的二元一次方程,那么a的值应满足( )A.a是有理数 B.a≠0 C.a=0 D.a是正有理数8.已知甲数的60%加乙数的80%等于这两个数的和的72%,若设甲数为x,乙数为y,则下列方程中符合题意的是( )A . 60%x +80%y =x +72%yB . 60%x +80%y =60%x +yC . 60%x +80%y =72%(x +y )D . 60%x +80%y =x +y9.下列各组数中,不是方程2x +y =10的解是( )A .B .C .D .10.如图所示,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( ).A .400 cm 2B .500 cm 2C .600 cm 2D .4 000 cm 211.有大小两种货车,2辆大车与3辆小车一次可以运货15.5吨,5辆大车与6辆小车一次可以运货35吨,3辆大车与5辆小车一次可以运货为(单位:吨)( )A . 25.5B . 24.5C . 26.5D . 27.512.一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x 元,装订机的价格为y 元,依题意可列方程组为( )A .B .C .D .二、填空题13.在括号内填写一个二元一次方程,使其与二元一次方程5x -2y =1组成方程组的解是 你所填写的方程为______________. 14.已知方程3x -2y =5的一个解中,y 的值比x 的值大1,则这个方程的这个解是________.15.已知方程组则x -y =______,x +y =______. 16.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,所列方程组为______.17.已知方程2x 2n -1-3y 3m -n +1=0是二元一次方程,则m =______,n =______.三、解答题18、用代入消元法解方程组 20.用加减消元法解方程组⎩⎨⎧-=-=+54032y x y x 3410,490;x y x y +=⎧⎨+-=⎩19、用适当的方法解下列方程组(1)20328x y x y -=⎧⎨+=⎩ (2)23533x y x y -⎧=⎪⎪⎨+⎪=⎪⎩20.甲、乙两人共同解方程组⎩⎨⎧-=-=+ ②by x ①y ax 24155,由于甲看错了方程①中的a ,得到方程组的解为⎩⎨⎧-=-=13y x。
初中数学七年级下册第七章平面直角坐标系单元测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图所示,已知棋子“车”的坐标为(2-,1-),棋子“马”的坐标为(1,1-),则棋子“炮”的坐标为( )A .(3,2)B .(3-,2)C .(3,2-)D .(3-,2-)2、根据下列表述,能确定位置的是( )A .红星电影院2排B .北京市四环路C .北偏东30D .东经118︒,北纬40︒3、根据下列表述,不能确定具体位置的是( )A .电影院一层的3排4座B .太原市解放路85号C .南偏西30D .东经108︒,北纬53︒4、若点M 在第四象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为( )A .(1,-2)B .(2,1)C .(-2,1)D .(2,-1)5、点()2021,2022A --在( )A .第一象限B .第二象限C .第三象限D .第四象限6、如图,将一把直尺斜放在平面直角坐标系中,下列四点中,一定不会被直尺盖住的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-7、点P (3+a ,a +1)在x 轴上,则点P 坐标为( )A .(2,0)B .(0,﹣2)C .(0,2)D .(﹣2,0)8、点P (−2,−3)向上平移3个单位,再向左平移1个单位,则所得到的点的坐标为( )A .()1,0-B .()1,6-C .()3,6--D .()3,0-9、若点(),5A a a +在x 轴上,则点A 到原点的距离为( )A .5B .C .0D .5-10、将点()4,3-先向右平移7个单位,再向下平移5个单位,得到的点的坐标是( )A .()3,2-B .()3,2-C .()10,2--D .()3,8二、填空题(5小题,每小题4分,共计20分)1、已知线段 AB =4,AB ∥x 轴,若点A 坐标为(-1,2),且点B 在第一象限,则B 点坐标为______.2、已知点()2,1P m m -在第二、四象限的角平分线上,则m 的值为______.3、已知点A 在x 轴上,且3OA =,则点A 的坐标为______.4、如图,动点P 从()0,3出发,沿所示方向运动,每当碰到长方形OABC 的边时反弹,反弹时反射角等于入射角,当点P 第2020次碰到长方形OABC 的边时,点P 的坐标为________.5、在平面直角坐标系中,将点P (-3,4)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为__________.三、解答题(5小题,每小题10分,共计50分)1、在直角坐标系中描出各组点,并将各组内的点用线段依次连接起来.①()2,5,()0,3,()4,3,()2,5;②()1,3,()2,0-,()6,0,()3,3;③()1,0,()1,6-,()3,6-,()3,0.(1)观察得到的图形,你觉得它像什么?(2)找出图象上位于坐标轴上的点,与同伴进行交流;(3)上面三组点分别位于哪个象限,你是如何判断的?(4)图形上一些点之间具有特殊的位置关系,找出几对,它们的坐标有何特点?说说你的发现.2、已知点A (3a +2,2a ﹣4),试分别根据下列条件,求出a 的值.(1)点A 在y 轴上;(2)经过点A (3a +2,2a ﹣4),B (3,4)的直线,与x 轴平行;(3)点A 到两坐标轴的距离相等.3、在平面直角坐标系中,点A 的坐标是(2x -,1y +)2(2)0y -=.求点A 的坐标.4、如图,把△ABC 向上平移4个单位,再向右平移2个单位长度得△A 1B 1C 1,解答下列各题:(1)在图上画出△A 1B 1C 1;(2)写出点A 1、B 1、C 1的坐标;(3)△A 1B 1C 1的面积是______.5、如图所示,在平面直角坐标系中,△ABC 的三个顶点分别为A (-1,-1),B (-3,3),C (-4,1).画出△ABC 关于y 轴对称的△A 1B 1C 1, 并写出点B 的对应点B 1的坐标.---------参考答案-----------一、单选题1、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,−2).故选:C.本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2、D【分析】根据位置的确定需要两个条件对各选项分析判断即可.【详解】解:A、红星电影院2排,具体位置不能确定,不符合题意;B、北京市四环路,具体位置不能确定,不符合题意;C、北偏东30,具体位置不能确定,不符合题意;D、东经118︒,北纬40︒,很明确能确定具体位置,符合题意;故选:D.【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.3、C【分析】根据有序实数对表示位置,逐项分析即可【详解】解:A. 电影院一层的3排4座,能确定具体位置,故该选项不符合题意;B. 太原市解放路85号,能确定具体位置,故该选项不符合题意;C. 南偏西30,不能确定具体位置,故该选项符合题意;D. 东经108︒,北纬53︒,能确定具体位置,故该选项不符合题意;【点睛】本题考查了有序实数对表示位置,理解有序实数对表示位置是解题的关键.4、D【分析】先判断出点M 的横、纵坐标的符号,再根据点M 到x 轴、y 轴的距离即可得.【详解】 解:点M 在第四象限,∴点M 的横坐标为正数,纵坐标为负数,点M 到x 轴的距离为1,到y 轴的距离为2,∴点M 的纵坐标为1-,横坐标为2,即(2,1)M -,故选:D .【点睛】本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.5、C【分析】根据各象限内点的坐标特征解答.【详解】解:点()2021,2022A --的横坐标小于0,纵坐标小于0,点()2021,2022A --所在的象限是第三象限. 故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).6、D【分析】根据点的坐标,判断出点所在的象限,进而即可求解.【详解】解:∵直尺没有经过第四象限,而()2,1-在第四象限,∴一定不会被直尺盖住的点的坐标是()2,1-,故选D .【点睛】本题主要考查点的坐标特征,掌握点所在象限和点的坐标特征,是解题的关键.7、A【分析】根据x 轴上点的纵坐标为0列式计算求出a 的值,然后求解即可.【详解】解:∵点P (3+a ,a +1)在x 轴上,∴a +1=0,∴a =-1,3+a =3-1=2,∴点P 的坐标为(2,0).故选:A .【点睛】本题考查了点的坐标,主要利用了x轴上点的纵坐标为0的特点.8、D【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:将点P(-2,-3)向上平移3个单位,再向左平移1个单位,所得到的点的坐标为(-2-1,-3+3),即(-3,0),故选:D.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9、A【分析】根据x轴上点的纵坐标为0列式求出a,从而得到点A的坐标,然后解答即可.【详解】解:∵点A(a,a+5)在x轴上,∴a+5=0,解得a=-5,所以,点A的坐标为(-5,0),所以,点A到原点的距离为5.故选:A.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.10、A【分析】让点A 的横坐标加7,纵坐标减5即可得到平移后点的坐标.【详解】解:点()4,3A -先向右平移7个单位,再向下平移5个单位,得到的点坐标是(47,35)-+-,即(3,2)-, 故选A .【点睛】本题考查了坐标与图形变化-平移,解题的关键是掌握点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.二、填空题1、(3,2)【解析】【分析】线段AB ∥x 轴,A 、B 两点纵坐标相等,又AB =4,B 点可能在A 点左边或者右边,根据距离确定B 点坐标.【详解】解:∵AB ∥x 轴,∴A 、B 两点纵坐标都为2,又∵AB =4,∴当B 点在A 点左边时,B (-5,2),B (-5,2)在第二象限,与点B 在第一象限,不相符,舍去;当B 点在A 点右边时,B (3,2);故答案为:(3,2).【点睛】本题考查了平行于x 轴的直线上的点纵坐标相等,再根据两点相对的位置及两点距离确定点的坐标.2、-1【解析】【分析】根据第二、四象限的角平分线上点的特点即可得到关于a 的方程,进行求解即可.【详解】解:点()2,1P m m -在第二、四象限的角平分线上,∴210m m +-=,解得:1m =-,故答案为:1-.【点睛】题目主要考查了二、四象限角平分线上点的特点,掌握象限角平分线上点的特点是解题的关键.3、(3,0)或(-3,0)##(-3,0)或(3,0)【解析】【分析】根据题意可得点A 在x 轴上,且到原点的距离为3,这样的点有两个,分别在x 轴的正半轴和负半轴,即可得出答案.【详解】解:根据题意可得:点A 在x 轴上,且到原点的距离为3,这样的点有两个,分别在x 轴的正半轴和负半轴,∴点A 的坐标为(3,0)或(-3,0),故答案为:(3,0)或(-3,0).【点睛】题目主要考查点在坐标系中的位置,理解点在坐标系中的距离分两种情况是解题关键.5,04、()【解析】【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图,根据题意得:P0(0,3),P1(3,0),P2(7,4),P3(8,3),P4(5,0),P5(1,4),P6(0,3),P7(3,0),…,∴点P n的坐标6次一循环.经过6次反弹后动点回到出发点(0,3),∵2020÷6=336…4,∴当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(5,0).【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.5、()2,2-【解析】【分析】根据向右平移横坐标加,向下平移纵坐标减,计算即可得解.【详解】解:将点P (-3,4)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为()2,2-. 故答案为:()2,2-【点睛】本题考查了坐标与图形的变化—平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.三、解答题1、(1)像一棵树;(2)x 轴上的点有:()2,0-,()1,0,()3,0,()6,0;y 轴上的点有:()0,3;(3)点()2,5,()4,3,()1,3,()3,3在第一象限内,因为它们的横坐标与纵坐标都是正实数;点()1,6-,()3,6-在第四象限内,因为它们的横坐标是正实数,纵坐标是负实数;(4)点()0,3与()3,3的纵坐标相同,它们的连线段与x 轴平行;点()1,3,()1,0,()1,6-的横坐标相同,它们的连线段与y 轴平行.【解析】【分析】(1)依此描出各组点的坐标,然后依此连接,由图象可进行求解;(2)根据图象可直接进行求解;(3)根据平面直角坐标系中象限的符号特点可直接进行求解;(4)根据图象可直接进行求解.解:(1)描出各组点的坐标并依此连接,如图所示:由图象可知:像一棵树;(2)x 轴上的点有:()2,0-,()1,0,()3,0,()6,0;y 轴上的点有:()0,3;(3)点()2,5,()4,3,()1,3,()3,3在第一象限内,因为它们的横坐标与纵坐标都是正实数;点()1,6-,()3,6-在第四象限内,因为它们的横坐标是正实数,纵坐标是负实数;(4)学生的发现可以多样.例如,点()0,3与()3,3的纵坐标相同,它们的连线段与x 轴平行;点()1,3,()1,0,()1,6-的横坐标相同,它们的连线段与y 轴平行.【点睛】本题主要考查平面直角坐标系,解题的关键是在平面直角坐标系中描出各点的坐标.2、(1)(0,163-)(2)(14,4)(3)(−16,−16)或(3.2,−3.2) 【解析】(1)根据y轴上的点的纵坐标等于零,可得方程,解方程可得答案;(2)根据平行于x轴直线上的点纵坐标相等,可得方程,解方程可得答案;(3)根据点A到两坐标轴的距离相等,可得关于a的方程,解方程可得答案.【详解】解:(1)依题意有3a+2=0,解得a=23 -,2a﹣4=2×(23-)﹣4=163-.故点A的坐标为(0,163 -);(2)依题意有2a−4=4,解得a=4,3a+2=3×4+2=14,故点A的坐标为(14,4);(3)依题意有|3a+2|=|2a−4|,则3a+2=2a−4或3a+2+2a−4=0,解得a=−6或a=0.4,当a=−6时,3a+2=3×(−6)+2=−16,当a=0.4时,3a+2=3×0.4+2=3.2,2a−4=−3.2.故点A的坐标为(−16,−16)或(3.2,−3.2).【点睛】本题考查了点的坐标,x轴上的点的纵坐标等于零;平行于x轴直线上的点纵坐标相等.【解析】【分析】2(2)0y -=得出30x +=,20y -=,解出x ,y 即可得出点A 的坐标.【详解】30x +≥,2(2)0y -≥2(2)0y -=,30x ∴+=,20y -=,解得:3x =-,2y =,2325x ∴-=--=-,1213y +=+=,(5,3)A ∴-.【点睛】本题考查非负数的性质,几个非负数之和等于零,则每一个非负数都为0.4、(1)见解析;(2)A 1、B 1、C 1的坐标分别为(0,6),(-1,2),(5,2);(3)12.【解析】【分析】(1)把△ABC 的各顶点向上平移4个单位,再向右平移2个单位,顺次连接各顶点即为△A 1B 1C 1;(2)利用各象限点的坐标特征写出点A 1、B 1、C 1的坐标;(3)根据三角形面积公式求解.【详解】解:(1)如图,△A 1B 1C 1为所作;(2)点A 1、B 1、C 1的坐标分别为(0,6),(-1,2),(5,2);×6×4=12,(3)△A1B1C1的面积=12故答案为:12.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.5、见解析,点B的对应点B1的坐标为(3,3)【解析】【分析】根据轴对称的性质画出图形并写出坐标即可.【详解】如图所示,B1的坐标为(3,3).【点睛】本题考查了作图−轴对称,属于基础题.关键是确定对称点的位置.。
人教版七年级数学下册第七章平面直角坐标系单元测试题 (Word含答案)一、选择题(每小题3分,共30分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A.(5,4)B.(4,5)C.(3,4)D.(4,3)第1题第4题2.在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是() A、P(2,5)表示这个点在平面C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标3.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B 与C的纵坐标相同D.B与D的纵坐标相同5.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)6.下列坐标所表示的点中,距离坐标系的原点最近的是()A.(-1,1)B.(2,1)C.(0,2)D.(0,-2)7.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16) D.(16,44)二、填空题(每小题3分,共24分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置的坐标是.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P;15.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面,那么应该在字母的下面寻找.第16题第17题17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→” 方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形A BC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。
第七章《平面直角坐标系》检测卷题号一二三总分21 22 23 24 25 26 27 28分数一.选择题(共12小题)1、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)2、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)3、如图,下列说法正确的是()A、A与D的横坐标相同B、 C 与D的横坐标相同C、B与C的纵坐标相同D、 B 与D的纵坐标相同4、已知A(-4,2),B(1,2),则A,B两点的距离是()。
A.3个单位长度 B.4个单位长度 C.5个单位长度 D.6个单位长度5.小米同学乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(小圆半径是1km).若小艇C相对于游船的位置可表示为(270°,-1.5),则描述图中另外两个小艇A,B的位置,正确的是( )A.小艇A(60°,3),小艇B(-30°,2)B.小艇A(60°,3),小艇B(60°,2)C.小艇A(60°,3),小艇B(150°,2)D.小艇A(60°,3),小艇B(-60°,2)6.在平面直角坐标系中,点(-1,2m +1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知坐标平面内,线段AB∥x轴,点A(﹣2,4),AB=1,则B点坐标为()A.(﹣1,4)B.(﹣3,4)C.(﹣1,4)或(﹣3,4)D.(﹣2,3)或(﹣2,5)8.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣29.如图,下列说法正确的是()A.A与D的横坐标相同 B.C与D的横坐标相同C.B与C的纵坐标相同 D.B与D的纵坐标相同10.已知点A的坐标为(1,3),点B的坐标为(3,1),将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1),则点B的对应点的坐标为()A.(6,3)B.(0,3)C.(6,﹣1)D.(0,﹣1)11.将点(﹣3,2)先向右平移3个单位,再向下平移4个单位后与N点重合,则点N坐标为()A.(﹣3,﹣2)B.(0,﹣2)C.(0,2)D.(﹣6,﹣2)12.如图,一个机器人从点O出发,向正西方向走2m到达点A1;再向正北方向走4m到达点A2,再向正东方向走6m到达点A3,再向正南方向走8m到达点A4,再向正西方向走10m到达点A5,按如此规律走下去,当机器人走到点A9时,点A9在第()象限A.一B.二C.三D.四二.填空题(共4小题)13.如果将电影票上“8排5号”简记为(8,5),那么“11排10号”可表示为;(5,6)表示的含义是.14.边长为1的正方形网格在平面直角坐标系中,线段A1B1是由线段AB平移得到的,已知A,B两点的坐标分别为A(3,3),B(5,0),若A1的坐标为(﹣5,﹣3),则B1的坐标为.15.点M(3,4)与x轴的距离是个单位长度,与原点的距离是个单位长度.16.已知,点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,则a+b=.三.解答题(共4小题)17.在平面直角坐标系中,有点A(a+1,2),B(﹣a﹣5,2a+1).(1)若线段AB∥y轴,求点A、B的坐标;(2)当点B在第二、四象限的角平分线上时,求A点坐标.18.已知在平面直角坐标系中有三点A(﹣2,1)、B(3,1)、C(2,3),请回答如下问题:(1)在平面直角坐标系内描出点A、B、C;(2)在坐标系内存在点P,使以A、B、C、P四个点组成的四边形中,相对的两边互相平行且相等,则点P的坐标为.(直接写出答案)(3)平移线段BC,使得C点的对应点刚好与坐标原点重合,求出线段BC在平移的过程中扫过的面积.19.已知平面直角坐标系中有一点M(2m﹣3,m+1).(1)若点M到y轴的距离为2时,求点M的坐标;(2)点N(5,﹣1)且MN∥x轴时,求点M的坐标.20.对于实数a,b定义两种新运算“※”和“*”:a※b=a+kb,a*b=ka+b(其中k为常数,且k≠0),若对于平面直角坐标系xOy中的点P(a,b),有点P′的坐标(a※b,a*b)与之对应,则称点P的“k衍生点”为点P′.例如:P (1,3)的“2衍生点”为P′(1+2×3,2×1+3),即P′(7,5).(1)点P(﹣1,5)的“3衍生点”的坐标为;(2)若点P的“5衍生点”P的坐标为(9,﹣3),求点P的坐标;(3)若点P的“k衍生点”为点P′,且直线PP′平行于y轴,线段PP′的长度为线段OP长度的3倍,求k的值.参考答案与试题解析一.选择题(共12小题)1.【解答】解:将点(2,3)向下平移1个单位长度,所得到的点的坐标是(2,2),故选:B.2.【解答】解:A、东经37°,北纬21°物体的位置明确,故本选项错误;B、电影院某放映厅7排3号物体的位置明确,故本选项错误;C、芝罘区南大街无法确定物体的具体位置,故本选项正确;D、烟台山灯塔北偏东60°方向,距离灯塔3千米物体的位置明确,故本选项错误;故选:C.3.【解答】解:如图所示:点C的坐标为(5,3),故选:D.4.【解答】解:∵A(﹣1,5)向右平移2个单位,向下平移1个单位得到A′(1,4),∴C(0,1)右平移2个单位,向下平移1个单位得到C′(2,0),故选:C.5.【解答】解:根据点A(m,n),且有mn≤0,所以m≥0,n≤0或m≤0,n≥0,所以点A一定不在第一象限,故选:A.6.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:C.7.【解答】解:∵坐标平面内,线段AB∥x轴,∴点B与点A的纵坐标相等,∵点A(﹣2,4),AB=1,∴B点坐标为(﹣1,4)或(﹣3,4).故选:C.8.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.9.【解答】解:根据题意,点Q的横坐标为:﹣2﹣3=﹣5;纵坐标为﹣3+2=﹣1;即点Q的坐标是(﹣5,﹣1).故选:C.10.【解答】解:∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∴点B(3,1)的对应点的坐标为(0,﹣1).故选:D.11.【解答】解:如图,点A(﹣3,2)先向右平移3个单位得到B,再向下平移4个单位后与N点重合,观察图象可知N(0,﹣2),故选:B.12.【解答】解:由题可知,第一象限的规律为:3,7,11,15,19,23,27,…,3+4n;第二象限的规律为:2,6,10,14,18,22,26,…,2+4n;第三象限的规律为:1,5,9,13,17,21,25,…,1+4n;第四象限的规律为:4,8,12,16,20,24,…,4n;所以点A9符合第三象限的规律.故选:C.二.填空题(共4小题)13.【解答】解:∵8排5号简记为(8,5),∴11排10号表示为(11,10),(5,6)表示的含义是5排6号.故答案为:(11,10);5排6号.14.【解答】解:由点A到A1可知:各对应点之间的关系是横坐标加﹣8,纵坐标加﹣7,那点B到B1的移动规律也如此,则B1的横坐标为5+(﹣8)=﹣3;纵坐标为0+(﹣7)=﹣7;∴B1的坐标为(﹣3,﹣7).故答案为:(﹣3,﹣7).15.【解答】解:点M(3,4)与x轴的距离是4个单位长度,与原点的距离是5个单位长度,故答案为:4;516.【解答】解:由点A(a﹣1,b+2),B(3,4),C(﹣1,﹣2)在同一个坐标平面内,且AB所在的直线平行于x轴,AC所在的直线平行于y轴,可得:4=b+2,﹣1=a﹣1,解得:b=2,a=0,所以a+b=2,故答案为:2三.解答题(共4小题)17.【解答】解:(1)∵线段AB∥y轴,∴a+1=﹣a﹣5,解得:a=﹣3,∴点A(﹣2,2),B(﹣2,﹣5);(2)∵点B(﹣a﹣5,2a+1)在第二、四象限的角平分线上,∴(﹣a﹣5)+(2a+1)=0.解得a=4.∴点A的坐标为(5,2).18.【解答】解:(1)点A,B,C如图所示.(2)满足条件的点P的坐标为(8,3)或(﹣3,3)或(﹣1,﹣1).故答案为(8,3)或(﹣3,3)或(﹣1,﹣1).(3)线段BC在平移的过程中扫过的面积=2S△OBC=2×(3×3﹣×1×3﹣×1×2﹣×2×3)=7.19.【解答】解:(1)∵点M(2m﹣3,m+1),点M到y轴的距离为2,∴|2m﹣3|=2,解得m=2.5或m=0.5,当m=2.5时,点M的坐标为(2,3.5),当m=0.5时,点M的坐标为(﹣2,1.5);综上所述,点M的坐标为(2,3.5)或(﹣2,1.5);(2)∵点M(2m﹣3,m+1),点N(5,﹣1)且MN∥x轴,∴m+1=﹣1,解得m=﹣2,故点M的坐标为(﹣7,﹣1).20.【解答】解:(1)点P(﹣1,5)的“3衍生点”P′的坐标为(﹣1+3X5,﹣1X3+5),即(14,2),故答案为:(14,2);(2)设P(x,y)依题意,得方程组.解得.∴点P(﹣1,2);(3)设P(a,b),则P′的坐标为(a+kb,ka+b).∵PP′平行于y轴∴a=a+kb,即kb=0,又∵k≠0,∴b=0.∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP′的长度为|ka|.∴线段OP的长为|a|.根据题意,有|PP′|=3|OP|,∴|ka|=3|a|.∴k=±3.。
第7章平面直角坐标系一.选择题(共6小题)1.已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)2.如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(﹣3,4)且与y轴垂直,则L也会通过下列哪一点?()A.A B.B C.C D.D3.在平面直角坐标系中,将点P(﹣3,2)向右平移4个单位长度得到点P',则点P'所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限4.在A(﹣5,3)、B(﹣3,3)、C(﹣5,﹣3)、D(5,3)四个点中,有其中两个点确定的直线与y轴平行的是()A.点A、B B.点B、D C.点A、C D.点C、D 5.直角坐标系中,A、B两点的横坐标相同但均不为零,则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.以上都不对6.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)二.填空题(共5小题)7.点P(2,4)与点Q(﹣3,4)之间的距离是.8.无论m为何值,点A(m,5﹣2m)不可能在第象限.9.已知点A(2a+3,a﹣4)在二、四象限的角平分线上,则a=.10.A、B坐标分别A(1,0)、B(0,2),若将线段AB平移到CD,A与C对应,C、D的坐标分别为C(2,a),D(b,3),则a+b=.11.已知线段MN=5,MN∥y轴,若点M坐标为(﹣1,2),则点N的坐标为.三.解答题(共7小题)12.△ABC与△A′B′C′在平面直角坐标系中的位置如图(1)分别写出下列各点的坐标:A′;B′;C′(2)若点P(m,n)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为.(3)求△ABC的面积.13.(1)点P的坐标为(x,y),若x=y,则点P在坐标平面内的位置是;若x+y=0,则点P在坐标平面内的位置是;(2)已知点Q的坐标为(2﹣2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.14.已知点A(m+2,3)和点B(m﹣1,2m﹣4),且AB∥x 轴.(1)求m的值;(2)求AB的长.15.阅读材料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点A位于点(﹣4,4),点B位于点(3,1),则“帅”所在点的坐标为;“马”所在点的坐标为;“兵”所在点的坐标为.(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.16.如图,这是某市部分简图,为了确定各建筑物的位置:(图中小正方形的边长代表100m长)(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市、医院的坐标.17.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.18.先阅读下列一段文字,再解答问题已知在平面内有两点P1(x1,y1),P2(x2,y2),其两点间的距离公式为P 1P2=,同时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|(1)已知点A(2,4),B(﹣3,﹣8),试求A,B两点间的距离;(2)已知点A,B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A,B两点间的距离;(3)已知点A(0,6)B(﹣3,2),C(3,2),判断线段AB,BC,AC中哪两条是相等的?并说明理由.参考答案一.选择题(共6小题)1.A.2.D.3.A.4.C.5.B.6.C.二.填空题(共5小题)7.5.8.三9..10.2.11.(﹣1,﹣3)或(﹣1,7),三.解答题(共7小题)12.解:(1)如图所示:A′(﹣3,﹣4),B′(0,﹣1)、C′(2,﹣3);(2)A(1,0)变换到点A′的坐标是(﹣3,﹣4),横坐标减4,纵坐标减4,∴点P的对应点P′的坐标是(m﹣4,n﹣4);(3)△ABC的面积为:3×5﹣×1×5﹣×2×2﹣×3×3=6.故答案为:(﹣3,﹣4),(0,﹣1)、(2,﹣3);(m﹣4,n ﹣4).13.解:(1)∵点P的坐标为(x,y),若x=y,∴点P在一、三象限内两坐标轴夹角的平分线上.∵x+y=0,∴x、y互为相反数,∴P点在二、四象限内两坐标轴夹角的平分线上.故答案为:在一、三象限内两坐标轴夹角的平分线上.在二、四象限内两坐标轴夹角的平分线上.(2)∵点Q到两坐标轴的距离相等,∴|2﹣2a|=|8+a|,∴2﹣2a=8+a或2﹣2a=﹣8﹣a,解得a=﹣2或a=10,当a=﹣2时,2﹣2a=2﹣2×(﹣2)=6,8+a=8﹣2=6,当a=10时,2﹣2a=2﹣20=﹣18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(﹣18,18).14.解:(1)∵A(m+2,3)和点B(m﹣1,2m﹣4),且AB ∥x轴,∴2m﹣4=3,∴m=.(2)由(1)得:m=,∴m+2=,m﹣1=,2m﹣4=3,∴A(,3),B(,3),∵﹣=3,∴AB的长为3.15.解:(1)由点A位于点(﹣4,4),点B位于点(3,1)可知坐标系如图所示:则帅(1,0)、马(﹣2,1)、兵(2,3 ),故答案为:(1,0)、(﹣2,1)、(2,3 );(2)如图所示:A(﹣4,4)→(﹣2,3)→(0,2)→(2,3)→B(3,1).16.解:(1)建立平面直角坐标系如图所示;(2)市场(400,300),医院(﹣200,﹣200),超市(200,﹣300).17.解:(1)∵点P(3m﹣6,m+1)在y轴上,∴3m﹣6=0,解得m=2,∴m+1=2+1=3,∴点P的坐标为(0,3);(2)点P(3m﹣6,m+1)在x轴上,∴m+1=0,解得m=﹣1,∴3m﹣6=3×(﹣1)﹣6=﹣9,∴点P的坐标为(﹣9,0);(3)∵点P(3m﹣6,m+1)的纵坐标比横坐标大5,∴m+1﹣(3m﹣6)=5,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2);(4)∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上,∴m+1=2,解得m=1,∴3m﹣6=3×1﹣6=﹣3,m+1=1+1=2,∴点P的坐标为(﹣3,2).18.解:(1)依据两点间的距离公式,可得AB==13;(2)当点A,B在平行于y轴的直线上时,AB=|﹣1﹣5|=6;(3)AB与AC相等.理由:最新Word ∵AB==5;AC==5;BC=|3﹣(﹣3)|=6.∴AB=AC.。
七年级下册数学第七章单元检测题姓名:班级:时限:60分钟总分:120分分数:一、选择题(每小题3分,共36分)1.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.如图,长方形ABCD中,A(-4,1),B(0,1),C(0,3),则点D的坐标是()A.(-3,3)B.(-2,3)C.(-4,3)D.(4,3)3.如图,用手盖住的点的坐标可能是()A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)4.如图是小明画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示为()A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)5.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)6.已知点M(3,0),在x轴上有一点与M的距离为5,则该点的坐标为()A.(8,0)B.(0,-2)C.(0,-8)或(0,-2)D.(8,0)或(-2,0)7.将六边形ABCDEF的各个顶点的横坐标分别减去3,纵坐标保持不变,所得到的六边形与原六边形比较()A.向上平移三个单位,形状不变B.向下平移三个单位,形状不变C.向右平移三个单位,形状不变D.向左平移三个单位,形状不变8.已知点A(2,2),B(2,4),C(2,0),O(0,0),那么∠BOC和∠COA的大小关系是()A.∠BOC>∠COAB.∠BOA=∠COAC.∠BOC<∠COAD.以上三种情况都有可能9.如图是某中学的平面示意图,每个正方形格子的边长为1,如果校门所在的位置的坐标为(2,4),小明所在的位置的坐标为(-6,-1),那么坐标(3,-2)在示意图中表示的是()A.图书馆B.教学楼C.实验室D.食堂A B,则a+b的值10.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至11为()A.2B.3C.4D.511.如图为A,B,C三点在坐标平面上的位置图,若A,B,C的横坐标的数字总和为a,纵坐标的数字总和为b,则a-b的值为()A.5B.3C.-3D.-512.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2017次碰到长方形的边时,点P的坐标是()A.(1,4)B.(3,0)C.(6,4)D.(8,3)二、填空题(每小题3分,共15分)13.如果用(7,8)表示七年级八班,那么八年级七班可表示为________.14.若点M(a+3,a-2)在y轴上,则点M的坐标是_______.15.若点A(x,0)和B(2,0)的距离是5,则x=_______.16.如图,在平面直角坐标系中,三角形ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标是_______.17.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-8,-5),白棋④的坐标为(-7,-9),那么黑棋的坐标应该是_______.三、解答题(本大题共7小题,共69分)18.(8分)请写出点A,B,C,D的坐标.19.(9分)将三角形ABC向右平移4个单位长度,再向下平移5个单位长度,作'''.出平移后的三角形A B C20.(10分)(1)在坐标平面内画出点P (2,3);(必须自画坐标!)(2)将点P 向下平移6个单位长度得到点1P ,将点P 向左平移4个单位长度得到点2P ,分别画出点1P ,2P ,并写出1P ,2P 的坐标.21.(10分)在我国沿海地区,几乎每年夏秋两季都会或多或少的遭受台风的侵袭,加强台风的监测和预防,是减轻台风灾害的重要措施,下表是中央气象台发布的第13号台风的有关信息:请在下面的经纬度地图上找到台风中心在16日23时和17日23时所在的位置.22.(10分)如图,三角形A B C '''是由三角形ABC 平移得到的,已知三角形ABC中任意一点P (00,x y )经平移后的对应点为点P ′(005,2x y +-).(1)已知点A (-1,2),B (-4,5),C (-3,0),请写出点,,A B C '''的坐标;(2)试说明三角形A B C '''是如何由三角形ABC 平移得到的?23.(10分)在平面直角坐标系中,点A 的坐标是(3a -5,a +1).(不画图扣一分)(1)若点A 在y 轴上,求a 的值及点A 的坐标;(2)若点A 到x 轴的距离与到y 轴的距离相等,求a 的值及点A 的坐标.24.(12分)在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动一个单位,其行走路线如图所示.(1)分别写出点4812,A A A 和的坐标;(2)求出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点100A 到点101A 的移动方向.七年级下册数学第七章单元检测题(答案版)姓名:班级:时限:60分钟总分:120分分数:一、选择题(每小题3分,共36分)1.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限答案:D2.如图,长方形ABCD中,A(-4,1),B(0,1),C(0,3),则点D的坐标是()A.(-3,3)B.(-2,3)C.(-4,3)D.(4,3)答案:C3.如图,用手盖住的点的坐标可能是()A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)答案:D4.如图是小明画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示为()A.(1,0)B.(-1,0)C.(-1,1)D.(1,-1)答案:A5.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)答案:D6.已知点M(3,0),在x轴上有一点与M的距离为5,则该点的坐标为()A.(8,0)B.(0,-2)C.(0,-8)或(0,-2)D.(8,0)或(-2,0)答案:D7.将六边形ABCDEF的各个顶点的横坐标分别减去3,纵坐标保持不变,所得到的六边形与原六边形比较()A.向上平移三个单位,形状不变B.向下平移三个单位,形状不变C.向右平移三个单位,形状不变D.向左平移三个单位,形状不变答案:D8.已知点A(2,2),B(2,4),C(2,0),O(0,0),那么∠BOC和∠COA的大小关系是()A.∠BOC>∠COAB.∠BOA=∠COAC.∠BOC<∠COAD.以上三种情况都有可能答案:A9.如图是某中学的平面示意图,每个正方形格子的边长为1,如果校门所在的位置的坐标为(2,4),小明所在的位置的坐标为(-6,-1),那么坐标(3,-2)在示意图中表示的是()A.图书馆B.教学楼C.实验室D.食堂答案:AA B,则a+b10.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至11的值为()A.2B.3C.4D.5答案:A11.如图为A,B,C三点在坐标平面上的位置图,若A,B,C的横坐标的数字总和为a,纵坐标的数字总和为b,则a-b的值为()A.5B.3C.-3D.-5答案:A12.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2017次碰到长方形的边时,点P的坐标是()A.(1,4)B.(3,0)C.(6,4)D.(8,3)答案:B二、填空题(每小题3分,共15分)13.如果用(7,8)表示七年级八班,那么八年级七班可表示为________.答案:(8,7)14.若点M(a+3,a-2)在y轴上,则点M的坐标是_______.答案:(0,-5)15.若点A(x,0)和B(2,0)的距离是5,则x=_______.答案:-3或716.如图,在平面直角坐标系中,三角形ABC经过平移后点A的对应点为点A′,则平移后点B的对应点B′的坐标是_______.答案:(-2,1)17.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-8,-5),白棋④的坐标为(-7,-9),那么黑棋的坐标应该是_______.答案:(-4,-8)三、解答题(本大题共7小题,共69分)18.(8分)请写出点A,B,C,D的坐标.答案:A(3,2),B(-3,4),C(-4,-3),D(3,-3).19.(9分)将三角形ABC向右平移4个单位长度,再向下平移5个单位长度,作'''.出平移后的三角形A B C答案:20.(10分)(1)在坐标平面内画出点P (2,3);(2)将点P 向下平移6个单位长度得到点1P ,将点P 向左平移4个单位长度得到点2P ,分别画出点1P ,2P ,并写出1P ,2P 的坐标.答案:(1)如图所示(2)如图所示,1P 的坐标为1P (2,-3),2P 的坐标为2P (-2,3).21.(10分)在我国沿海地区,几乎每年夏秋两季都会或多或少的遭受台风的侵袭,加强台风的监测和预防,是减轻台风灾害的重要措施,下表是中央气象台发布的第13号台风的有关信息:请在下面的经纬度地图上找到台风中心在16日23时和17日23时所在的位置. 答案:如图所示22.(10分)如图,三角形A B C '''是由三角形ABC 平移得到的,已知三角形ABC 中任意一点P (00,x y )经平移后的对应点为点P ′(005,2x y +-).(1)已知点A (-1,2),B (-4,5),C (-3,0),请写出点,,A B C '''的坐标;(2)试说明三角形A B C '''是如何由三角形ABC 平移得到的?答案:(1)A ′(4,0),B ′(1,3),C ′(2,-2).(2)三角形A B C '''是由三角形ABC 向右平移5个单位,再向下平移2个单位得到的.23.(10分)在平面直角坐标系中,点A 的坐标是(3a -5,a +1).(1)若点A 在y 轴上,求a 的值及点A 的坐标;(2)若点A 到x 轴的距离与到y 轴的距离相等,求a 的值及点A 的坐标. 答案:(1)由题意得3a -5=0,∴a =53,∴A(0,83). (2)由题意得3a -5=a +1或3a -5=-(a +1),解得a =3或a =1,∴A(4,4)或(-2,2).24.(12分)在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动一个单位,其行走路线如图所示.(1)分别写出点4812,A A A 和的坐标;(2)求出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点100A 到点101A 的移动方向.答案:(1)4A (2,0),8A (4,0),12A (6,0).(2)当n=1时,4A (2,0);当n=2时,8A (4,0);当n=3时,12A (6,0);∴4n A (2n,0).(3)点100A 中的n 正好是4的倍数,所以点100A 和101A 的坐标分别是点100A (50,0),点101A (50,1),所以蚂蚁从点100A 到点101A 的移动方向是从上向下.。
人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。
人教版七年级数学下册第7章平面直角坐标系单元测试题学校:姓名:班级:考号:一、单选题1.某同学的座位号为(2,4)那么该同学的位置是()A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定2.下列四个点中,在第二象限的点是( ).A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)3.若),轴上的点尸到x轴的距离为3,则点夕的坐标是( )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.点M(根+1,〃2+3)在y轴上,则点M的坐标为()A.(0,-4)B.(4,0)C.(-2,0)D.(0,2)5.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)6.如果点P(5,y)在第四象限,则y的取值范围是( )A.y<0B.y>0C.y大于或等于0D.y小于或等于()7.如图:正方形ABCD中点A和点C的坐标分别为(・2,3)和(3,-2),则点B和点D的坐标分别为( ).A.(2,,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3) D.(2,2)和(-3,-3)8.一个长方形在平面直角坐标系中,三个顶点的坐标分别是(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标是( )A.(2,2)B.(3,3)C.(3,2)D.(2,3)9.线段A8两端点坐标分别为A(-1,4),8(-4,1),现将它向左平移4个单位长度,得到线段4囱,则4、S的坐标分别为()A.Ai(-5,0),Bi(-8,-3)B.4(3,7),B\(0,5)10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A 点为原点建立直角坐标系,则B 点坐标为( ).A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)11 .七年级(2)班教室里的座位共有7排8歹U,其中小明的座位在第3排第7歹U,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作.12 .若点P(a,-b)在第二象限,则点Q(-ab,a+b)在第象限.13 .若点P 到x 轴的距离是12JIJy 轴的距离是15,那么P 点坐标可以是 __________________ (写出一个即可).14 .小华将直角坐标系中的猫眼的图案向右平移了3个单位长度,平移前猫眼的坐标为 (-4,3)、(-2,3),则移动后猫眼的坐标为o15 .已知点P(x,y)在第四象限,且|x|二3,|y|=5,则点P 的坐标是 ___________________ . 16 .如图,中国象棋中的“象”,在图中的坐标为(1,0),•若"象''再走一步,试写出下一步它可能走到的位置的坐标.17 .如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C 在同一坐标系下的坐标.三、解答题18 .已知点N 的坐标为(2-a,3a+6),且点N 到两坐标轴的距离相等,求点N 的坐标.C.Ai (-5, 4), Bi (-8, 1)D.Ai (3, 4), Bi (0, 1)19.如图,这是某市部分简图,请建立适当的平面直角坐标系,分别写出各地的坐标.20.适当建立直角坐标系,描出点(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0),并用线段顺次连接各点.⑴看图案像什么?⑵作如下变化:纵坐标不变,横坐标减2,并顺次连接各点,所得的图案与原来相比有什么变化?21.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.22.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.23.请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)A(-4,4),B(-2,2).C(3,-3).D(5,-5).E(-3,3)F(0,0)24.这是一个动物园游览示意图,试设计描述这个动物园图中每个景点位置的一个方法,参考答案1. D【分析】1、分析题意,回忆用坐标确定位置的方法;2、观察发现题中没有规定排和列的前后顺序;3、接下来根据有序实数对的知识,解答本题.【详解】解:题中没有规定排在前,列在后;还是列在前,排在后,因此无法确定该同学的所坐位置.故选D.【点睛】在使用有序数对前,一定要先对有序数进行定义,否则很可能导致前后数表示的意义不明确, 从而确定不出位置.例如本题没有规定有序数对的列和排谁在前,所以无法得知其所表示的含义.2. C【分析】根据第二象限内点的横坐标为负,纵坐标为正进行判断即可.【详解】解:A.(2,-3)在第四象限内;B.(2,3)在第一象限内;C.(-2,3)在第二象限内;D.(-2,-3)在第三象限内.故选C.【点睛】本题主要考查平面直角坐标系,熟练掌握各个象限的坐标特点是解此题的关键.3. D【分析】由点在y轴上首先确定点P的横坐标为0,再根据点P到x轴的距离为3,确定P点的纵坐标,要注意考虑两种情况,可能在原点的上方,也可能在原点的下方.【详解】・・万轴上的点P,・・・尸点的横坐标为0,又丁点P到x轴的距离为3,・・・P点的纵坐标为±3,所以点。
人教版初中七年级数学下册第7章平面直角坐标系班级:________ 姓名:________ 分数:________ 一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.如果(7,2)表示电影票上“7排2号”,那么2排7号应该表示为()A.(7,2) B.(2,7) C.(-2,-7) D.(-7,-2)2.已知点A(-2,3),则点A在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列数据中不能确定物体位置的是()A.中原路398号 B.红星小区4号楼801号C.北偏东30° D.东经130°,北纬54°4.在下列点中,与点A(-2,-4)的连线平行于y轴的是()A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)5.点C在x轴下方,y轴右侧,距离x轴3个单位长度,距离y轴2个单位长度,则点C的坐标为()A.(2,3) B.(2,-3) C.(-3,2) D.(3,-2)6.平面直角坐标系中,将点A(-2,1)向右平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标为()A.(1,3) B.(-5,1) C.(-5,-1) D.(1,-1)7.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为()A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.如图,与图①中的三角形相比,图②中的三角形发生的变化是()A.向左平移3个单位长度 B.向左平移1个单位长度C.向上平移3个单位长度 D.向下平移1个单位长度9.在平面直角坐标系中,对于坐标P(3,4),下列说法中错误的是()A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标10.如果P(a,b)在第三象限,那么点Q(a+b,ab)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC 的面积为6,则点C的坐标为()A.(0,4) B.(0,2)C.(0,2)或(0,-2) D.(0,4)或(0,-4)12.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…的方向循环爬行,其中A点的坐标为(2,-2),B点的坐标为(-2,-2),C点的坐标为(-2,6),D点的坐标为(2,6),当蚂蚁爬了52个单位长度时,蚂蚁所处位置的坐标为()A.(-2,-2) B.(2,-2) C.(-2,6) D.(0,-2)二、填空题:每小题4分,共16分.13.如图,货船A与港口B相距47海里,我们用有序数对(南偏西40°,47海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为.14.如图,已知用手盖住的点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是.15.在平面直角坐标系中,已知点M(2,1),N(1,-1),平移线段MN,使点M落在点M′(-1,2)处,则点N对应的点N′的坐标为.16.(东湖区期末)如果点P(x,y)的坐标满足x+y=xy,那么称点P 为“和谐点”,若某个“和谐点”到x轴的距离为3,则该点的坐标为.三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)如图,在平面直角坐标系中,(1)写出点A,B,C,D,E的坐标;(2)描出点P(-2,-1),Q(3,-2),S(2,5),T(-4,3),分别指出各点所在的象限.18.(本题满分10分)请给下图建立平面直角坐标系,使文化馆的坐标为(-3,1),超市的坐标为(2,-3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)在(1)的坐标系中,标出小明家(4,-4),小刚家(-3,2),学校(-2,-1)的位置.19.(本题满分10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少?(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.20.(本题满分10分)如图是某次海战演习中敌我双方舰艇对峙的示意图.对我方舰艇3号来说:(1)北偏东40°方向上有哪些目标?要想确定敌方舰艇B的位置,还需要什么数据?(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有哪几艘?(3)要确定每艘敌方舰艇的位置,各需要几个数据?21.(本题满分10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3);(3)在(2)的条件下,直接写出点A1的坐标.22.(本题满分10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10 m).现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?23.(本题满分12分)“若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 中点的坐标为⎝⎛⎭⎪⎫x 1+x 22,y 1+y 22.”如图所示,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论求线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.24.(本题满分12分)(阳谷县期末)在平面直角坐标系中.(1)若点M(m-6,2m+3),点N(5,2),且MN∥y轴,求点M的坐标;(2)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求点M的坐标;(3)若点M(m-6,2m+3)到两坐标轴的距离相等,求点M的坐标.25.(本题满分12分) 如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向平移3个单位长度,平移后的线段为CD.(1)点C的坐标为;线段BC与线段AD的位置关系是;(2)在四边形ABCD中,点P从点A出发,沿“AB→BC→CD”移动,移动到点D停止.若点P的速度为每秒1个单位长度,运动时间为t s,回答下列问题.①直接写出点P在运动过程中的坐标(用含t的式子表示);②当5<t<7时,四边形ABCP的面积为4,求点P的坐标.参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共36分.1.如果(7,2)表示电影票上“7排2号”,那么2排7号应该表示为(B)A.(7,2) B.(2,7) C.(-2,-7) D.(-7,-2)2.已知点A(-2,3),则点A在(B)A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列数据中不能确定物体位置的是(C)A.中原路398号 B.红星小区4号楼801号C.北偏东30° D.东经130°,北纬54°4.在下列点中,与点A(-2,-4)的连线平行于y轴的是(C)A.(2,-4) B.(4,-2) C.(-2,4) D.(-4,2)5.点C在x轴下方,y轴右侧,距离x轴3个单位长度,距离y轴2个单位长度,则点C的坐标为(B)A.(2,3) B.(2,-3) C.(-3,2) D.(3,-2)6.平面直角坐标系中,将点A(-2,1)向右平移3个单位长度,再向下平移2个单位长度得到点A′,则点A′的坐标为(D)A.(1,3) B.(-5,1) C.(-5,-1) D.(1,-1)7.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为(B)A.(1,1) B.(2,1) C.(2,2) D.(3,1)8.如图,与图①中的三角形相比,图②中的三角形发生的变化是(A)A.向左平移3个单位长度 B.向左平移1个单位长度C.向上平移3个单位长度 D.向下平移1个单位长度9.在平面直角坐标系中,对于坐标P(3,4),下列说法中错误的是(D)A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标10.如果P(a,b)在第三象限,那么点Q(a+b,ab)在(B)A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知点A(-1,0),B(2,0),在y轴上存在一点C,使三角形ABC 的面积为6,则点C的坐标为(D)A.(0,4) B.(0,2)C.(0,2)或(0,-2) D.(0,4)或(0,-4)12.如图,平面直角坐标系中,一蚂蚁从A点出发,沿着A→B→C→D→A…的方向循环爬行,其中A点的坐标为(2,-2),B点的坐标为(-2,-2),C点的坐标为(-2,6),D点的坐标为(2,6),当蚂蚁爬了52个单位长度时,蚂蚁所处位置的坐标为(A)A.(-2,-2) B.(2,-2) C.(-2,6) D.(0,-2)二、填空题:每小题4分,共16分.13.如图,货船A与港口B相距47海里,我们用有序数对(南偏西40°,47海里)来描述货船B相对港口A的位置,那么港口A相对货船B的位置可描述为(北偏东40°,47海里).14.如图,已知用手盖住的点P到x轴的距离为4,到y轴的距离为5,则点P的坐标是(5,-4).15.在平面直角坐标系中,已知点M(2,1),N(1,-1),平移线段MN,使点M落在点M′(-1,2)处,则点N对应的点N′的坐标为(-2,0).16.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“和谐点”,若某个“和谐点”到x 轴的距离为3,则该点的坐标为⎝ ⎛⎭⎪⎫32,3或⎝ ⎛⎭⎪⎫34,-3. 三、解答题:本大题9小题,共98分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本题满分12分)如图,在平面直角坐标系中,(1)写出点A ,B ,C ,D ,E 的坐标;(2)描出点P(-2,-1),Q(3,-2),S(2,5),T(-4,3),分别指出各点所在的象限.解:(1)A(3,3),B(-5,2),C(-4,-3),D(4,-3),E(5,0).(2)如图所示.点P 在第三象限,点Q 在第四象限,点S 在第一象限, 点T 在第二象限.18.(本题满分10分)请给下图建立平面直角坐标系,使文化馆的坐标为(-3,1),超市的坐标为(2,-3).(1)画出坐标轴,并写出火车站、体育场、医院的坐标;(2)在(1)的坐标系中,标出小明家(4,-4),小刚家(-3,2),学校(-2,-1)的位置.解:(1)画坐标轴如图所示,火车站(0,0),体育场(-4,3),医院(-2,-2).(2)如图所示.19.(本题满分10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少?(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.解:(1)四边形ABCD的面积为(5-2)×(22-2)=3 2.(2)A′(2,-2),B′(5,-2),C′(5,0),D′(2,0).20.(本题满分10分)如图是某次海战演习中敌我双方舰艇对峙的示意图.对我方舰艇3号来说:(1)北偏东40°方向上有哪些目标?要想确定敌方舰艇B的位置,还需要什么数据?(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有哪几艘?(3)要确定每艘敌方舰艇的位置,各需要几个数据?解:(1)北偏东40°方向上有两个目标:敌方舰艇B和小岛,要想确定敌方舰艇B的位置,还需知道敌方舰艇B距我方舰艇3号的距离.(2)距我方舰艇3号图上距离约0.6 cm的敌方舰艇有两艘:敌方舰艇A和敌方舰艇C.(3)要确定每艘敌方舰艇的位置,各需要两个数据:距离和方位角.(如对我方舰艇3号来说,敌方舰艇A在正南方向,图上距离为0.6 cm 处;敌方舰艇B在北偏东40°方向,图上距离为1 cm处;敌方舰艇C在正东方向,图上距离为0.6 cm处)21.(本题满分10分)如图,在网格中,每个小正方形的边长均为1个单位长度,我们将小正方形的顶点叫做格点,三角形ABC的三个顶点均在格点上.(1)将三角形ABC先向右平移6个单位长度,再向上平移3个单位长度,得到三角形A1B1C1,画出平移后的三角形A1B1C1;(2)建立适当的平面直角坐标系,使得点A的坐标为(-4,3);(3)在(2)的条件下,直接写出点A1的坐标.解:(1)如图所示,△A1B1C1为所求.(2)如图所示.(3)点A1的坐标为(2,6).22.(本题满分10分)如图,有一块不规则的四边形地皮ABCO,各个顶点的坐标分别为A(-2,6),B(-5,4),C(-7,0),O(0,0)(图上一个单位长度表示10 m).现在想对这块地皮进行规划,需要确定它的面积.(1)求这个四边形的面积;(2)如果把四边形ABCO的各个顶点的纵坐标保持不变,横坐标加2,所得到的四边形面积是多少?解:(1)过点B 作BF ⊥x 轴于点F ,过点A 作AG ⊥x 轴于点G ,如图所示.∴S 四边形ABCO =S 三角形BCF +S 梯形ABFG +S 三角形AGO=⎣⎢⎡⎦⎥⎤12×2×4+12×(4+6)×3+12×2×6×102 =2 500(m 2).(2)把四边形ABCO 的各个顶点的纵坐标保持不变,横坐标加2,即将这个四边形向右平移2个单位长度,故所得到的四边形的面积与原四边形的面积相等,为2 500 m 2.23.(本题满分12分)“若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 中点的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.”如图所示,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论求线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.解:由点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4), 得D(-2,2),E(2,2).∵点D ,E 的纵坐标相等,且都不为0,∴DE ∥x 轴,又∵AB 在x 轴上,∴DE ∥AB.24.(本题满分12分)(阳谷县期末)在平面直角坐标系中.(1)若点M(m-6,2m+3),点N(5,2),且MN∥y轴,求点M的坐标;(2)若点M(a,b),点N(5,2),且MN∥x轴,MN=3,求点M的坐标;(3)若点M(m-6,2m+3)到两坐标轴的距离相等,求点M的坐标.解:(1)∵MN∥y轴,∴点M的横坐标和点N的横坐标相同,∴m-6=5,得m=11,故点M的坐标为(5,25).(2)∵MN∥x轴,∴点M的纵坐标和点N的纵坐标相同,∴b=2,∵MN=3,∴|a-5|=3,解得a=8或a=2,故点M的坐标为(8,2)或(2,2).(3)∵点M到两坐标轴距离相等,点M的横坐标和纵坐标不能同时为0,∴点M不在原点上,分别在第一、三象限或第二、四象限,当在第一、三象限时,可知m-6=2m+3,得m=-9,点M的坐标为(-15,-15),当在第二、四象限时,可知m-6=-(2m+3),得m=1,点M的坐标为(-5,5),故点M的坐标为(-15,-15)或(-5,5).25.(本题满分12分)(官渡区月考)如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向平移3个单位长度,平移后的线段为CD.(1)点C的坐标为(-4,2);线段BC与线段AD的位置关系是平行;(2)在四边形ABCD中,点P从点A出发,沿“AB→BC→CD”移动,移动到点D 停止.若点P 的速度为每秒1个单位长度,运动时间为t s ,回答下列问题.①直接写出点P 在运动过程中的坐标(用含t 的式子表示); ②当5<t <7时,四边形ABCP 的面积为4,求点P 的坐标.解:(2)①当0≤t <2时,p(-1,t);当2≤t ≤5时,p(-t +1,2);当5<t ≤7时,p(-4,7-t).②由题意知AB =2,AD =3,PD =7-t ,∴S 四边形ABCP =S 四边形ABCD -S △ADP =4,∴2×3-12×3×(7-t)=4,解得t =173,∴7-t =7-173=43, ∴点P ⎝⎛⎭⎪⎫-4,43.。
平面直角坐标系单元练习题
一.选择题
1、在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比是()
A、向右平移了3个单位
B、向左平移了3个单位
C、向上平移了3个单位
D、向下平移了3个单位
2、三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为() A、(2,2)(3,4) B、(3,4)(1,7)
C、(-2,2)(1,7)
D、(3,4)(2,-2)
3、一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()
A、(2,2)
B、(3,2)
C、(3,3)
D、(2,3)
4、如图,下列说法正确的是()
A、A与D的横坐标相同
B、 C 与D的横坐标相同
C、B与C的纵坐标相同
D、 B 与D的纵坐标相同
5. 点E(a,b)到x轴的距离是4,到y轴距离是3,则有()
A.a=3, b=4 B.a=±3,b=±4 C.a=4, b=3 D.a=±4,b=±3
6.已知点P(a,b),ab>0,a+b <0,则点P在()
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7、点P(m+3, m+1)在直角坐标系得x轴上,则点P坐标为()
A.(0,-2) B.( 2,0) C.( 4,0) D.(0,-4)
8. 已知点P(x, x),则点P一定()
A.在第一象限 B.在第一或第四象限 C.在x轴上方 D.不在x轴下方
9. 点A(0,-3),以A为圆心,5为半径画圆交y轴负半轴的坐标是()
A.(8,0) B.( 0,-8) C.(0,8) D.(-8,0)
10. 若
4
,5=
=b
a,且点M(a,b)在第三象限,则点M的坐标是()
A、(5,4)
B、(-5,
C、(-5,-4)
D、(5,-4)
11. 已知点A
()2,2-,如果点A关于x轴的对称点是B,点B关于原点的对称点是C,那么C点的坐标是()
A、()2,2
B、()2,2-
C、()1,1-
-D、()2,2-
-
二、填空题
1. 已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________________
2.如果用(7,8)表示七年级八班,那么八年级七班可表示成 .
3.将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x,-1),则xy=___________.
4. 如果p(a+b,ab)在第二象限,那么点Q (a,-b) 在第象限.
5、已知线段 MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为 .
6. 点A(-3,5)在第_____象限,到x轴的距离为______,到y轴的距离为_______。
7、已知x轴上点P到y 轴的距离是3,则点P坐标是_________。
8. 将点P(-3,2)向下平移3个单位,向左平移2个单位后得到点Q(x,y),则xy=___________
9. 、如果点M(a,b)第二象限,那么点N(b,a)在第象限。
10、已知点M ()y x,与点N()3,2-
-关于x轴对称,则x + y = 。
11、已知点M ()a
a-
+4,3在y轴上,则点M的坐标为。
12、若点P到x轴的距离为2,到y轴的距离为3,则点P的坐标为。
三、解下列各题
1. 如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0). (1)确定这个四边形的面积,你是怎么做的?
(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标都增加2,所得的四边形面积又是多少?
2. 已知四边形ABCD各顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0)
(1)请建立平面直角坐标系,并画出四边形ABCD。
(2)求四边形ABCD的面积。
3.图中标明了李明同学家附近的一些地方。
(1)根据图中所建立的平面直角坐标系,写出学校,邮局的坐标。
(2)某星期日早晨,李明同学从家里出发,沿着(-2, -1)、(-1,-2)、(1,-2)、(2,-1)、(1,-1)、(1,3)、(-1,0)、(0,-1)的路线转了一下,写出他路上经过
x 的地方。
(3)连接他在(2)中经过的地点,你能得到什么图形?
4.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示。
可是她忘记了在图中标出原点和x 轴、y 轴。
只知道游乐园D 的坐标为(2,-2),你能帮她求出其他各景点的坐标?
A。