【最新】2018-2019学年度高中北师大版数学必修2课时跟踪检测:(三)三视图
- 格式:doc
- 大小:422.00 KB
- 文档页数:7
北师大版 2017-2018学年高中数学必修2全一册课时作业汇编目录2017-2018学年高中数学课时作业1 1.1简单几何体北师大版必修2含答案2017-2018学年高中数学课时作业2 1.2直观图北师大版必修2含答案2017-2018学年高中数学课时作业3 1.3三视图北师大版必修2含答案2017-2018学年高中数学课时作业4 1.4空间图形的基本关系与公理北师大版必修2含答案2017-2018学年高中数学课时作业5 1.4空间图形的基本关系与公理北师大版必修2含答案2017-2018学年高中数学课时作业6 1.5平行关系北师大版必修2含答案2017-2018学年高中数学课时作业7 1.5平行关系北师大版必修2含答案2017-2018学年高中数学课时作业8 1.6垂直关系北师大版必修2含答案2017-2018学年高中数学课时作业9 1.6垂直关系北师大版必修2含答案2017-2018学年高中数学课时作业10 1.6垂直关系北师大版必修2含答案2017-2018学年高中数学课时作业11 1.7简单几何体的面积和体积北师大版必修2含答案2017-2018学年高中数学课时作业12 1.7简单几何体的面积和体积北师大版必修2含答案2017-2018学年高中数学课时作业13 1.7简单几何体的面积和体积北师大版必修2含答案2017-2018学年高中数学课时作业14 2.1直线与直线的方程北师大版必修2含答案2017-2018学年高中数学课时作业15 2.1直线与直线的方程北师大版必修2含答案2017-2018学年高中数学课时作业16 2.1直线与直线的方程北师大版必修2含答案2017-2018学年高中数学课时作业17 2.1直线与直线的方程北师大版必修2含答案2017-2018学年高中数学课时作业18 2.1直线与直线的方程北师大版必修2含答案2017-2018学年高中数学课时作业19 2.1直线与直线的方程北师大版必修2含答案2017-2018学年高中数学课时作业20 2.2圆与圆的方程北师大版必修2含答案2017-2018学年高中数学课时作业21 2.2圆与圆的方程北师大版必修2含答案2017-2018学年高中数学课时作业22 2.2圆与圆的方程北师大版必修2含答案2017-2018学年高中数学课时作业23 2.2圆与圆的方程北师大版必修2含答案2017-2018学年高中数学课时作业24 2.3空间直角坐标系北师大版必修2含答案课时作业1简单几何体|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.下面的几何体中是棱柱的有( )A.3个B.4个C.5个 D.6个解析:棱柱有三个特征:(1)有两个面相互平行;(2)其余各面是四边形;(3)侧棱相互平行.本题所给几何体中⑥⑦不符合棱柱的三个特征,而①②③④⑤符合,故选C.答案:C2.下面图形中,为棱锥的是( )A.①③ B.①③④C.①②④ D.①②解析:根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.答案:C3.下列图形中,是棱台的是( )解析:由棱台的定义知,A、D的侧棱延长线不交于一点,所以不是棱台;B中两个面不平行,不是棱台,只有C符合棱台的定义,故选C.答案:C4.给出下列说法:①以直角三角形的一边所在直线为旋转轴,旋转一周而得的旋转体是圆锥;②以直角梯形的一边所在直线为旋转轴,旋转一周而得的旋转体是圆台;③圆锥、圆台的底面都是圆面;④分别以矩形长和宽(长和宽不相等)所在直线为旋转轴,旋转一周而得的两个圆柱是两个不同的圆柱.其中正确说法的个数是( )A.1 B.2C.3 D.4解析:以直角三角形的一条直角边所在直线为旋转轴,旋转一周所得的旋转体才是圆锥,若以斜边所在直线为旋转轴,旋转一周所得的旋转体是由两个圆锥组成的组合体,故①错误;以直角梯形中垂直于底边的腰所在直线为旋转轴,旋转一周而得的旋转体是圆台,以其他的边所在直线为旋转轴,旋转一周而得的旋转体不是圆台,②错误;③④是正确的.答案:B5.一个正方体内有一个内切球,作正方体的对角面,所得截面图形是下图中的( )解析:由组合体的结构特征知,球只与正方体的上、下底面相切,而与两侧棱相离.故正确答).以等腰梯形的对称轴为轴旋转一周,所形成的旋转体是________112-2①不正确.棱锥的定义是:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.而“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,故此说法是错误的.如图所示的几何体满足此说法,但它不是棱锥,理由是△②错误.正棱锥的侧面都是等腰三角形,不一定是等边三角形.③错误.由已知条件知,此三棱锥的三个侧面未必全等,所以不一定是正三棱锥.如图所示的满足底面△BCD为等边三角形.三个侧面△长度不一定,三个侧面不一定全等.10.如图所示为长方体ABCD-A′B′C′D′,当用平面BCFE把这个长方体分成两部分后,各部分形成的多面体还是棱柱吗?如果不是,请说明理由;如果是,指出底面及侧棱.解析:截面BCFE上方部分是棱柱BB′E-CC′F,其中平面BB′E和平面CC′F是其底面,BC,B′C′,EF是其侧棱.截面BCFE下方部分是棱柱ABEA′-DCFD′,其中平面ABEA′和平面DCFD′是其底面,AD,BC,EF,A′D′是其侧棱.|能力提升|(20分钟,40分)11.有下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②圆锥顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是( )A.①② B.②③C.①③ D.②④解析:对于①③两点的连线不一定在圆柱、圆台的曲面上,当然有可能不是母线了,②④由母线的定义知正确.答案:D12.如图,这是一个正方体的表面展开图,若把它再折回成正方体后,有下列命题:①点H与点C重合;②点D与点M与点R重合;③点B与点Q重合;④点A与点S重合.其中正确命题的序号是________.(注:把你认为正确的命题的序号都填上)解析:还原成正方体考虑.答案:②④13.如图所示是一个三棱台ABC-A′B′C′,试用两个平面把这个三棱台分成三部分,使每一部分都是一个三棱锥.解析:过A′,B,C三点作一个平面,再过A′,B,C′作一个平面,就把三棱台ABC-A′B′C′分成三部分,形成的三个三棱锥分别是A′-ABC,B-A′B′C′,A′-BCC′.(答案不唯一)14.如图所示的直角梯形ABCD,AB⊥BC,绕着CD所在直线l旋转一周形成一个几何体,试说明该几何体的结构特征.解析:如图所示,过A,B分别作AO1⊥l,BO2⊥l,垂足分别为O1,O2,则Rt△CO2B绕l旋转一周所形成的几何体是圆锥,直角梯形O1ABO2绕l旋转一周所形成的几何体是圆台,Rt△DO1A绕l旋转一周所形成的几何体是圆锥.综上,可知所求几何体下面是一个圆锥,上面是一个圆台挖去了一个以圆台上底面为底面的圆锥.课时作业2直观图解析:直观图中的多边形为正方形,对角线的长为2,所以原图形为平行四边形,位于)如图所示的用斜二测法画的直观图,其平面图形的面积为该直观图的原图为直角三角形,两条直角边分别为4,×22=64.________.解析:由直观图,可知原图形为直角梯形,且上底为1,下底为的正方体的直观图.作水平放置的正方形的直观图ABCD,使∠BAD=45°,′=90°,分别过点A,B,如下图①,擦去辅助线,把被遮住的线改为虚线,得到的图形如.如图所示是水平放置三角形的直观图,点D是△ABC的BC,AC中( )⊥BC,从而AB<AD<AC.,BD=4,AB=17OAB的直观图.为坐标原点,以OB所在的直线及垂直于轴于点M,如图′=45°.O′A′B′为水平放置的△OAB的直观图..画正六棱柱的直观图.′轴、z′轴,使∠x′O′y′=45°,∠x′O′z′=90°;画底面:画正六边形的直观图ABCDEF(O′为正六边形的中心);C,D,E,F各点分别作z′轴的平行线,在这些平行线上分别截取′,FF′,使AA′=BB′=CC′=DD′=EE′=FF′;′B′,B′C′,C′D′,D′E′,E′F′,F′A′,并加以整理,就得到正六棱柱ABCDEF-A′B课时作业3三视图|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )解析:本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C,都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.答案:D2.如图所示,甲、乙、丙是三个几何体的三视图,则甲、乙、丙对应的几何体分别为( )①长方体;②圆锥;③三棱锥;④圆柱.A.④③②B.①③②C.①②③ D.④②③解析:由于甲中的俯视图是圆,则甲对应的几何体是旋转体,又主视图和左视图均是矩形,所以该几何体是圆柱;易知乙对应的几何体是三棱锥;由丙中的俯视图,可知丙对应的几何体是旋转体,又主视图和左视图均是三角形,所以该几何体是圆锥.答案:A3.(2016·河北名师俱乐部3月模拟)某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则( )A.3∈A B.5∈AC.26∈A D.43∈A解析:由三视图可得,该几何体的直观图如图所示,其中底面是边长为4的正方形,AF⊥平面ABCD,AF∥DE,AF=2,DE=4,可求得BE的长为43,BF的长为25,EF的长为25,EC的长为42,故选D.答案:D4.如图为某组合体的三视图,则俯视图中的长和宽分别为( )A.10,4 B.10,8C.8,4 D.10,5解析:根据三视图中的“主、俯视图长对正,主、左视图高平齐,俯、左视图宽相等”,可知俯视图的长和主视图的长相等,为2+6+2=10,俯视图的宽与左视图的宽相等,为1+2+1=4,所以选A.答案:A5.(2016·东北四市联考(二))如图,在正方体ABCD-A1B1C1D1中,P是线段CD的中点,则三棱锥P-A1B1A的侧视图为( )解析:如图,画出原正方体的侧视图,显然对于三棱锥P-A1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为D.答案:D二、填空题(每小题5分,共15分)6.桌上放着一个半球,如图所示,则在它的三视图及右面看到的图形中,有三个图相同,这个不同的图应该是________.解析:俯视图为圆,主视图与左视图均为半圆. 答案:俯视图 7.如图,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,高为3,则其左视图的面积为________. 解析:由三视图的画法可知,该几何体的左视图是一个矩形,其底面边长为2sin60°=3,高为3,∴面积S =3 3.答案:3 38.(2016·山东安丘市高二上期末)一个几何体的三视图如图所示,其中正视图是边长为2的正三角形,俯视图是正方形,那么该几何体的侧视图的面积是________.解析:根据三视图可知该几何体是一个四棱锥,其底面是正方形,侧棱相等,所以这是一个正四棱锥.其侧视图与正视图是完全一样的正三角形.故其面积为34×22= 3.答案: 3三、解答题(每小题10分,共20分) 9.试画出如图所示的正四棱台的三视图.解析:如图.10.根据图中的三视图想象物体原形,并画出物体的实物草图.解析:由俯视图并结合其他两个视图可以看出,这个物体是由上面一个正四棱台和下面一个正方体组合而成的,它的实物草图如图所示.|能力提升|(20分钟,40分)11.(2016·广东省台山市华侨中学高二上期末)定义:底面是正三角形,侧棱与底面垂直的三棱柱叫做正三棱柱.将正三棱柱截去一个角(如图1所示,M,N分别是AB,BC的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图为( )解析:N的投影是C,M的投影是AC的中点.对照各图.选D.答案:D12.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析:三棱锥、四棱锥和圆锥的正视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观测者时其正视图是三角形,四棱柱、圆柱无论怎样放置,其正视图都不可能是三角形.答案:①②③⑤13.如图所示,是一个长方体截去一个角所得多面体的直观图和它的主视图和左视图(单位:cm).请在正视图下面,按照画三视图的要求画出该多面体的俯视图.解析:依据三视图的绘图原则,可作出该几何体的俯视图如图.14.某建筑由相同的若干房间组成,该楼房的三视图如图所示,问:(1)该楼房有几层?从前往后最多要经过几个房间?(2)最高一层的房间在什么位置?请画出此楼房的大致形状.解析:(1)由主视图和左视图可以知道,该楼房有3层;由俯视图知道,从前往后最多要经过3个房间;(2)从主视图和左视图可以知道,最高一层的房间在左侧的最后一排的房间.楼房大致形状如图所示.课时作业4公理1、公理2、公理3及应用|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.点P在直线l上,而直线l在平面α内,用符号表示为( )A.P⊂l⊂αB.P∈l∈αC.P⊂l∈α D.P∈l⊂α解析:直线和平面可看作点的集合,点是基本元素.故选D.答案:D2.已知a、b是异面直线,直线c∥直线a,那么c与b( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线解析:若b∥c,∵a∥c,∴a∥b,这与a、b异面矛盾,其余情况均有可能.答案:C3.(2017·安庆市石化一中高二上期中)若直线a平行于平面α,则下列结论错误的是( ) A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a成90°角解析:因为直线a平行于平面α,所以a与平面α内的直线平行或异面,故A错误;α内有无数条直线与a平行,故B正确;直线a上的点到平面α的距离相等,故C正确;α内存在无数条直线与a成90°角,故D正确.故选A.答案:A4.一条直线与两条异面直线中的一条相交,则它与另一条的位置关系是( )A.异面B.平行C.相交D.可能相交、平行、也可能异面解析:一条直线与两条异面直线中的一条相交,它与另一条的位置关系有三种:平行、相交、异面,如下图所示.答案:D5.(2015·广东卷)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交解析:由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.答案:D二、填空题(每小题5分,共15分)6.设平面α与平面β相交于直线l,直线a⊂α,直线b⊂β,a∩b=M,则点M与l的位置关系为________.Øα,bØβ,所以M∈α,M∈β.又平面α与平面β相交于直线l,解析:因为a∩b=M,a所以点M在直线l上,即M∈l.答案:M∈l7.给出以下命题:①和一条直线都相交的两条直线在同一平面内;②三条两两相交的直线在同一平面内;③有三个不同公共点的两个平面重合;④两两平行的三条直线确定三个平面.其中正确命题的个数是________.解析:空间中和一条直线都相交的两条直线不一定在同一平面内,故①错;若三条直线相交于一点时,不一定在同一平面内,如长方体一角的三条线,故②错;若两平面相交时,也可有三个不同的公共点,故③错;若三条直线两两平行且在同一平面内,则只有一个平面,故④错.答案:08.如图,在正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.(注:把你认为正确的结论的序号都填上)解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④三、解答题(每小题10分,共20分)9.完成下列各题:(1)将下列文字语言转换为符号语言.①点A在平面α内,但不在平面β内;②直线a经过平面α外一点M;③直线l在平面α内,又在平面β内(即平面α和平面β相交于直线l).(2)将下列符号语言转换为图形语言.①a⊂α,b∩α=A,A∉a;②α∩β=c,a⊂α,b⊂β,a∥c,b∩c=P.解析:(1)①A∈α,A∉β.②M∈a,M∉α.③α∩β=l.(2)①②10.如图所示,正方体ABCD-A1B1C1D1中,M、N分别是A1B1、B1C1的中点,问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.解析:(1)不是异面直线,理由:连结MN,A1C1、AC,如图,因为M、N分别是A1B1、B1C1的中点,所以MN∥A1C1.又因为A1A綊D1D,D1D綊C1C,所以A1A綊C1C,四边形A1ACC1为平行四边形,所以A1C1∥AC,故MN∥A1C1∥AC,所以A、M、N、C在同一个平面内,故AM和CN不是异面直线.(2)是异面直线,证明如下:假设D1B与CC1在同一个平面CC1D1内,则B∈平面CC1D1,C∈平面CC1D1,所以BC⊂平面CC1D1,这显然是不正确的,所以假设不成立,故D1B与CC1是异面直线.|能力提升|(20分钟,40分)11.下列说法中正确的个数是( )①平面α与平面β,γ都相交,则这三个平面有2条或3条交线;②如果a,b是两条直线,a∥b,那么a平行于经过b的任何一个平面;③直线a不平行于平面α,则a不平行于α内任何一条直线;④如果α∥β,a∥α,那么a∥β.A.0个 B.1个C.2个 D.3个解析:①中,交线也可能是1条;②a也可能在过b的平面内;③中a不平行于平面α,则a 可能在平面α内,平面α内有与a平行的直线;④中,a可能在β内.故四个命题都是错误的,选A.答案:A12.如图所示,G,H,M,N分别是三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有________(填上所有正确答案的序号).解析:图(1)中,直线GH∥MN;图(2)中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图(3)中,连接MG,HN,GM∥HN,因此GH与MN共面;图(4)中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以图(2),(4)中GH与MN异面.答案:(2)(4)13.求证:两两相交且不过同一点的四条直线必在同一平面内.证明:(1)如图所示,设直线a 、b 、c 相交于点O ,直线d 和a 、b 、c 分别相交于A 、B 、C 三点,直线d 和点O 确定平面α,由O ∈平面α,A ∈平面α,O ∈直线a ,A ∈直线a ,知直线a ⊂平面α.同理,b ⊂平面α,c ⊂平面α,故直线a 、b 、c 、d 共面于α.(2)如图所示,设直线a 、b 、c 、d 两两相交,且任何三线不共点,交点分别是M 、N 、P 、Q 、R 、G .由直线a ∩b =M ,知直线a 和b 确定平面α.由a ∩c =N ,b ∩c =Q ,知点N 、Q 都在平面α内.故c Øα,同理可证d Øα.所以直线a 、b 、c 、d 共面于α.由(1)(2)可知,两两相交且不过同一点的四条直线必在同一平面内.14.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 为AB 的中点,F 为AA 1的中点.求证:CE ,D 1F ,DA 三线交于一点.证明:连接EF ,D 1C ,A 1B ,因为E 为AB 的中点,F 为AA 1的中点,所以EF 綊12A 1B .又因为A 1B 綊D 1C ,所以EF 綊12D 1C ,所以E ,F ,D 1,C 四点共面, 可设D 1F ∩CE =P .又D 1F ⊂平面A 1D 1DA ,CE ⊂平面ABCD ,所以点P 为平面A 1D 1DA 与平面ABCD 的公共点. 又因为平面A 1D 1DA ∩平面ABCD =DA ,所以据公理3可得P ∈DA ,即CE ,D 1F ,DA 三线交于一点.课时作业5 公理4及定理|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.若直线a ∥b ,b ∩c =A ,则a 与c 的位置关系是( ) A .异面 B .相交C .平行D .异面或相交解析:a 与c 不可能平行,否则由a ∥b ,得b ∥c 与b ∩c =A 矛盾.故选D. 答案:D2.若∠AOB =∠A 1O 1B 1,且OA ∥O 1A 1,OA 与O 1A 1方向相同,则下列结论正确的是( ) A .OB ∥O 1B 1且方向相同 B .OB ∥O 1B 1,方向可能不同 C .OB 与O 1B 1不平行 D .OB 与O 1B 1不一定平行解析:在空间中两角相等,角的两边不一定平行,即定理的逆命题不一定成立.故选D. 答案:D3.(2017·安徽宿州十三校联考)在正方体ABCD -A 1B 1C 1D 1的所有面对角线中,与AB 1成异面直线且与AB 1成60°的有( )A .1条B .2条C .3条D .4条 解析:如图,△AB 1C 是等边三角形,所以每个内角都为60°,所以面对角线中,所有与B 1C 平行或与AC 平行的直线都与AB 1成60°角.所以异面的有2条.又△AB 1D 1也是等边三角形,同理满足条件的又有2条,共4条,选D. 答案:D4.如图,在四面体S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是( )A .相交B .平行C .异面D .以上都有可能解析:连接SG 1,SG 2并延长,分别与AB ,AC 交于点M ,N ,连接MN ,则M ,N 分别为AB ,AC 的中点,由重心的性质,知SG 1SM =SG 2SN,∴G 1G 2∥MN .又M ,N 分别为AB ,AC 的中点,∴MN ∥BC ,再由平行公理可得G 1G 2∥BC ,故选B.答案:B5.如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .45° B.60° C .90° D.120° 解析:连接AB 1,易知AB 1∥EF ,连接B 1C ,B 1C 与BC 1交于点G ,取AC 的中点H ,连接GH ,则GH ∥AB 1∥EF .设AB =BC =AA 1=a ,连接HB ,在三角形GHB 中,易知GH =HB =GB =22a ,故所求的两直线所成的角即为∠HGB =60°.答案:B二、填空题(每小题5分,共15分)6.不共面的四点可以确定________个平面.解析:任何三点都可以确定一个平面,从而可以确定4个平面. 答案:47.用一个平面去截一个正方体,截面可能是________. ①三角形;②四边形;③五边形;④六边形. 解析:(注:这儿画了其中的特例来说明有这几种图形) 答案:①②③④8.如图,在正方体AC 1中,AA 1与B 1D 所成角的余弦值是________.解析:因为B 1B ∥A 1A ,所以∠BB 1D 就是异面直线AA 1与B 1D 所成的角,连接BD . 在Rt△B 1BD 中,设棱长为1,则B 1D = 3.cos∠BB 1D =BB 1B 1D =13=33.所以AA 1与B 1D 所成的角的余弦值为33.答案:3 3三、解答题(每小题10分,共20分)9.在三棱柱ABC-A1B1C1中,M,N,P分别为A1C1,AC和AB的中点.求证:∠PNA1=∠BCM.证明:因为P,N分别为AB,AC的中点,所以PN∥BC.①又因为M,N分别为A1C1,AC的中点,所以A1M綊NC.所以四边形A1NCM为平行四边形,于是A1N∥MC.②由①②及∠PNA1与∠BCM对应边方向相同,得∠PNA1=∠BCM.10.在正方体ABCD-A1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.解析:(1)如图所示,连接B1C,AB1,由ABCD-A1B1C1D1是正方体,易知A1D∥B1C,从而B1C与AC所成的角就是AC与A1D所成的角.∵AB1=AC=B1C,∴∠B1CA=60°.即A1D与AC所成的角为60°.(2)如图所示,连接BD,在正方体ABCD-A1B1C1D1中,AC⊥BD,AC∥A1C1,∵E,F分别为AB,AD的中点,∴EF∥BD,∴EF⊥AC.∴EF⊥A1C1.即A1C1与EF所成的角为90°.|能力提升|(20分钟,40分)11.(2017·江西师大附中月考)已知a和b是成60°角的两条异面直线,则过空间一点且与a、b都成60°角的直线共有( )A.1条 B.2条C .3条D .4条解析:把a 平移至a ′与b 相交,其夹角为60°. 60°角的补角的平分线c 与a 、b 成60°角. 过空间这一点作直线c 的平行线即满足条件.又在60°角的“平分面”上还有两条满足条件,选C. 答案:C12.(2017·江西新余一中月考)如图所示,在空间四边形ABCD 中,E ,H 分别为AB ,AD 的中点,F ,G 分别是BC ,CD 上的点,且CF CB =CG CD =23,若BD =6 cm ,梯形EFGH 的面积为28 cm 2,则平行线EH ,FG 间的距离为________.解析:EH =3,FG =6×23=4,设EH ,FG 间的距离为h ,则S 梯形EFGH =EH +FG h2=28,得h =8 (cm).答案:8 cm13.在如图所示的正方体ABCD -A 1B 1C 1D 1中,E ,F ,E 1,F 1分别是棱AB ,AD ,B 1C 1,C 1D 1的中点,求证:(1)EF 綊E 1F 1; (2)∠EA 1F =∠E 1CF 1.证明:(1)连接BD ,B 1D 1, 在△ABD 中,因为E ,F 分别为AB ,AD 的中点,所以EF 綊12BD .同理,E 1F 1綊12B 1D 1.在正方体ABCD -A 1B 1C 1D 1中,因为A 1A 綊B 1B ,A 1A 綊D 1D ,所以B 1B 綊D 1D .所以四边形BDD 1B 1是平行四边形,所以BD 綊B 1D 1. 所以EF 綊E 1F 1.(2)取A 1B 1的中点M ,连接BM ,F 1M .因为MF 1綊B 1C 1,B 1C 1綊BC ,所以MF 1綊BC .所以四边形BCF 1M 是平行四边形.所以MB ∥CF 1. 因为A 1M 綊EB ,所以四边形EBMA 1是平行四边形. 所以A 1E ∥MB ,所以A 1E ∥CF 1.同理可证:A 1F ∥E 1C .又∠EA 1F 与∠F 1CE 1两边的方向均相反, 所以∠EA 1F =∠E 1CF 1.14.如图,P 是△ABC 所在平面外一点,D ,E 分别是△PAB 和△PBC 的重心.求证:DE ∥AC ,DE =13AC .证明:如图,连接PD ,PE 并延长分别交AB ,BC 于M ,N .因为D ,E 分别是△PAB ,△PBC 的重心,所以M ,N 分别是AB ,BC 的中点,连接MN ,则MN ∥AC ,且MN =12AC .①在△PMN 中,因为PD PM =PE PN =23,所以DE ∥MN ,且DE =23MN .②由①,②,根据公理4,得:DE ∥AC ,且DE =23×12AC =13AC .课时作业6平行关系的判定|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.下列命题正确的是( )A.一条直线与一个平面平行,它就和这个平面内的任意一条直线平行B.平行于同一个平面的两条直线平行C.与两个相交平面的交线平行的直线,必平行于这两个平面D.平面外两条平行直线中的一条与这个平面平行,则另一条也与这个平面平行解析:对于A,平面内还存在直线与这条直线异面,错误;对于B,这两条直线还可以相交、异面,错误;对于C,这条直线还可能在其中一个平面内,错误.故选D.答案:D2.使平面α∥平面β的一个条件是( )A.存在一条直线a,a∥α,a∥βØα,a∥βB.存在一条直线a,aØα,bØβ,a∥β,b∥αC.存在两条平行直线a,b,aD.α内存在两条相交直线a,b分别平行于β内的两条直线解析:A,B,C中的条件都不一定使α∥β,反例分别为图①②③(图中a∥l,b∥l);D正确,因为a∥β,b∥β,又a,b相交,从而α∥β.答案:D3.在正方体EFGH-E1F1G1H1中,下列四对截面彼此平行的是( )A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1E与平面FHE1D.平面E1HG1与平面EH1G解析:根据面面平行的判定定理,可知A正确.答案:A4.已知A,B是直线l外的两点,则过A,B且和l平行的平面有( )A.0个B.1个C.无数个D.以上都有可能解析:若直线AB与l相交,则过A,B不存在与l平行的平面;若AB与l异面,则过A,B存在1个与l平行的平面;若AB与l平行,则过A,B存在无数个与l平行的平面,所以选D.答案:D5.如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,则在平面ADD1A1内且与平面D1EF平行的直线( )Ø平面ABC,EF 平面ABC,∴EF∥平面ABC.又∵BC同理DE∥平面ABC.又∵EF∩DE=E,∴平面DEF∥平面ABC.答案:平行8.已知正三棱柱ABC-A1B1C1中,G是A1C1的中点,过点G的截面与侧面ABB1A1平行,若侧面ABB1A1是边长为4的正方形,则截面周长为________.解析:如图,取B1C1的中点M,BC的中点N,AC的中点H,连接GM,MN,HN,GH,则GM∥HN∥AB,MN∥GH∥AA1,所以有GM∥平面ABB1A1,MN∥平面ABB1A1.又GM∩MN=M,所以平面GMNH∥平面ABB1A1,即平面GMNH 为过点G且与平面ABB1A1平行的截面.易得此截面的周长为4+4+2+2=12.答案:12三、解答题(每小题10分,共20分)9.(2017·赣州博雅高中月考)如图,在正三棱柱ABC-A1B1C1中,D是BC的中点.判断直线A1B 与平面ADC1的关系.解析:A1B∥平面ADC1,证明如下:如图,连接A1C交AC1于F,则F为A1C的中点.连接FD.。
课时跟踪检测(十一) 柱、锥、台的侧面展开与面积层级一 学业水平达标1.棱长都是1的三棱锥的表面积为( ) A.3 B .2 3 C .3 3D .4 3解析:选A S 表=4S 正△=4×34= 3. 2.若圆锥的高等于底面直径,则它的底面积与侧面积之比为( ) A .1∶2 B .1∶ 3 C .1∶ 5D.3∶2解析:选C 设圆锥底面半径为r ,则高h =2r , ∴其母线长l =5r .∴S 侧=πrl =5πr 2,S 底=πr 2,∴S 底∶S 侧=1∶ 5.3.若圆台的高是3,一个底面半径是另一个底面半径的2倍,母线与下底面成45°角,则这个圆台的侧面积是( )A .27πB .272πC .9 2 πD .362π解析:选B ∵由题意r ′=3,r =6,l =32,∴S 侧=π(r ′+r )l =π(3+6)×32 =272π.4.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( )A .7B .6C .5D .3解析:选A 设圆台较小底面半径为r , 则另一底面半径为3r .由S =π(r +3r )·3=84π,解得r =7.5.已知一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面积的比是( ) A.1+2π2πB.1+4π4πC.1+2ππD.1+4π2π解析:选A 设圆柱的底面半径为r ,高为h ,则由题设知h =2πr ,所以S 表=2πr 2+2πr ·h=2πr 2(1+2π),又S 侧=h 2=4π2r 2,所以S 表S 侧=1+2π2π.6.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________. 解析:设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr .解得r =1,即直径为2.答案:27.已知圆锥的母线长为2,高为3,则该圆锥的侧面积是________. 解析:由圆锥的性质知其底面圆的半径为22-(3)2=1,所以圆锥的侧面积为S 侧=πrl=π×1×2=2π.答案:2π8.一个几何体的三视图如图所示,则该几何体的表面积为________.解析:由三视图可知,该几何体为一个长方体中挖去一个圆柱构成.其中长方体的长、宽、高分别为4,3,1,圆柱的底面圆的半径为1,高为1.长方体的表面积S 1=2×(4×3+4×1+3×1)=38;圆柱的侧面积S 2=2π×1×1=2π;圆柱的上下底面面积S 3=2×π×12=2π.故该几何体的表面积S =S 1+S 2-S 3=38.答案:389.已知正四棱锥底面正方形边长为4 cm ,高与斜高的夹角为30°,求正四棱锥的侧面积和表面积(单位:cm 2).解:如图所示,正四棱锥的高PO ,斜高PE ,底面边心距OE 组成Rt △POE .∵OE =2 cm ,∠OPE =30°, ∴PE =2OE =4(cm),因此,S 棱锥侧=12ch ′=12×4×4×4=32(cm 2).S 表面积=S 侧+S 底=32+16=48(cm 2).10.圆柱有一个内接长方体AC 1,长方体对角线长是102cm ,圆柱的侧面展开平面图为矩形,此矩形的面积是100π cm 2,求圆柱的底面半径和高.解:设圆柱底面半径为r cm ,高为h cm ,如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的对角线长,则:⎩⎪⎨⎪⎧ (2r )2+h 2=(102)2,2πrh =100π,∴⎩⎪⎨⎪⎧r =5,h =10.即圆柱的底面半径为5 cm ,高为10 cm.层级二 应试能力达标1.一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积为( )A .12πB .18πC .24πD .36π解析:选C 由三视图知该几何体为圆锥,底面半径r =3,母线l =5,∴S 表=πrl +πr 2=24π.故选C.2.如图所示,侧棱长为1的正四棱锥,若底面周长为4,则这个棱锥的侧面积为( )A .5 B. 3 C.3+12D.3+1解析:选B 设底面边长为a ,则由底面周长为4,得a =1,SE = 1-14=32.∴S 侧=12×4×32= 3. 3.三视图如图所示的几何体的表面积是( )A .7+ 2 B.112+ 2 C .7+ 3D.32解析:选A 图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12×(1+2)×1×2+(1+1+2+2)×1=7+ 2.4.在正方体ABCD -A 1B 1C 1D 1中,三棱锥D 1-AB 1C 的表面积与正方体的表面积的比为( )A .1∶1B .1∶ 2C .1∶ 3D .1∶2解析:选C 如图,三棱锥D 1-AB 1C 的各面均是正三角形.其边长为正方体侧面对角线.设正方体的棱长为a ,则面对角线长为2a ,S 锥=4×12(2a )2×32=23a 2,S 正方体=6a 2,故S 锥∶S 正方体=1∶ 3.5.正四棱台的上、下两底面边长分别是方程x 2-9x +18=0的两根,其侧面积等于两底面积之和,则其侧面梯形的高为________.解析:方程x 2-9x +18=0的两个根为x 1=3,x 2=6,设侧面梯形的高为h ,则由题意得12×(3+6)·h ×4=32+62,解得h =52. 答案:526.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.解析:如图①为棱长为1的正方体礼品盒,先把正方体的表面按图所示方式展成平面图形,再把平面图形尽可能拼成面积较小的正方形,如图②所示,由图知正方形的边长为22,其面积为8.答案:87.已知一正三棱台ABC -A 1B 1C 1的两底面边长分别为30 cm 和20 cm ,且其侧面积等于两底面面积的和,求棱台的高.解:如图,在正三棱台ABC -A 1B 1C 1中,O ,O 1为两底面中心,D ,D 1是BC ,B 1C 1的中点,则DD 1为棱台的斜高. 由A 1B 1=20,AB =30, 得OD =53,O 1D 1=1033,由S 侧=S 上+S 下得12×(60+90)·DD 1=34×(202+302). 所以DD 1=133 3.在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=⎝⎛⎭⎫13332-⎝⎛⎭⎫53-10332=4 3. 即棱台的高为4 3 cm.8.如图所示,在正三棱柱ABC -A 1B 1C 1中,AB =3,AA 1=4,M 为AA 1中点,P 是BC 29,设这条上一点,且由P 沿棱柱侧面经过棱CC 1到M 的最短距离为最短路线与CC 1的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长; (3)此棱柱的表面积.解:(1)正三棱柱ABC -A 1B 1C 1侧面展开图是一个长为9,宽为4的矩形,其对角线长为92+42=97.(2)如图,将侧面BB 1C 1C 绕棱CC 1旋转120°使其与侧面AA 1C 1C 在同一平面上,点P 移动到点P 1的位置,连接MP 1,则MP 1就是由点P 沿棱柱侧面经过棱CC 1到点M 的最短路线.设PC =x ,即P 1C =x ,在Rt △MAP 1中,由勾股定理得(3+x )2+22=29, 求得x =2,∴PC =P 1C =2. ∵NC MA =P 1C P 1A =25,∴NC =45. (3)棱柱的表面积:S =S 侧+2S 底=9×4+2×12×32×32=72+932.。
高中数学课时跟踪检测(三)三视图北师大版必修2课时跟踪检测(三)三视图一、基本能力达标1.若一个几何体的主视图和左视图都是等腰三角形,俯视图是带圆心的圆,则这个几何体可能是( )A.圆柱B.三棱柱C.圆锥D.球体解析:选C 主视图和左视图都是等腰三角形,俯视图是带圆心的圆说明此几何体是圆锥.2.已知一个几何体的三视图如图所示,则此几何体的组成为( )A.上面为棱台,下面为棱柱B.上面为圆台,下面为棱柱C.上面为圆台,下面为圆柱D.上面为棱台,下面为圆柱解析:选C 结合三视图,易知该几何体上面为圆台,下面为圆柱.3.(2018·全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )解析:选A 由题意可知带卯眼的木构件的直观图如图所示,由直观图可知其俯视图应选A.4.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:选B 将三视图还原为几何体即可.如图,几何体为三棱柱.5.如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的主视图、左视图、俯视图依次是( )A.①②⑥B.①②③C.④⑤⑥D.③④⑤解析:选B 四面体ABCD的主视图是边长分别为3,4的矩形,对角线左上至右下为虚线,左下至右上为实线,为①;左视图是边长分别为4,5的矩形,对角线左上至右下为实线,左下至右上为虚线,为②;俯视图是边长分别为3,5的矩形,对角线左上至右下为实线,左下至右上为虚线,为③,故选B.6.如图所示的几何体中,主视图与左视图都是长方形的是________.解析:②的左视图是三角形,⑤的主视图和左视图都是等腰梯形,其余的都符合条件.答案:①③④7.如图所示,在正方体ABCDA1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥PABC的主视图与左视图的面积的比值为________.解析:三棱锥PABC的主视图与左视图为底边和高均相等的三角形,故它们的面积相等,面积比值为1.答案:18.如图,E,F分别是正方体ABCDA1B1C1D1的面ADD1A1和面BCC1B1的中心,则四边形BFD1E 在该正方体的面上的正投影可能是________(把所有可能图形的序号都填上).解析:图②是在平面DCC1D1或平面ABCD上的正投影;图③是在平面BCC1B1上的正投影.图①④均不符合.答案:②③9.画出图中几何体的三视图.解:该几何体的三视图如图所示.10.根据如图所示的三视图,画出几何体.解:由主视图、左视图可知,该几何体为简单几何体的组合体,结合俯视图为大正方形里有一个小正方形,可知该组合体上面为一个正方体,下面为一个下底面是正方形的倒置的四棱台.如图所示.二、综合能力提升1.直角边分别为1和3的三角形,绕一条直角边所在直线旋转,形成的圆锥的俯视图是半径为1的圆,则它的主视图是( )A.等腰直角三角形B.边长为3的等边三角形C.边长为2的等边三角形D.不能确定解析:选C 由俯视图知长为3的边在轴上.因此主视图为边长为2的等边三角形.2.在一个几何体的三视图中,主视图和左视图是两个完全相同的图形,如图所示,则相应的俯视图可以为( )A.①②B.②③C.③④D.②④解析:选D 若俯视图为图①,则该几何体的主视图的上方三角形应该没有高线,故俯视图不可能为图①,排除选项A;若俯视图为图③,则该几何体的左视图的上方应该没有左边小三角形,故俯视图不可能为图③,排除选项B、C;若俯视图为图②,则该几何体是由上面是正四棱锥,下面是正方体组合而成的简单组合体;若俯视图为图④,则该几何体是由上面是正四棱锥,下面是圆柱组合而成的简单组合体.故选D.3.底面水平放置的正三棱柱的所有棱长均为2,当其主视图有最大面积时,其左视图的面积为( )A.2 3 B.3C. 3 D.4解析:选A 当主视图的面积最大时,可知其正三棱柱某个侧面的面积,可以按如图所示放置,此时S左=2 3.4.一四面体的三视图如图所示,则该四面体四个面中最大的面积是( )A .2B .2 2 C. 3D .2 3解析:选D 由四面体的三视图知其直观图为如图所示的正方体中的四面体A BCD ,由三视图知正方体的棱长为2.所以S △ABD =12×2×22=22,S △ADC =12×22×22×32=23, S △ABC =12×2×22=22, S △BCD =12×2×2=2.所以所求的最大面积为2 3.故选D.5.若一个正三棱柱(底面为正三角形,侧面为矩形的棱柱)的三视图如图所示,则这个正三棱柱的侧棱长和底面边长分别为________、________.解析:左视图中尺寸2为正三棱柱的侧棱长,尺寸23为俯视图正三角形的高,所以正三棱柱的底面边长为4.答案:2 46.由小正方体木块搭成的几何体的三视图如图所示,则该几何体由________块小正方体木块搭成.解析:小木块的排列方式如图所示.由图知,几何体由7块小正方体木块搭成.答案:77.如图所示的几何体是由一个长方体木块锯成的.(1)判断该几何是否为棱柱; (2)画出它的三视图.解:(1)是棱柱.因为该几何体的前、后两个面互相平行,其余各面都是矩形,而且相邻矩形的公共边都互相平行.(2)该几何体的三视图如图所示.探究应用题8.如图,在正四棱柱ABCD A 1B 1C 1D 1中,AB =1,AA 1=2,点P 是平面A 1B 1C 1D 1内的一个动点,求三棱锥P ABC 的主视图与俯视图的面积的比值的最大值.解:点P 是平面A 1B 1C 1D 1内的一个动点,则三棱锥P ABC 的主视图始终是一个底为1,高为2的三角形,其面积S 1=12×1×2=1.当点P 在底面ABCD 内的投影点在△ABC 的内部或边界上时,其俯视图的面积最小,最小面积S 2=12×1×1=12,所以三棱锥P ABC 的主视图与俯视图的面积的比值的最大值为S 1S 2=2.。
课时作业3三视图|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( )解析:本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C,都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.答案:D2.如图所示,甲、乙、丙是三个几何体的三视图,则甲、乙、丙对应的几何体分别为( )①长方体;②圆锥;③三棱锥;④圆柱.A.④③②B.①③②C.①②③ D.④②③解析:由于甲中的俯视图是圆,则甲对应的几何体是旋转体,又主视图和左视图均是矩形,所以该几何体是圆柱;易知乙对应的几何体是三棱锥;由丙中的俯视图,可知丙对应的几何体是旋转体,又主视图和左视图均是三角形,所以该几何体是圆锥.答案:A3.(2016·河北名师俱乐部3月模拟)某几何体的三视图如图所示,记A为此几何体所有棱的长度构成的集合,则( ).如图为某组合体的三视图,则俯视图中的长和宽分别为根据三视图中的“主、俯视图长对正,主、左视图高平齐,可知俯视图的长和主视图的长相等,为2+6+2=10,俯视图的宽与左视图的宽相等,为解析:如图,画出原正方体的侧视图,显然对于三棱锥P-A1B1A余各点均在,从而其侧视图为D.分).桌上放着一个半球,如图所示,则在它的三视图及右面看到的图形中,有三________.的底面边长为2,高为解析:由三视图的画法可知,该几何体的左视图是一个矩形,其底面边长为根据三视图可知该几何体是一个四棱锥,其底面是正方形,四棱锥.其侧视图与正视图是完全一样的正三角形.故其面积为试画出如图所示的正四棱台的三视图..根据图中的三视图想象物体原形,并画出物体的实物草图.由俯视图并结合其他两个视图可以看出,这个物体是由上面一个正四棱台和下面一个正方体组合而成的,它的实物草图如图所示.|能力提升|(20分钟,40分)11.(2016·广东省台山市华侨中学高二上期末)定义:底面是正三角形,侧棱与底面垂直的三棱柱叫做正三棱柱.将正三棱柱截去一个角(如图1所示,M,N分别是AB,BC的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图为( )解析:N的投影是C,M的投影是AC的中点.对照各图.选D.答案:D12.一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的________(填入所有可能的几何体前的编号).①三棱锥;②四棱锥;③三棱柱;④四棱柱;⑤圆锥;⑥圆柱.解析:三棱锥、四棱锥和圆锥的正视图都是三角形,当三棱柱的一个侧面平行于水平面,底面对着观测者时其正视图是三角形,四棱柱、圆柱无论怎样放置,其正视图都不可能是三角形.答案:①②③⑤13.如图所示,是一个长方体截去一个角所得多面体的直观图和它的主视图和左视图(单位:cm).请在正视图下面,按照画三视图的要求画出该多面体的俯视图.解析:依据三视图的绘图原则,可作出该几何体的俯视图如图.14.某建筑由相同的若干房间组成,该楼房的三视图如图所示,问:(1)该楼房有几层?从前往后最多要经过几个房间?(2)最高一层的房间在什么位置?请画出此楼房的大致形状.解析:(1)由主视图和左视图可以知道,该楼房有3层;由俯视图知道,从前往后最多要经过3个房间;(2)从主视图和左视图可以知道,最高一层的房间在左侧的最后一排的房间.楼房大致形状如图所示.。
课时跟踪检测(十四)直线的倾斜角和斜率层级一学业水平达标1.给出下列说法,正确的个数是()①若两直线的倾斜角相等,则它们的斜率也一定相等;②一条直线的倾斜角为-30°;③倾斜角为0°的直线只有一条;④直线的倾斜角α的集合{α|0°≤α<180°}与直线集合建立了一一对应关系.A.0B.1C.2 D.3解析:选A若两直线的倾斜角为90°,则它们的斜率不存在,①错;直线倾斜角α的取值范围是0°≤α<180°,②错;所有垂直于y轴的直线倾斜角均为0°,③错;不同的直线可以有相同的倾斜角,④错.2.已知直线l的倾斜角为120°,则直线l的斜率为()A.- 3 B. 3C.1 D.-2 2解析:选A由题意可知,k=tan 120°=- 3.3.过点A(-3,2)与B(-2,3)的直线的倾斜角为() A.45°B.135°C.45°或135°D.60°解析:选A k AB=3-2-2-(-3)=3-23-2=1.4.若经过A(2,1),B(1,m)的直线l的倾斜角为锐角,则m的取值范围是() A.(-∞,1) B.(1,+∞)C.(-∞,-1) D.(-1,+∞)解析:选A由l的倾斜角为锐角,可知k AB=m-11-2>0,即m<1.5.若A,B两点的横坐标相等,则直线AB的倾斜角和斜率分别是() A.45°,1 B.135°,-1C.90°,不存在D.180°,不存在解析:选C由于A,B两点的横坐标相等,所以直线与x轴垂直,倾斜角为90°,斜。
课时跟踪检测(六) 平行关系的判定层级一 学业水平达标1.能保证直线a 与平面α平行的条件是( )A .b α,a ∥bB .b α,c ∥α,a ∥b ,a ∥cC .b α,A ,B ∈a ,C ,D ∈b ,且AC ∥BDD .a α,b α,a ∥b解析:选D 由线面平行的判定定理可知,D 正确.2.如果两直线a ∥b ,且a ∥α,则b 与α的位置关系是( )A .相交B .b ∥αC .b αD .b ∥α或b α解析:选D 由a ∥b ,且a ∥α,知b 与α平行或b α.3.已知三个平面α,β,γ,一条直线l ,要得到α∥β,必须满足下列条件中的( )A .l ∥α,l ∥β,且l ∥γB .l γ,且l ∥α,l ∥βC .α∥γ,且β∥γD .α∩γ=l ,且l ∥β解析:选C ⎭⎪⎬⎪⎫α∥γ⇒α与γ无公共点β∥γ⇒β与γ无公共点⇒α与β无公共点⇒α∥β. 4.如图,在四面体ABCD 中,若M ,N ,P 分别为线段AB ,BC ,CD 的中点,则直线BD 与平面MNP 的位置关系为( )A .平行B .可能相交C .相交或BD 平面MNPD .以上都不对解析:选A 因为N ,P 分别为线段BC ,CD 的中点,所以NP ∥BD ,又BD平面MPN ,NP 平面MPN ,所以BD ∥平面MNP .5.如图,下列正三棱柱ABC -A 1B 1C 1中,若M ,N ,P 分别为其所在棱的中点,则不能得出AB ∥平面MNP 的是( )解析:选C在图A、B中,易知AB∥A1B1∥MN,所以AB∥平面MNP;在图D中,易知AB∥PN,所以AB∥平面MNP.故选C.6.已知l,m是两条直线,α是平面,若要得到“l∥α”,则需要在条件“m⊂α,l∥m”中另外添加的一个条件是________.解析:根据直线与平面平行的判定定理,知需要添加的一个条件是“lα”.答案:lα7.已知A,B两点是平面α外两点,则过A,B与α平行的平面有________个.解析:当A,B两点在平面α异侧时,不存在这样的平面.当A,B两点在平面同侧时,若直线AB∥α,则存在一个,否则不存在.答案:0或18.如图,在五面体FE-ABCD中,四边形CDEF为矩形,M,N分别是BF,BC的中点,则MN与平面ADE的位置关系是________.解析:∵M,N分别是BF,BC的中点,∴MN∥CF.又四边形CDEF为矩形,∴CF∥DE,∴MN∥DE.又MN平面ADE,DE平面ADE,∴MN∥平面ADE.答案:平行9.已知正方形ABCD,如图(1)E,F分别是AB,CD的中点,将△ADE沿DE折起,如图(2)所示,求证:BF∥平面ADE.证明:∵E,F分别为AB,CD的中点,∴EB=FD.又∵EB∥FD,∴四边形EBFD为平行四边形,∴BF∥ED.∵DE 平面ADE ,而BF平面ADE ,∴BF ∥平面ADE . 10.如图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是AB ,BC的中点,G 为DD 1上一点,且D 1G ∶GD =1∶2,AC ∩BD =O ,求证:平面AGO ∥平面D 1EF .证明:设EF ∩BD =H ,连接D 1H ,在△DD 1H 中,因为DO DH =23=DG DD 1, 所以GO ∥D 1H ,又GO 平面D 1EF ,D 1H 平面D 1EF ,所以GO ∥平面D 1EF .在△BAO 中,因为BE =EA ,BH =HO ,所以EH ∥AO .又AO 平面D 1EF ,EH 平面D 1EF ,所以AO ∥平面D 1EF ,又GO ∩AO =O ,所以平面AGO ∥平面D 1EF .层级二 应试能力达标1.在正方体ABCD -A 1B 1C 1D 1中,M 是棱CD 上的动点,则直线MC 1与平面AA 1B 1B 的位置关系是( )A .相交B .平行C .异面D .相交或平行解析:选B 如图,MC 1平面DD 1C 1C ,而平面AA 1B 1B ∥平面DD 1C 1C ,故MC 1∥平面AA 1B 1B .2.平面α与△ABC 的两边AB ,AC 分别交于D ,E ,且AD ∶DB =AE ∶EC ,如图所示,则BC 与α的位置关系是( )A .平行B .相交C .异面D .BC ⊂α。
课时跟踪检测(十三)球、基本能力达标1 •若球的体积与其表面积的数值相等,则球的半径为()1A.2B. 1C. 2D. 34 4解析:选D设球的半径为r,则球的体积为云兀r3,球的表面积为4n r2,故3 n r3= 4 n r2,3 3解得r = 3.2 .两个半径为1的铁球,熔化成一个大球,这个大球的半径为()A. 2B. 2C.32D.弄解析:选C设熔化后的球的半径为4 3 R则其体积是原来小球的体积的2倍,即V= -n R3=2X 3冗x1,得R= ;2.3 .若一平面截一球得到直径是 6 cm的圆面,球心到这个圆面的距离是4 cm,则该球的体积是()100 n 3 A. cm3208 n 3 B. cm3500 n 3 C. 3 cm3 3416 13 n 3 D. 3 cm解析:选C根据球的截面的性质,4得球的半径R= , 32+ 42= 5(cm),所以V球=3 n R=500 n 33 (cm)•4 .已知球O的表面积为16 n,则球O的体积为()4 A亍8 B.3n16 C.亍n32 D.y n解析:选D因为球O的表面积是4 n 0 16n ,所以球O的半径为2,所以球O的体积为3X233=3 n ,故选D.5.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A . 9 nB . 10nD. 12 n解析:选D 由主视图可知,该几何体的上部分是半径为 1的球,下部分是底面半径为 1, 高为3的圆柱.由面积公式可得该几何体的表面积S = 4 n x1+ 2 n x1+ 2 n X 1 X 3= 12 n .6 .若一个球的表面积与其体积在数值上相等,则此球的半径为 ______________ . 解析:设此球的半径为 R 贝U 4n 氏=4n R 3, R = 3. 答案:37 .某几何体的三视图如图所示,则其表面积为 ___________ .1解析:由三视图,易知原几何体是个半球,其半径为 1, S = n X 1+ X 4X n X 1= 3n .答案:3 n8 .两个球的半径相差 1,表面积之差为28 n ,则它们的体积和为 _____________ . 解析:设大、小两球半径分别为R, r ,R — r = 1,则 - 2|4 n R — 4 n r = 28 n , R= 4, 所以芒r = 3.4 34 3 364 n所以体积和为3 n R + 3 n r = 亍 答案: 364 n 39.某组合体的直观图如图所示, 它的中间为圆柱形,左右两端均为半球形, 若图中r = 1,l = 3,试求该组合体的表面积和体积.解:该组合体的表面积224 3 2 4 S = 4 n r + 2 n rl = 4 n X1 + 2 n X 1 X 3= 10 n ,该组合体的体积V = ~ n r + n r l = ~[610. 若一个底面边长为~2",侧棱长为.6的正六棱柱的所有顶点都在一个球面上,求该球C. 11 n32n X1 + n X1 X 3 = 13n3A. 9 nB. 10n 的体积和表面积.解:在底面正六边形ABCDE中,如图,连接BE AD交于点Q连接BE,则BE= 2OE=2DE 所以BE=Q6,在Rt△ BEE 中,BE = BE+ E I E2= 2 3,所以2R= 2 3,则R=,所以球的体积V球=3 n R= 4/3 n ,球的表面积$球=4 n R = 12 n .二、综合能力提升1 •某几何体的三视图如图所示,则该几何体的表面积等于()A. 4 nC. 12 n解析:选D由三视图可知,该几何体为底面半径是2,高为2的圆柱体和半径为1的球2 2体的组合体,则该几何体的表面积为 4 n X1 + 2 nX2 + 4 n X 2= 20n .2 .正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()81 nA. B. 16 n427 nC. 9 nD.-4解析:选A如图所示,设球半径为R,底面中心为0'且球心为O •••正四棱锥P-ABCD中AB= 2,AO = T^2.•/ P0 = 4,•••在Rt△ A00 中,A0= A0 2+ 00 2,••• F2= ( ,2)2+ (4 —F)2,解得R= 4,.••该球的表面积为4n R=4nx42=宁,故选 A.B. 8 nD. 20 nn,则球的表面积为()3 .用与球心距离为1的平面去截球,所得截面圆的面积为A. 32 n 3C. 8 nB.解析:选C 设球的半径为 R,则截面圆的半径为•.氏一1, •••截面圆的面积为 S = n (-j R — 1) 2= ( R — 1) n = n , •••氏=2,•球的表面积S = 4 n R = 8 n .4 •已知某几何体的三视图如图所示,其中正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()2n 1Dp +2由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三 1 x 1 x 1X1X 1=土 +】.故选 C.3 2 6 65.已知A , B 是球0的球面上两点,/ AOB= 90°, C 为该球面上的动点.若三棱锥 OABC9的体积的最大值为2,则球o 的表面积为 ____________ .解析:如图所示,当点 C 位于垂直于平面 AOB 勺直径的端点时,三棱1 1. R锥OABC 勺体积最大.设球O 的半径为R, • 3AB = V^-AO =-X -X R X R =-3 2 69 o =2,解得R = 3,则球O 的表面积S = 4 n R = 36 n .答案:36 n6.如图,半径为 2的半球内有一个内接正六棱锥P -ABCDEF 则此正六棱锥的侧面积是解析:显然正六棱锥 P -ABCDE 的底面的外接圆是球的一个大圆,由已知,可得大圆的半 径为2.易得其内接正六边形的边长为 2.又正六棱锥P -ABCDE 的高为2,则斜高为,22+ 3 2 1=,7,所以该正六棱锥的侧面积为 6X § X 2X 7= 6・\?7.答案:6 77 .如图所示,半径为 R 的半圆内的阴影部分以直径 AB 所在直线为轴,旋转一周得到一 几何体,求该几何体的表面积.(其中/ BAC= 30°)解:如图所示,解析:选C 视图中的数据可得1 4 n V= 2 x亍c过C作CO丄AB于O.在半圆中可得/ BCA= 90°, / BAC= 30°, AB= 2R,--S 几何体表= S 球+ S 圆锥AO 侧+ S 圆锥BO 侧齐 R 2+ #n R 2=11+r ^n R 2.故旋转所得几何体的表面积为 n R .探究应用题8 •求球与它的外切圆柱、外切等边圆锥 (轴截面是正三角形的圆锥叫等边圆锥 )的体积之 比.解:如图,等边△ SAE 为圆锥的轴截面,此截面截圆柱得正方形 CCDD,截球面得球的大圆O .设球的半径OO= R 则它的外切圆柱的高为2R,底面半径为 ROB= OO • cot 30 °= *\^3R , SO= OB- tan 60 °=、;''3R ・= 3R V 球=3 n R , 2柱=n R -2 R= 2 n R ,31 V 锥=3 n -(J 3 R)2-3 R= 3 n R , V 球:V 柱:V 锥=4 : 6 : 9.$球=4 n R , R =f n F 2,AC= 3R, BC= R, CG ^ S 圆锥AO 侧=n X=2 n R ,S 圆锥B O 侧=n X。
北师大版高中数学必修二全册同步习题含解析目录第1章立体几何初步 1.1.1习题第1章立体几何初步 1.1.2习题第1章立体几何初步 1.2习题第1章立体几何初步 1.3.1习题第1章立体几何初步 1.3.2习题第1章立体几何初步 1.4.1习题第1章立体几何初步 1.4.2习题第1章立体几何初步 1.5.1.1习题第1章立体几何初步 1.5.1.2习题第1章立体几何初步 1.5.2习题第1章立体几何初步 1.6.1.1习题第1章立体几何初步 1.6.1.2习题第1章立体几何初步 1.6.2习题第1章立体几何初步 1.7.1习题第1章立体几何初步 1.7.2习题第1章立体几何初步 1.7.3习题第1章立体几何初步习题课习题第1章立体几何初步检测习题第2章解析几何初步 2.1.1习题第2章解析几何初步 2.1.2.1习题第2章解析几何初步 2.1.2.2习题第2章解析几何初步 2.1.3习题第2章解析几何初步 2.1.4习题第2章解析几何初步 2.1.5.1习题第2章解析几何初步 2.1.5.2习题第2章解析几何初步 2.2.1习题第2章解析几何初步 2.2.2习题第2章解析几何初步 2.2.3.1习题第2章解析几何初步 2.2.3.2习题第2章解析几何初步 2.3.1-2.3.2习题第2章解析几何初步 2.3.3习题第2章解析几何初步检测习题模块综合检测习题北师大版2018-2019学年高中数学必修2习题01第一章立体几何初步§1简单几何体1.1简单旋转体1.下列说法正确的是()A.圆锥的母线长等于底面圆直径B.圆柱的母线与轴垂直C.圆台的母线与轴平行D.球的直径必过球心答案:D2.下面左边的几何体是由选项中的哪个图形旋转得到的()解析:选项B中的图形旋转后为两个共底面的圆锥;选项C中的图形旋转后为一个圆柱与一个圆锥的组合体;选项D中的图形旋转后为两个圆锥与一个圆柱的组合体.答案:A3.用一个平面去截一个几何体,得到的截面一定是圆面,则这个几何体是()A.圆锥B.圆柱C.球D.圆台答案:C4.AB为圆柱下底面内任一不过圆心的弦,过AB和上底面圆心作圆柱的一截面,则这个截面是()A.三角形B.矩形C.梯形D.以上都不对解析:如图所示,由于圆柱的上下底面相互平行,故过AB和上底面圆心作圆柱的一截面与上底面的交线CD 必过上底面圆心,且CD∥AB,在圆柱的侧面上,连接A,C(或B,D)两点的线是曲线,不可能是直线.故这个截面是有两条边平行、另两边是曲线的曲边四边形.故选D.答案:D5.以钝角三角形的较短边所在的直线为轴,其他两边旋转一周所得的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥解析:如图所示.旋转一周后其他两边形成的几何体为在圆锥AO的底部挖去一个同底的圆锥BO.答案:D6.点O1为圆锥高上靠近顶点的一个三等分点,过O1与底面平行的截面面积是底面面积的()A.13B.23C.14D.19解析:如图所示,由题意知SO1∶SO=1∶3,∴O1B∶OA=1∶3,∴S☉O1∶S☉O=1∶9,故选D.答案:D7.下列说法中错误的是.①过圆锥顶点的截面是等腰三角形;②过圆台上底面中心的截面是等腰梯形;③圆柱的轴截面是过母线的截面中面积最大的一个.答案:②8.若过轴的截面是直角三角形的圆锥的底面半径为r,则其轴截面的面积为.解析:由圆锥的结构特征,可知若过轴的截面为直角三角形,则为等腰直角三角形,其斜边上的高为r,所以S=12×2r2=r2.答案:r29.已知圆锥的母线与旋转轴所成的角为30°,母线的长为2,则其底面面积为.解析:如图所示,过圆锥的旋转轴作截面ABC,设圆锥的底面半径为r,底面圆心为O.∵△ABC为等腰三角形,∴△ABO为直角三角形.又∠BAO=30°,∴BO=r=1AB=2.∴底面圆O的面积为S=πr2=π2.答案:π10.把一个圆锥截成圆台,已知圆台的上、下底面的半径比是1∶4,母线长是10 cm,求这个圆锥的母线长.分析:处理有关旋转体的问题时,一般要作出其过轴的截面,在这个截面图形中去寻找各元素之间的关系.解:设圆锥的母线长为y cm,圆台上、下底面的半径分别为x cm,4x cm.作圆锥过轴的截面如图所示.在Rt△SOA中,O'A'∥OA,则SA'SA =O'A'OA,即y-10y =x4x,解得y=403.故圆锥的母线长为40cm.11.圆锥的底面半径为r,母线长是底面半径的3倍,在底面圆周上有一点A,求一个动点P自点A出发在侧面上绕一周回到点A的最短路程.解:沿圆锥的母线SA将侧面展开,如图所示.则线段AA1就是所求的最短路程.∵弧A1A的长为2πr,SA=3r,设弧A1A所对的圆心角为α,∴απ·3r=2πr,∴α=120°.∴AA1=SA·cos30°×2=3r×3×2=33r,即所求最短路程是33r.1.2简单多面体1.关于棱柱,下列说法正确的是()A.只有两个面平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,侧棱也互相平行解析:正方体可以有六个面平行,故选项A错误;长方体并不是所有的棱都相等,故选项B错误;三棱柱的底面是三角形,故选项C错误;由棱柱的概念知,两底面平行,侧棱也互相平行,故选项D正确.答案:D2.一个正棱锥的底面边长与侧棱长相等,则该棱锥一定不是()A.正三棱锥B.正四棱锥C.正五棱锥D.正六棱锥解析:由于正六边形的中心到顶点的距离与边长都相等,故正六棱锥的侧棱长必大于底面边长.答案:D3.棱台不一定具有的性质是()A.两底面相似B.侧面都是梯形C.侧棱都相等D.侧棱延长后都交于一点解析:由棱台的定义可知,棱台是用平行于棱锥底面的平面去截棱锥而得到的,所以A,B,D选项都成立,只有选项C不一定成立.答案:C4.下列图形中,不是三棱柱的展开图的是()解析:根据三棱柱的结构特征知,A,B,D中的展开图都可还原为三棱柱,但是C中展开图还原后的几何体没有下底面,故不是三棱柱的展开图.答案:C5.下列说法正确的个数为()①存在斜四棱柱,其底面为正方形;②存在棱锥,其所有面均为直角三角形;③任意的圆锥都存在两条母线互相垂直;④矩形绕任意一条直线旋转都可以形成圆柱.A.1B.2C.3D.4解析:①存在斜四棱柱,其底面为正方形,正确.②正确.如图所示.③不正确,圆锥轴截面的顶角小于90°时就不存在.④不正确,矩形绕其对角线所在直线旋转,不能围成圆柱.故答案为B.答案:B6.用一个平行于棱锥底面的平面截这个棱锥,截得的棱台上、下底面的面积之比为1∶4,截去的棱锥的高是3 cm,则棱台的高是()A.12 cmB.9 cmC.6 cmD.3 cm解析:棱台的上、下底面的面积之比为1∶4,则截去的棱锥的高与原棱锥的高的比为1∶2,棱台的高是3cm.答案:D7.有下列四个结论:①各侧面是全等的等腰三角形的四棱锥是正四棱锥;②底面是正多边形的棱锥是正棱锥;③三棱锥的所有面可能都是直角三角形;④四棱锥中侧面最多有四个直角三角形.其中正确的有(填正确结论的序号).答案:③④8.如图所示,将装有水的长方体水槽固定底面一边后将水槽倾斜一个小角度,则倾斜后水槽中的水形成的几何体的形状是.解析:如图所示,假设以AB边固定进行倾斜,则几何体BB2C2C-AA2D2D一定为棱柱.答案:棱柱9.在侧棱长为23的正三棱锥P−ABC中,∠APB=40°,E,F分别是PB,PC上的点,过点A,E,F作截面AEF,则△AEF周长的最小值是.解析:将正三棱锥的三个侧面展开,如图所示.则当E,F为AA1与PB,PC的交点时,△AEF的周长最小,最小值为2AP·cos30°=2×23×3=6.答案:610.把右图中的三棱台ABC-A1B1C1分成三个三棱锥.解:如图所示,分别连接A1B,A1C,BC1,则将三棱台分成了三个三棱锥,即三棱锥A-A1BC,B1-A1BC1,C-A1BC1.(本题答案不唯一)11.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥.(2)四个面都是等边三角形的三棱锥.(3)三棱柱.解:(1)如图所示,三棱锥A1-AB1D1(答案不唯一).(2)如图所示,三棱锥B1-ACD1(答案不唯一).(3)如图所示,三棱柱A1B1D1-ABD(答案不唯一).★12.如图所示,在正三棱柱ABC-A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上的一点,且由点P沿棱柱侧面经过棱CC1到M的最短路线的长为设这条最短路线与CC1的交点为N.求:(1)该三棱柱的侧面展开图的对角线的长;(2)求PC和NC的长.解:(1)正三棱柱ABC-A1B1C1的侧面展开图是一个长为9,宽为4的矩形,其对角线长为92+42=97.(2)如图所示,将侧面BB1C1C绕棱CC1旋转120°使其与侧面AA1C1C在同一平面上,则点P旋转到点P1的位置,连接MP1交CC1于点N,则MP1的长等于由点P沿棱柱侧面经过棱CC1到点M的最短路线的长.设PC=x,则P1C=x.在Rt△MAP1中,由勾股定理,得(3+x)2+22=29,解得x=2,所以PC=P1C=2,又NCMA =P1CP1A=25,所以NC=45.§2直观图1.关于用斜二测画法所得的直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:根据斜二测画法的规则知,正方形的直观图为平行四边形.答案:B2.水平放置的△ABC,有一条边在水平线上,它的斜二测直观图是正三角形A'B'C',则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形解析:根据斜二测画法的规则,可知△ABC中有一个角是钝角,所以△ABC是钝角三角形.答案:C3.如图所示为一平面图形的直观图,则此平面图形可能是()答案:C4.对于一条边在x轴上的三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.2倍B.2C.2D.1解析:由于平行于y轴的线段其平行性不变,长度变为原来的一半,又直观图中∠x'O'y'=45°,设原三角形的面积为S,其直观图的面积为S',则S'=1×2S=2S.答案:B5.一个水平放置的三角形的直观图是等腰直角三角形A'B'O',如图所示,若O'B'=1,那么原△ABO的面积是()A.12B.22C.2D.22解析:由斜二测画法,可知原三角形为直角三角形,且∠AOB=90°,OB=1,OA=2O'A'=22,∴S△AOB=12×1×22= 2.故选C.答案:C6.已知△A'B'C'为水平放置的△ABC的直观图,如图所示,则在△ABC的三边及中线AD中,最长的线段是()A.ABB.ADC.BCD.AC解析:由斜二测画法,可知原图形为直角三角形.AC为斜边,D为BC的中点,故AC>AD,故最长线段为AC.答案:D7.一个平面图形的斜二测直观图是腰长为2的等腰直角三角形,如图,则其平面图形的面积为.答案:48.已知正三角形ABC的边长为a,则水平放置的△ABC的直观图△A'B'C'的面积为.解析:图①、图②分别为实际图形和直观图.由图可知A'B'=AB=a,O'C'=1OC=3a,在图②中作C'D'⊥A'B'于点D',则C'D'=2O′C′=6a.所以S△A'B'C'=12A′B′·C'D'=12×a×68a=616a2.答案:616a29.在等腰梯形ABCD中,上底边CD=1,AD=CB=2,下底边AB=3,按平行于上、下底边取x轴,则直观图A′B′C′D′的面积为.解析:等腰梯形ABCD的高为1,且直观图A'B'C'D'仍为梯形,其高为1sin45°=2,故面积为1×(1+3)×2= 2.答案:2210.画出如图所示放置的直角三角形的直观图.解:画法:(1)画x'轴和y'轴,使∠x'O'y'=45°(如图②所示);(2)在原图中作BD⊥x轴,垂足为D(如图①所示);(3)在x'轴上截取O'A'=OA,O'D'=OD,在y'轴上截取O'C'=12OC,过D'作B'D'∥y'轴,使D'B'=1BD;(4)连线成图(擦去辅助线)(如图③所示).11.用斜二测画法得到一水平放置的Rt△ABC,AC=1,∠ABC=30°,如图所示,试求原三角形的面积.解:如图所示,作AD⊥BC于点D,令x'轴与y'轴的交点为E,则DE=AD,在Rt△ABC中,由∠ABC=30°,AC=1,可知BC=2,AB= 3.由AD⊥BC,AD=DE,可知AD=32,AE=62,由斜二测画法可知,原三角形A'B'C'中,B'C'=BC=2,A'E'=2AE=6,且A'E'⊥B'C',所以S△A'B'C'=1B′C′·A'E'=1×2×6= 6.★12.画水平放置的圆锥的直观图.分析用斜二测画法画水平放置的圆锥的直观图,由于圆锥底面可以看作是水平放置的,因此,只需先画轴,再画底面和高即可.解:(1)画轴,如图所示,画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°;(2)画圆锥的底面,画出底面圆的直观图,与x轴交于A,B两点;(3)画圆锥的顶点,在Oz上截取点P,使得PO等于圆锥的高;(4)连线成图,连接P A,PB,并加以整理(擦去辅助线,将被遮挡的部分改为虚线),得圆锥的直观图.§3三视图3.1简单组合体的三视图1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是()解析:截去的平面在俯视图中看不到,故用虚线,因此选B.答案:B2.下列各几何体的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④解析:①中正方体的三视图均相同;②中圆锥的主视图和左视图相同;③中三棱台的三视图各不相同;④中正四棱锥的主视图和左视图相同.答案:D3.某几何体的主视图和左视图均如图所示,则该几何体的俯视图不可能是()解析:D选项的主视图为,故不可能是D选项.答案:D4.如图所示,若△A'B'C'为正三角形,与底面不平行,且CC'>BB'>AA',则多面体的主视图为()解析:因为△A'B'C'为正三角形,面A'B'BA向前,所以主视图不可能是A,B,C三个选项,只能是D.答案:D5.“牟台方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如图所示,图中四边形是为体现其直观性所作的辅助线.当其主视图和左视图完全相同时,它的俯视图可能是()答案:B6.如图所示,画出四面体AB1CD1三视图中的主视图,若以面AA1D1D为投影面,则得到的主视图为()解析:显然AB1,AC,B1D1,CD1分别投影得到主视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.答案:A★7.如图所示,在正方体ABCD-A1B1C1D1中,E为棱BB1的中点,若用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的左视图为()设过点A,E,C1的截面与棱DD1相交于点F,且F是棱DD1的中点,该正方体截去上半部分后,剩余几何体如图所示,则它的左视图应选C.答案:C8.如图所示,图①②③是图④表示的几何体的三视图,其中图①是,图②是,图③是(填写视图名称).解析:由三视图可知,①为主视图,②为左视图,③为俯视图.答案:主视图左视图俯视图9.如图(a)所示,在正方体ABCD-A1B1C1D1中,P为正方体的中心,则△P AC在该正方体各个面上的射影可能是图(b)中的(把可能的序号都填上).图(a)图(b)解析:要考虑△P AC在该正方体各个面上的射影,在上、下两个面上的射影是①,在前后左右四个面上的射影是④.答案:①④10.(1)画出如图①所示组合体的三视图;(2)图②所示的是一个零件的直观图,试画出这个几何体的三视图.图①图②解(1)该组合体是由一个四棱柱和一个圆锥拼接而成,其三视图如图所示.(2)作出三视图如图所示.★11.如图是根据某一种型号的滚筒洗衣机抽象出来的几何体,数据如图所示(单位:cm).试画出它的三视图.解这个几何体是由一个长方体挖去一个圆柱体构成的,三视图如图所示.3.2由三视图还原成实物图1.若一个几何体的主视图和左视图都是等腰梯形,俯视图是两个同心圆,则这个几何体可能是()A.圆柱B.圆台C.圆锥D.棱台答案:B2.某几何体的三视图如图所示,则该几何体是()A.棱台B.棱柱C.棱锥D.以上均不对解析:由相似比,可知几何体的侧棱相交于一点.答案:A3.如图所示是底面为正方形、一条侧棱垂直于底面的四棱锥的三视图,则该四棱锥的直观图是下列各图中的()解析:由俯视图排除B,C选项;由主视图、左视图可排除A选项,故选D.答案:D4.某几何体的三视图如图所示,则这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析:因为主视图和左视图为三角形,可知几何体为锥体.又俯视图为四边形,所以该几何体为四棱锥,故选B.答案:B5.如图所示,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱解析:由题知,该几何体的三视图为一个三角形,两个四边形,经分析可知该几何体为三棱柱,故选B.答案:B6.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4解析:由三视图画出直观图如图所示,判断这个几何体是底面边长为6,8,10的直角三角形,高为12的躺下的直=2,这就是做成的最大球的半径.三棱柱,直角三角形的内切圆的半径为r=6+8-102答案:B7.把边长为2的正方形ABCD沿对角线BD折起,连接AC,得到三棱锥C-ABD,其主视图、俯视图均为全等的等腰直角三角形(如图所示),其左视图的面积为.解析:如图所示,根据两个视图可以推知折起后∠CEA=90°,其侧视图是一个两直角边长为1的等腰直角三.角形,所以左视图的面积为12答案:18.用n个体积为1的正方体搭成一个几何体,其主视图、左视图都是如图所示的图形,则n的最大值与最小值之差是.解析:由主视图、左视图可知,正方体个数最少时,底层有3个小正方体,上面有2个,共5个;个数最多时,底层有9个小正方体,上面有2个,共11个.故n的最大值与最小值之差是6.答案:69.下图是一个几何体的三视图,想象该几何体的几何结构特征,画出该几何体的形状.解由于俯视图中有一个圆和一个四边形,则该几何体是由旋转体和多面体构成的组合体,结合左视图和主视图,可知该几何体是由上面一个圆柱、下面一个四棱柱拼接成的组合体.该几何体的形状如图所示.★10.已知几何体的三视图如图所示,用斜二测画法画出它的直观图.解由三视图可知其几何体是底面边长为2,高为3的正六棱锥,其直观图如图所示.§4空间图形的基本关系与公理第1课时平面性质1.两个平面重合的条件是()A.有四个公共点B.有无数个公共点C.有一条公共直线D.有两条相交公共直线解析:由两条相交直线确定一个平面知D选项正确.答案:D2.与“直线l上两点A,B在平面α内”含义不同的是()A.l⫋αB.直线l在平面α内C.直线l上只有这两个点在平面α内D.直线l上所有的点都在平面α内答案:C3.有下列说法:①梯形的四个顶点在同一平面内;②三条平行直线必共面;③有三个公共点的两个平面必重合.其中正确的个数是()A.0B.1C.2D.3解析:梯形是一个平面图形,所以其四个顶点在同一个平面内,故①正确;两条平行直线确定1个平面,三条平行直线确定1个或3个平面,故②错误;三个公共点可以同在两个相交平面的交线上,故③错误.答案:B4.设P表示一个点,a,b表示两条直线,α,β表示两个平面,给出下列四个命题,其中正确的命题是()①P∈a,P∈α⇒a⫋α;②a∩b=P,b⫋β⇒a⫋β;③a∥b,a⫋α,P∈b,P∈α⇒b⫋α;④α∩β=b,P∈α,P∈β⇒P∈b.A.①②B.②③C.①④D.③④答案:D5.三棱台ABC-A'B'C'的一条侧棱AA'所在直线与平面BCC'B'之间的关系是()A.相交B.平行C.直线在平面内D.平行或直线在平面内解析:棱台就是棱锥被一个平行于底面的平面截去一个棱锥得到的,所以延长棱台各侧棱可以恢复成棱锥的形状,由此可知三棱台的一条侧棱所在直线与其对面所在的平面相交.答案:A6.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,且C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线BCC.直线ABD.直线CD解析:由题意知,平面ABC与平面β有公共点C,根据公理3,这两平面必定相交,有且只有一条经过C的交线,由于两点确定一条直线,所以只要再找到两平面的另一个公共点即可.显然点D在直线AB上,从而它在平面ABC内,而点D又在直线l上,所以它又在平面β内,所以点D也是平面ABC与平面β的公共点.因此平面ABC 与平面β的交线是直线CD.答案:D7.已知点P在平面α外,点A,B,C在平面α内且不共线,A',B',C'分别在P A,PB,PC上,若A'B',B'C',A'C'与平面α分别交于D,E,F三点,则D,E,F三点()A.成钝角三角形B.成锐角三角形C.成直角三角形D.在一条直线上解析:本题考查三点关系,根据两平面公共点在其交线上,知D,E,F三点共线,故选D.答案:D8.在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么,正方体的过P,Q,R的截面图形是()A.三角形B.四边形C.五边形D.六边形解析:如图所示,作GR∥PQ交C1D1于G,延长QP与CB延长线交于M,连接MR交BB1于E,连接PE.同理延长PQ交CD延长线于点N,连接NG交DD1于F,连接QF.所以截面PQFGRE为六边形.故选D.答案:D9.四条线段首尾相接得到一个四边形,当且仅当它的两条对角线时,能得到一个平面图形.解析:由公理1,2知当两条对角线相交时为平面图形,当两条对角线不共面时为空间四边形.答案:相交10.一个平面内不共线的三点到另一个平面的距离相等且不为零,则这两个平面的位置关系是.解析:当三点在另一个平面同侧时,这两个平面平行,当三点不在另一个平面同侧时,这两个平面相交.答案:平行或相交11.过已知直线a外的一点P,与直线a上的四个点A,B,C,D分别画四条直线,求证:这四条直线在同一平面内.证明:如图所示,因为点P在直线a外,所以过直线a及点P可作一平面α,因为A,B,C,D均在a上,所以A,B,C,D均在α内,所以直线P A,PB,PC,PD上各有两个点在α内,由公理2可知,直线P A,PB,PC,PD均在平面α内,故这四条直线在同一平面内.12.如图所示,正方体ABCD-A1B1C1D1的棱长为a,M,N分别是AA1,D1C1的中点,过D,M,N三点的平面与正方体下底面相交于直线l.试画出直线l的位置,并说明理由.解:如图所示,连接DM并延长,交D1A1的延长线于点P',连接NP',则直线NP'即为所求直线l.理由如下: 如图所示,连接DN,∵P'=DM∩D1A1,且DM⫋平面DMN,D1A1⫋平面A1B1C1D1,∴P'∈平面DMN∩平面A1B1C1D1.又N∈平面DMN∩平面A1B1C1D1,∴由公理3知,直线NP'为平面DMN与平面A1B1C1D1的交线.第2课时 异面直线所成的角1.若直线a ∥b ,b ∩c=A ,则直线a 与c 的位置关系是( ) A.异面 B.相交 C.平行 D.异面或相交答案:D2.在三棱锥A-BCD 中,E ,F ,G 分别是AB ,AC ,BD 的中点,如果AD 与BC 所成的角是60°,那么∠FEG 为( ) A .60° B .30°C .120°D .60°或120° 解析:异面直线AD 与BC 所成的角可能等于∠FEG ,也可能等于∠FEG 的补角.答案:D3.若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2∥l 3,l 3⊥l 4,则下列结论一定正确的是( ) A .l 1⊥l 4 B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定解析:因为l 2∥l 3,所以l 1⊥l 3,l 3⊥l 4.实质上就是l 1与l 4同垂直于一条直线,所以l 1⊥l 4,l 1∥l 4,l 1与l 4既不垂直也不平行都有可能成立,故l 1与l 4的位置关系不确定. 答案:D4.如图,在某个正方体的表面展开图中,l 1,l 2是两条面对角线,则在正方体中,l 1与l 2( ) A.互相平行 B.异面且互相垂直 C.异面且夹角为60° D.相交且夹角为60°解析:将表面展开图还原成正方体如图所示,则B ,C 两点重合.故l 1与l 2相交,连接AD ,△ABD 为正三角形,所以l 1与l 2的夹角为60°. 答案:D5.在三棱柱ABC-A 1B 1C 1中,若点E ,F 分别在AB ,AC 上,且AE=13AB ,AF=13AC ,则下列说法正确的是( ) A.EF ⊥BB 1 B.EF ∥A 1B 1 C.EF ∥B 1C 1D.EF ∥AA 1解析:∵AE=1AB ,AF=1AC ,∴EF ∥BC.又ABC-A1B1C1为棱柱,∴BC∥B1C1.∴EF∥B1C1.答案:C6.下列说法正确的是()A.空间中没有交点的两条直线是平行直线B.一条直线和两条平行直线中的一条相交,则它和另一条也相交C.空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥cD.分别在两个平面内的直线是平行直线解析:A,B选项中,两直线可能异面,D选项中两直线可能相交,也可能异面.答案:C7.如图是一个正方体的表面展开图,如果将它还原为正方体,那么AB,CD,EF,GH这四条线段所在直线是异面直线的有对.解析:将图形还原成正方体,观察有AB与CD,AB与GH,EF与GH共3对异面直线.答案:38.如图,已知长方体ABCD-A1B1C1D1中,A1A=AB,E,F分别是BD1和AD中点,则异面直线CD1,EF所成的角的大小为.答案:90°9.如图所示,在四棱锥C-ABED中,底面ABED是梯形.若AB∥DE,DE=2AB,且F是CD的中点,P是CE的中点,则AF与BP的位置关系是.解析:连接PF,∵P,F分别是CE,CD的中点,∴PF∥ED,且PF=1ED.2又AB∥ED,且DE=2AB,∴AB∥PF,且AB=PF,即四边形ABPF是平行四边形,∴BP∥AF.答案:平行10.如图所示,在三棱锥P-ABC中,D,E是PC上不重合的两点,F,H分别是P A,PB上的点,且与点P不重合.求证:EF和DH是异面直线.证明∵P A∩PC=P,∴P A,PC确定一个平面α.∵E∈PC,F∈P A,∴E∈α,F∈α,∴EF⫋α.∵D∈PC,∴D∈α,且D∉EF.又PB∩α=P,H∈PB,且点H与点P不重合,∴H∉α,DH∩α=D,且DH与EF不相交,于是直线EF和DH是异面直线.★11.如图所示,在空间四边形ABCD中,两条对边AB=CD=3,E,F分别是另外两条对边AD,BC上的点,且AE=BF=1,EF=5,求AB和CD所成的角的大小.解如图所示,过点E作EO∥AB,交BD于点O,连接OF,所以AEED =BOOD,所以BOOD=BFFC,所以OF∥CD.所以∠EOF或其补角是AB和CD所成的角.在△EOF中,OE=2AB=2,OF=1CD=1,又EF=5,所以EF2=OE2+OF2,所以∠EOF=90°.即异面直线AB和CD所成的角为90°.★12.在梯形ABCD中(如图①所示),AB∥CD,E,F分别为BC和AD的中点,将平面CDFE沿EF翻折起来,使CD到C'D'的位置,G,H分别为AD'和BC'的中点,得到如图②所示的立体图形.求证:四边形EFGH为平行四边形.。
课时跟踪检测(三) 反证法一、基本能力达标1.三人同行,一人道:“三人行,必有我师”,另一人想表示反对,他该怎么说?( )A .三人行,必无我师B .三人行,均为我师C .三人行,未尝有我师D .三人行,至多一人为我师解析:选C “必有”意思为“一定有”,其否定应该是“不一定有”,故选C.2.用反证法证明命题“若实系数一元二次方程ax 2+bx +c =0(a ≠0)有有理根,那么a ,b ,c 中至少有一个是偶数”时,下列假设正确的是( )A .假设a ,b ,c 都是偶数B .假设a ,b ,c 都不是偶数C .假设a ,b ,c 至多有一个是偶数D .假设a ,b ,c 至少有两个是偶数解析:选B “a ,b ,c 中至少有一个是偶数”的反面是“a ,b ,c 都不是偶数”,故应假设a ,b ,c 都不是偶数.故选B.3.若a ,b ,c 是不全相等的正数,给出下列判断:①(a -b )2+(b -c )2+(c -a )2≠0;②a >b 与a <b 及a =b 中至少有一个成立;③a ≠c ,b ≠c ,a ≠b 不能同时成立.其中判断正确的个数是( )A .0B .1C .2D .3 解析:选C 因为a ,b ,c 不全相等,所以①正确;②显然正确,③中的a ≠c ,b ≠c ,a ≠b 可以同时成立,所以③错,故选C.4.已知x >0,y >0,z >0,a =x +1y ,b =y +1z ,c =z +1x,则a ,b ,c 三个数( ) A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2解析:选C 假设a ,b ,c 都小于2,则a +b +c <6.而事实上a +b +c =x +1x +y +1y+z +1z≥2+2+2=6,与假设矛盾,所以a ,b ,c 中至少有一个不小于2. 5.用反证法证明命题“若a 2+b 2=0,则a ,b 全为0(a ,b 为实数)”,其反设为____________________.解析:“a ,b 全为0”即是“a =0且b =0”,因此它的反设为“a ≠0或b ≠0”,即a ,b 不全为0.答案:a ,b 不全为06.已知数列{a n },{b n }的通项公式分别为a n =an +2,b n =bn +1(a ,b 是常数,且a >b ),那么这两个数列中序号与数值均对应相同的项有________个.解析:假设存在序号和数值均相等的项,即存在n 使得a n =b n ,由题意a >b ,n ∈N +,则恒有an >bn ,从而an +2>bn +1恒成立,所以不存在n 使a n =b n .答案:07.如果非零实数a ,b ,c 两两不相等,且2b =a +c ,证明:2b =1a +1c不成立. 证明:假设2b =1a +1c 成立,则2b =a +c ac =2b ac, 故b 2=ac ,又b =a +c 2, 所以⎝ ⎛⎭⎪⎫a +c 22=ac ,即(a -c )2=0,a =c . 这与a ,b ,c 两两不相等矛盾.因此2b =1a +1c不成立. 8.已知二次函数f (x )=ax 2+bx +c (a >0)的图像与x 轴有两个不同的交点,f (c )=0,且当0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点; (2)试用反证法证明:1a>c . 证明:(1)∵f (x )的图像与x 轴有两个不同的交点,∴f (x )=ax 2+bx +c =0有两个不等实根,设为x 1,x 2.∵f (c )=0,∴c 是f (x )=0的一个根,不妨令x 1=c . 又x 1x 2=c a ,∴x 2=1a (1a≠c ), ∴1a是f (x )=0的一个根, 即1a 是函数f (x )的一个零点.(2)由(1)知1a ≠c ,故假设1a<c .∵1a>0,又当0<x <c 时,f (x )>0, ∴f ⎝ ⎛⎭⎪⎫1a >0,与f ⎝ ⎛⎭⎪⎫1a =0矛盾, ∴假设不成立,∴1a>c . 二、综合能力提升1.下列四个命题中错误的是( )A .在△ABC 中,若∠A =90°,则∠B 一定是锐角 B.17,13,11不可能成等差数列C .在△ABC 中,若a >b >c ,则∠C >60°D .若n 为整数且n 2为偶数,则n 是偶数解析:选C 显然A 、B 、D 命题均真,C 项中若a >b >c ,则∠A >∠B >∠C ,若∠C >60°,则∠A >60°,∠B >60°,∴∠A +∠B +∠C >180°与∠A +∠B +∠C =180°矛盾,故选C.2.若△ABC 能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定 解析:选B 分△ABC 的直线只能过一个顶点且与对边相交,如直线AD (点D 在BC 上),则∠ADB +∠ADC =π,若∠ADB 为钝角,则∠ADC 为锐角.而∠ADC >∠BAD ,∠ADC >∠ABD ,△ABD 与△ACD 不可能相似,与已知不符,只有当∠ADB =∠ADC =∠BAC =π2时,才符合题意. 3.对于定义在实数集R 上的函数f (x ),如果存在实数x 0,使f (x 0)=x 0,那么x 0叫做函数f (x )的一个好点.已知函数f (x )=x 2+2ax +1不存在好点,那么a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-12,32 B.⎝ ⎛⎭⎪⎫-32,12 C .(-1,1)D .(-∞,-1)∪(1,+∞) 解析:选A 假设f (x )=x 2+2ax +1存在好点,亦即方程f (x )=x 有实数根,所以x 2+(2a -1)x +1=0有实数根,则Δ=(2a -1)2-4=4a 2-4a -3≥0,解得a ≤-12或a ≥32.故当f (x )不存在好点时,a 的取值范围是-12<a <32.故选A.4.完成反证法证题的全过程.设a 1,a 2,…,a 7是1,2,…,7的一个排列,求证:乘积p =(a 1-1)(a 2-2)…(a 7-7)为偶数.证明:假设p 为奇数,则a 1-1,a 2-2,…,a 7-7均为奇数.因奇数个奇数之和为奇数,故有奇数=________=________=0.但0≠奇数,这一矛盾说明p为偶数.解析:据题目要求及解题步骤,∵a1-1,a2-2,…,a7-7均为奇数,∴(a1-1)+(a2-2)+…+(a7-7)也为奇数.即(a1+a2+…+a7)-(1+2+…+7)为奇数.又∵a1,a2,…,a7是1,2,…,7的一个排列,∴a1+a2+…+a7=1+2+…+7,故上式为0,所以奇数=(a1-1)+(a2-2)+…+(a7-7)=(a1+a2+…+a7)-(1+2+…+7)=0.答案:(a1-1)+(a2-2)+…+(a7-7)(a1+a2+...+a7)-(1+2+ (7)5.已知函数f(x)在R上是增函数,a,b∈R.(1)求证:如果a+b≥0,那么f(a)+f(b)≥f(-a)+f(-b);(2)判断(1)中的命题的逆命题是否成立?并证明你的结论.解:(1)证明:当a+b≥0时,a≥-b且b≥-a.∵f(x)在R上是增函数,∴f(a)≥f(-b),f(b)≥f(-a),∴f(a)+f(b)≥f(-a)+f(-b).(2)(1)中命题的逆命题为“如果f(a)+f(b)≥f(-a)+f(-b),那么a+b≥0”,此命题成立.用反证法证明如下:假设a+b<0,则a<-b,∴f(a)<f(-b).同理可得f(b)<f(-a).∴f(a)+f(b)<f(-a)+f(-b),这与f(a)+f(b)≥f(-a)+f(-b)矛盾,故假设不成立,∴a+b≥0成立,即(1)中命题的逆命题成立.6.对于直线l :y =kx +1,是否存在实数k ,使直线l 与双曲线C :3x 2-y 2=1的交点A ,B 关于直线y =ax (a 为常数)对称?若存在,求出k 的值;若不存在,请说明理由.解:不存在.理由如下:假设存在实数k ,使得点A ,B 关于直线y =ax 对称,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ ka =-1, ①y 1+y 2=k (x 1+x 2)+2, ②y 1+y 22=a ·x 1+x 22. ③由⎩⎪⎨⎪⎧ y =kx +1,y 2=3x 2-1, 得(3-k 2)x 2-2kx -2=0.④由②③得a (x 1+x 2)=k (x 1+x 2)+2.⑤由④得x 1+x 2=2k3-k 2. 代入⑤整理得ak =3,与①矛盾.故不存在实数k ,使直线l 与双曲线C :3x 2-y 2=1的交点A ,B 关于直线y =ax (a 为常数)对称.。
2018学年高中数学选修2-3课时跟踪训练汇编目录高中数学北师大版选修2-3:课时跟踪训练(一)分类加法计数原理和分步乘法计数原理Word版含解析高中数学北师大版选修2-3:阶段质量检测(二)概率Word版含解析高中数学北师大版选修2-3:阶段质量检测(三)统计案例Word版含解析高中数学北师大版选修2-3:课时跟踪训练(四)组合与组合数公式Word版含解析高中数学北师大版选修2-3:课时跟踪训练(五)组合的应用Word版含解析高中数学北师大版选修2-3:课时跟踪训练(六)简单计数问题Word版含解析高中数学北师大版选修2-3:课时跟踪训练(七)二项式定理Word版含解析高中数学北师大版选修2-3:课时跟踪训练(八)二项式系数的性质Word版含解析高中数学北师大版选修2-3:课时跟踪训练(九)离散型随机变量及其分布列Word版含解析高中数学北师大版选修2-3:课时跟踪训练(十)超几何分布Word版含解析高中数学北师大版选修2-3:课时跟踪训练(十一)条件概率与独立事件Word版含解析高中数学北师大版选修2-3:课时跟踪训练(十二)二项分布Word版含解析高中数学北师大版选修2-3:课时跟踪训练(十三)离散型随机变量的均值Word版含解析高中数学北师大版选修2-3:课时跟踪训练(十四)离散型随机变量的方差Word版含解析高中数学北师大版选修2-3:课时跟踪训练(十五)正态分布Word版含解析高中数学北师大版选修2-3单元测试:第一章计数原理章末检测Word版含解析高中数学北师大版选修2-3单元测试:第二章概率章末检测Word版含解析高中数学北师大版选修2-3单元测试:第三章统计案例章末检测Word版含解析高中数学北师大版选修2-3:阶段质量检测(一)计数原理Word版含解析高中数学北师大版选修2-3:阶段质量检测(二)概率Word版含解析高中数学北师大版选修2-3:阶段质量检测(三)统计案例Word版含解析高中数学北师大版选修2-3:模块综合检测Word版含解析高中数学北师大版选修2-3:第二部分高考六大高频考点例析Word版含解析课时跟踪训练(一) 分类加法计数原理和分步乘法计数原理1.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中任取一本,则不同的取法共有( )A .37种B .1 848种C .3种D .6种2.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数 a ,b 组成复数 a +b i ,其中虚数有( )A .30个B .42个C .36个D .35个3.现有高一学生9人,高二学生12人,高三学生7人,自发组织参加数学课外活动小组,从中推选两名来自不同年级的学生做一次活动的主持人,不同的选法共有( )A .756种B .56种C .28种D .255种4.用4种不同的颜色给矩形A ,B ,C ,D 涂色,要求相邻的矩形涂不同的颜色,则不同的涂色方法共有( )A .12种B .24种C .48种D .72种5.为了对某农作物新品种选择最佳生产条件,在分别有3种不同土质,2种不同施肥量,4种不同的种植密度,3种不同的种植时间的因素下进行种植试验,则不同的实验方案共有________种.6.如图,A →C ,有________种不同走法.7.设椭圆x 2a 2+y 2b2=1,其中a ,b ∈{1,2,3,4,5}.(1)求满足条件的椭圆的个数;(2)如果椭圆的焦点在x 轴上,求椭圆的个数.8.某艺术小组有9人,每人至少会钢琴和小号中的1种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴和会小号的各1人,有多少种不同的选法?答案1.选A根据分类加法计数原理,得不同的取法为N=12+14+11=37(种).2.选C完成这件事分为两个步骤:第一步,虚部b有6种选法;第二步,实部a有6种选法.由分步乘法计数原理知,共有虚数6×6=36 个.3.选D推选两名来自不同年级的两名学生,有N=9×12+12×7+9×7=255(种).4.选D先涂C,有4种涂法,涂D有3种涂法,涂A有3种涂法,涂B有2种涂法.由分步乘法计数原理,共有4×3×3×2=72种涂法.5.解析:根据分步乘法计数原理,不同的方案有N=3×2×4×3=72(种).答案:726.解析:A→C的走法可分两类:第一类:A→C,有2种不同走法;第二类:A→B→C,有2×2=4种不同走法.根据分类加法计数原理,得共有2+4=6种不同走法.答案:67.解:(1)由椭圆的标准方程知a≠b,要确定一个椭圆,只要把a,b一一确定下来这个椭圆就确定了.∴要确定一个椭圆共分两步:第一步确定a,有5种方法;第二步确定b,有4种方法,共有5×4=20个椭圆.(2)要使焦点在x轴上,必须a>b,故可以分类:a=2,3,4,5时,b的取值列表如下:故共有1+2+3+48.解:由题意可知,在艺术小组9人中,有且仅有1人既会钢琴又会小号(把该人称为“多面手”),只会钢琴的有6人,只会小号的有2人,把选出会钢琴、小号各1人的方法分为两类:第一类:多面手入选,另1人只需从其他8人中任选一个,故这类选法共有8种.第二类:多面手不入选,则会钢琴者只能从6个只会钢琴的人中选出,会小号者也只能从只会小号的2人中选出,故这类选法共有6×2=12种.因此有N=8+12=20种不同的选法.课时跟踪训练(二) 排列与排列数公式1.5A 35+4A 24等于( )A .107B .323C .320D .3482.A 345!等于( ) A.120 B.125 C.15D.1103.设a ∈N +,且a <27,则(27-a )(28-a )·…·(34-a )等于( ) A .A 827-a B .A 27-a34-aC .A 734-aD .A 834-a4.若从4名志愿者中选出2人分别从事翻译、导游两项不同工作,则选派方案共有( ) A .16种 B .6种 C .15种D .12种5.已知9!=362 880,那么A 79=________. 6.给出下列问题:①从1,3,5,7这四个数字中任取两数相乘,可得多少个不同的积? ②从2,4,6,7这四个数字中任取两数相除,可得多少个不同的商?③有三种不同的蔬菜品种,分别种植在三块不同的试验田里,有多少种不同的种植方法? ④有个头均不相同的五位同学,从中任选三位同学按左高右低的顺序并排站在一排照相,有多少种不同的站法?上述问题中,是排列问题的是________.(填序号)7.(1)计算4A 48+2A 58A 88-A 59;(2)解方程3A x 8=4A x -19.8.从语文、数学、英语、物理4本书中任意取出3本分给甲、乙、丙三人,每人一本,试将所有不同的分法列举出来.答案1.选D 原式=5×5×4×3+4×4×3=348. 2.选C A 345!=4×3×25×4×3×2×1=15.3.选D 8个括号里面是连续的自然数,依据排列数的概念,选D.4.选D 4名志愿者分别记作甲、乙、丙、丁,则选派方案有:甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丙丁,丁甲,丁乙,丁丙,即共有A 24=12种方案.5.解析:A 79=9!(9-7)!=362 8802=181 440. 答案:181 4406.解析:对于①,任取两数相乘,无顺序之分,不是排列问题;对于②,取出的两数,哪一个作除数,哪一个作被除数,其结果不同,与顺序有关,是排列问题;对于③,三种不同的蔬菜品种任一种种植在不同的试验田里,结果不同,是排列问题;对于④,选出的三位同学所站的位置已经确定,不是排列问题.答案:②③7.解:(1)原式=4A 48+2×4A 484×3×2A 48-9A 48=4+824-9=1215=45. (2)由3A x 8=4A x -19,得3×8!(8-x )!=4×9!(10-x )!,化简,得x 2-19x +78=0,解得x 1=6,x 2=13. 又∵x ≤8,且x -1≤9,∴原方程的解是x =6.8.解:从语文、数学、英语、物理4本书中任意取出3本,分给甲、乙、丙三人,每人一本,相当于从4个不同的元素中任意取出3个元素,按“甲、乙、丙”的顺序进行排列,每一个排列就对应着一种分法,所以共有A 34=4×3×2=24种不同的分法.不妨给“语文、数学、英语、物理”编号,依次为1,2,3,4号,画出下列树形图:由树形图可知,按甲乙丙的顺序分的分法为: 语数英 语数物 语英数 语英物 语物数 语物英 数语英 数语物 数英语 数英物 数物语 数物英 英语数 英语物 英数语 英数物 英物语 英物数物语数物语英物数语物数英物英语物英数课时跟踪训练(三)排列的应用1.6个人站成一排,甲、乙、丙3人必须站在一起的所有排列的总数为()A.A66B.3A33C.A33·A33D.A44·A332.(北京高考)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24 B.18C.12 D.63.由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23 145且小于43 521的数共有()A.56个B.57个C.58个D.60个4.(辽宁高考)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120C.72 D.245.(大纲全国卷)6个人排成一行,其中甲、乙两人不相邻的不同排法共有________种.(用数字作答)6.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次,A,B两位学生去问成绩,老师对A说:“你的名次不知道,但肯定没得第一名”;又对B说:“你是第三名”.请你分析一下,这五位学生的名次排列共有________种不同的可能.7.由A,B,C等7人担任班级的7个班委.(1)若正、副班长两职只能由这三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选三人中的1人担任,有多少种分工方案?8.如图,某伞厂生产的“太阳”牌太阳伞蓬是由太阳光的七种颜色组成的,七种颜色分别涂在伞蓬的八个区域内,且恰有一种颜色涂在相对区域内,则不同的颜色图案的此类太阳伞至多有多少种?答案1.选D甲、乙、丙3人站在一起有A33种站法,把3人作为一个元素与其他3人排列有A44种,共有A33·A44种.2.选B若选0,则0只能在十位,此时组成的奇数的个数是A23;若选2,则2只能在十位或百位,此时组成的奇数的个数是2×A23=12,根据分类加法计数原理得总个数为6+12=18.3.选C首位为3时,有A44=24个;首位为2时,千位为3,则有A12A22+1=5个,千位为4或5时有A12A33=12个;首位为4时,千位为1或2有A12A33=12个,千位为3时,有A12A22+1=5个.由分类加法计数原理知,共有符合条件的数字24+5+12+12+5=58(个).4.选D剩余的3个座位共有4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.5.解析:法一:先把除甲、乙外的4个人全排列,共有A44种方法.再把甲、乙两人插入这4人形成的五个空位中的两个,共有A25种不同的方法.故所有不同的排法共有A44·A25=24×20=480(种).法二:6人排成一行,所有不同的排法有A66=720(种),其中甲、乙相邻的所有不同的排法有A55 A22=240(种),所以甲、乙不相邻的不同排法共有720-240=480(种).答案:4806.解析:先安排B有1种方法,再安排A有3种方法,最后安排C,D,E共A33种方法.由分步乘法计数原理知共有3A33=18种方法.答案:187.解:(1)先安排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步乘法计数原理,共有A23A55=720种分工方案.(2)7人的任意分工方案有A77种,A,B,C三人中无一人任正、副班长的分工方案有A24A55种,因此A,B,C三人中至少有1人任正、副班长的方案有A77-A24A55=3 600种.8.解:如图,对8个区域进行编号,任选一组对称区域(如1与5)同色,用7种颜色涂8个区域的不同涂法有7!种,又由于1与5,2与6,3与7,4与8是对称的,通过旋转后7!5,6,7,8,1,2,3,4与1,2,3,4,5,6,7,8是同一种涂色,即重复染色2次,故此种图案至多有2=2 520种.课时跟踪训练(四) 组合与组合数公式1.给出下面几个问题:①10人相互通一次电话,共通多少次电话?②从10个人中选出3个作为代表去开会,有多少种选法? ③从10个人中选出3个不同学科的课代表,有多少种选法? ④由1,2,3组成无重复数字的两位数. 其中是组合问题的有( ) A .①③ B .②④ C .①②D .①②④2.若A 3n =12C 2n ,则n 等于( )A .8B .5或6C .3或4D .43.下列四个式子中正确的个数是( )(1)C m n =A m n m !;(2)A mn =n A m -1n -1; (3)C mn ÷C m +1n =m +1n -m ;(4)C m +1n +1=n +1m +1C m n . A .1个 B .2个 C .3个D .4个4.若C 7n +1-C 7n =C 8n ,则n 等于( )A .12B .13C .14D .155.从2,3,5,7四个数中任取两个不同的数相乘,有m 个不同的积,任取两个不同的数相除,有n 个不同的商,则m ∶n =________.6.方程C x 28=C 3x -828的解为________.7.计算:(1)C 58+C 98100C 77; (2)C 05+C 15+C 25+C 35+C 45+C 55.8.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加; (4)甲、乙、丙三人只能有1人参加.答案1.选C ①是组合问题,因为甲与乙通了一次电话,也就是乙与甲通了一次电话,没有顺序的区别;②是组合问题,因为三个代表之间没有顺序的区别;③是排列问题,因为三个人担任哪一科的课代表是有顺序区别的;而④中选出的元素还需排列,有顺序问题是排列.所以①②是组合问题.2.选A ∵A 3n =12C 2n ,∴n (n -1)(n -2)=12×n (n -1)2.解得n =8. 3.选D 因为C m n =n !m !(n -m )!=1m !·n !(n -m )!=A m nm !,故(1)正确;因为n A m -1n -1=n ·(n -1)!(n -m )!=n !(n -m )!=A m n ,故(2)正确; 因为C m n ÷C m +1n=n !m !(n -m )÷n !(m +1)!(n -m -1)!=n !m !(n -m )!×(m +1)!(n -m -1)!n !=m +1n -m, 故(3)正确.因为C m +1n +1=(n +1)!(m +1)!(n -m )!,n +1m +1C m n =n +1m +1·n !m !(n -m )!=(n +1)!(m +1)!(n -m )!,所以C m +1n +1=n +1m +1C mn,故(4)正确. 4.选C C 7n +1-C 7n =C 8n ,即C 7n +1=C 8n +C 7n =C 8n +1,所以n +1=7+8,即n =14.5.解析:∵m =C 24,n =A 24,∴m ∶n =12. 答案:126.解析:当x =3x -8,解得x =4;当28-x =3x -8,解得x =9. 答案:4或97.解:(1)原式=C 38+C 2100×1=8×7×63×2×1+100×992×1 =56+4 950=5 006.(2)原式=2(C 05+C 15+C 25)=2(C 16+C 25)=2×⎝ ⎛⎭⎪⎫6+5×42×1=32. 8.解:(1)C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C 29=36种不同的选法. (3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C 59=126种不同的选法. (4)甲、乙、丙三人只能有1人参加,分两步:第一步从甲、乙、丙中选1人,有C 13=3种选法;第二步从另外的9人中选4人有C 49种选法.共有C 13C 49=378种不同的选法.课时跟踪训练(五)组合的应用1.9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为()A.81B.60C.6 D.112.以一个正三棱柱的顶点为顶点的四面体有()A.6个B.12个C.18个D.30个3.从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.85 B.56C.49 D.284.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10 B.11C.12 D.155.(大纲全国卷)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有________种.(用数字作答)6.某校开设9门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门.学校规定,每位同学选修4门,共有________种不同选修方案.(用数字作答)7.12件产品中,有10件正品,2件次品,从这12件产品中任意抽出3件.(1)共有多少种不同的抽法?(2)抽出的3件中恰好有1件次品的抽法有多少种?(3)抽出的3件中至少有1件次品的抽法有多少种?8.10双互不相同的鞋子混装在一只口袋中,从中任意取出4只,试求各有多少种情况出现如下结果:(1)4只鞋子没有成双的;(2)4只鞋子恰成两双;(3)4只鞋中有2只成双,另2只不成双.答案1.选A分三类:恰有2件一等品,有C24C25=60种取法;恰有3件一等品,有C34C15=20种取法;恰有4件一等品,有C44=1种取法.∴抽法种数为60+20+1=81.2.选B从6个顶点中任取4个有C46=15种取法,其中四点共面的有3种.所以满足题意的四面体有15-3=12个.3.选C由条件可分为两类:一类是甲、乙两人只有一人入选,有C12·C27=42种不同选法,另一类是甲、乙都入选,有C22·C17=7种不同选法,所以共有42+7=49种不同选法.4.选B与信息0110至多有两个位置上的数字对应相同的信息包括三类:第一类:与信息0110只有两个对应位置上的数字相同有C24=6个;第二类:与信息0110只有一个对应位置上的数字相同有C14=4个;第三类:与信息0110没有一个对应位置上的数字相同有C04=1个.∴与信息0110至多有两个对应位置上的数字相同的信息有6+4+1=11个.5.解析:第一步决出一等奖1名有C16种情况,第二步决出二等奖2名有C25种情况,第三步决出三等奖3名有C33种情况,故可能的决赛结果共有C16C25C33=60种情况.答案:606.解析:分两类完成:第一类,A,B,C三门课程都不选,有C46种不同的选修方案;第二类,A,B,C三门课程恰好选修一门,有C13·C36种不同选修方案.故共有C46+C13·C36=75种不同的选修方案.答案:757.解:(1)有C312=220种抽法.(2)分两步:先从2件次品中抽出1件有C12种方法;再从10件正品中抽出2件有C210种方法,所以共有C12C210=90种抽法.(3)法一(直接法):分两类:即包括恰有1件次品和恰有2件次品两种情况,与(2)小题类似共有C12C210+C22C110=100种抽法.法二(间接法):从12件产品中任意抽出3件有C312种方法,其中抽出的3件全是正品的抽法有C310种方法,所以共有C312-C310=100种抽法.8.解:(1)从10双鞋子中选取4双,有C410种不同选法,每双鞋子中各取一只,分别有2种取法,根据分步乘法计数原理,选取种数为N=C410·24=3 360(种).即4只鞋子没有成双有3 360种不同取法.(2)从10双鞋子中选取2双有C210种取法,所以选取种数为N=C210=45(种),即4只鞋子恰成双有45种不同取法.(3)先选取一双有C110种选法,再从9双鞋中选取2双有C29种选法,每双鞋只取一只各有2种取法.根据分步乘法计数原理,不同取法为N=C110C29·22=1 440(种).课时跟踪训练(六)简单计数问题1.从4名男生和3名女生中选3人分别从事三项不同的工作,若这3人中至少有1名女生,则选派的方案共有()A.108种B.186种C.216种D.270种2.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.C28A23B.C28A66C.C28A26D.C28A253.(大纲全国卷)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种4.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法有() A.40种B.50种C.60种D.70种5.将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有________种.6.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法.7.如图,在∠AOB的两边上,分别有3个点和4个点,连同角的顶点共8个点.这8个点能作多少个三角形?8.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本;(2)一人得4本,一人得3本,一人得2本.答案1.选B(1)直接法:从4名男生和3名女生中选出3人,至少有1名女生的选派方案可分为三类:①恰好有1名女生,2名男生,有C13C24A33种方法;②恰好有2名女生,1名男生,有C23C14A33种方法;③恰好有3名女生,有C33A33种方法;由分类加法计数原理得共有C13C24A33+C23C14A33+C33A33=186种不同的选派方案.(2)间接法:从全部方案数中减去只派男生的方案数,则有A37-A34=186种不同的选派方案.2.选C从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是C28A26.3.选A由分步乘法计数原理,先排第一列,有A33种方法,再排第二列,有2种方法,故共有A33×2=12种排列方法.4.选B先分组再排列,一组2人一组4人有C26=15种不同的分法;两组各3人共有C36A22=10种不同的分法,所以共有(15+10)×2=50种不同的乘车方法.5.解析:有两种满足题意的放法:(1)1号盒子里放2个球,2号盒子里放2个球,有C24C22种放法;(2)1号盒子里放1个球,2号盒子里放3个球,有C14C33种放法.综上可得,不同的放球方法共有C24C22+C14C33=10种.答案:106.解析:区域5有4种种法,区域1有3种种法,区域4有2种种法,若1,3同色,区域2有2种种法,或1,3不同色,区域2有1种种法,所以共有4×3×2×(1×2+1×1)=72种不同的种法.答案:727.解:从8个点中,任选3点共有C38种选法,其中有一个5点共线和4点共线,故共有C38-C34-C35=42个不同的三角形.8.解:(1)分三步完成:第一步:从9本不同的书中,任取4本分给甲,有C49种方法;第二步:从余下的5本书中,任取3本给乙,有C35种方法;第三步:把剩下的书给丙,有C22种方法.∴共有不同的分法为C49C35C22=1 260种.(2)分两步完成:第一步:按4本、3本、2本分成三组有C49C35C22种方法;第二步:将分成的三组书分给甲、乙、丙三个人,有A33种方法.∴共有C49C35C22A33=7 560种.课时跟踪训练(七) 二项式定理1.(x -2y )7的展开式中的第4项为( ) A .-280x 4y 3 B .280x 4y 3 C .-35x 4y 3D .35x 4y 32.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610B .27C 410 C .-9C 610D .9C 4103.(大纲全国卷)(1+x )8(1+y )4的展开式中x 2y 2的系数是( ) A .56 B .84 C .112D .1684.已知⎝⎛⎭⎫2x 3+1x n 的展开式中的常数项是第7项,则正整数n 的值为( ) A .7 B .8 C .9D .105.(安徽高考)若⎝ ⎛⎭⎪⎫x +a 3x 8的展开式中x 4的系数为7,则实数a =________.6.(浙江高考)设二项式⎝ ⎛⎭⎪⎫x -13x 5的展开式中常数项为A ,则A =________.7.⎝⎛⎭⎪⎫x +23x n展开式第9项与第10项二项式系数相等,求x 的一次项系数.8.在⎝⎛⎭⎪⎫2x 2-13x 8的展开式中,求:(1)第5项的二项式系数及第5项的系数; (2)倒数第3项.答案1.选A (x -2y )7的展开式中的第4项为T 4=C 37x 4(-2y )3=(-2)3C 37x 4y 3=-280x 4y 3.2.选D T k +1=C k 10·x 10-k (-3)k ,令10-k =6,知k =4,∴T 5=C 410x 6(-3)4,即x 6的系数为9C 410.3.选D 在(1+x )8展开式中含x 2的项为C 28x 2=28x 2,(1+y )4展开式中含y 2的项为C 24y 2=6y 2,所以x 2y 2的系数为28×6=168,故选D.4.选B ⎝⎛⎭⎫2x 3+1x n 的展开式的通项T r +1=C r n 2n -r x 3n -4r,由r =6时,3n -4r =0.得n =8. 5.解析:二项式⎝⎛⎭⎪⎫x +a 3x 8展开式的通项为T r +1=C r 8a r x 8-43r ,令8-43r =4,可得r =3,故C 38a 3=7,易得a =12.答案:126.解析:T r +1=(-1)r C r 5x 15-5r 6,令15-5r =0,得r =3,故常数项A =(-1)3C 35=-10. 答案:-107.解:由题意知,C 8n =C 9n .∴n =17.∴T r +1=C r 17x 17-r 2·2r ·x -r 3=C r 17·2r ·x 17-r 2-r 3. ∴17-r 2-r 3=1.解得r =9.∴T r +1=C 917·x 4·29·x -3, 即T 10=C 917·29·x . 其一次项系数为C 917·29. 8.解:法一:利用二项式的展开式解决.(1)⎝ ⎛⎭⎪⎫2x 2-13x 8=(2x 2)8-C 18(2x 2)7·13x +C 28(2x 2)6·⎝ ⎛⎭⎪⎫13x 2-C 38(2x 2)5·⎝ ⎛⎭⎪⎫13x 3+C 48(2x 2)4·⎝ ⎛⎭⎪⎫13x 4-C 58(2x 2)3·⎝ ⎛⎭⎪⎫13x 5+C 68(2x 2)2·⎝ ⎛⎭⎪⎫13x 6-C 78(2x 2)·⎝ ⎛⎭⎪⎫13x 7+C 88⎝ ⎛⎭⎪⎫13x 8,则第5项的二项式系数为C 48=70,第5项的系数C 48·24=1 120. (2)由(1)中⎝ ⎛⎭⎪⎫2x 2-13x 8的展开式可知倒数第3项为C 68·(2x 2)2·⎝ ⎛⎭⎪⎫13x 6=112x 2. 法二:利用二项展开式的通项公式.(1)T 5=C 48(2x 2)8-4·⎝⎛⎭⎪⎫-13x 4=C 48·24·x 203,则第5项的二项式系数是C 48=70, 第5项的系数是C 48·24=1 120. (2)展开式中的倒数第3项即为第7项, T 7=C 68·(2x 2)8-6·⎝⎛⎭⎪⎫-13x 6=112x 2.课时跟踪训练(八) 二项式系数的性质1.(x -1)11展开式中x 的偶次项系数之和是( ) A .-2 048 B .-1 023 C .-1 024D .1 0242.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( )A .x =4,n =3B .x =4,n =4C .x =5,n =4D .x =6,n =53.若⎝⎛⎭⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( ) A .10 B .20 C .30D .1204.在⎝⎛⎭⎫ax -1x 4的展开式中各项系数之和是16.则a 的值是( ) A .2 B .3 C .4D .-1或35.若(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为________.6.若(2x +3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为________. 7.已知(1+3x )n 的展开式中,末三项的二项式系数的和等于121,求展开式中二项式系数最大的项.8.对二项式(1-x )10,(1)展开式的中间项是第几项?写出这一项. (2)求展开式中各二项式系数之和.(3)求展开式中除常数项外,其余各项的系数和.答案1.选C 令f (x )=(x -1)11,偶次项系数之和是f (1)+f (-1)2=(-2)112=-1 024.2.选C 由C 1n x +C 2n x 2+…+C n n x n =(1+x )n-1分别将选项A ,B ,C ,D 代入检验知,仅有x =5,n =4适合.3.选B 由2n =64,得n =6,∴T k +1=C k 6x 6-k ⎝⎛⎭⎫1x k =C k 6x6-2k(0≤k ≤6,k ∈N ).由6-2k =0,得k =3.∴T 4=C 36=20.4.选D 由题意可得(a -1)4=16,a -1=±2, 解得a =-1或a =3.5.解析:令x =-1,则原式可化为[(-1)2+1][2×(-1)+1]9=-2=a 0+a 1(2-1)+…+a 11(2-1)11,∴a 0+a 1+a 2+…+a 11=-2.答案:-26.解析:(a 0+a 2+a 4)2-(a 1+a 3)2=(a 0+a 2+a 4+a 1+a 3)·(a 0+a 2+a 4-a 1-a 3)=(a 0+a 1+a 2+a 3+a 4)·(a 0-a 1+a 2-a 3+a 4),令x =1,则a 0+a 1+a 2+a 3+a 4=(2+3)4,令x =-1,则a 0-a 1+a 2-a 3+a 4=(-2+3)4=(2-3)4,于是(2+3)4·(2-3)4=1.答案:17.解:由题意知C n n +C n -1n +C n -2n =121,即C 0n +C 1n +C 2n =121,∴1+n +n (n -1)2=121,即n 2+n -240=0,解得n =15或-16(舍).∴在(1+3x )15的展开式中二项式系数最大的项是第八、九两项.且T 8=C 715(3x )7=C 71537x 7, T 9=C 815(3x )8=C 81538x 8.8.解:(1)展开式共11项,中间项为第6项,T 6=C 510(-x )5=-252x 5. (2)C 010+C 110+C 210+…+C 1010=210=1 024.(3)设(1-x )10=a 0+a 1x +a 2x 2+…+a 10x 10. 令x =1,得a 0+a 1+a 2+…+a 10=0. 令x =0,得a 0=1. ∴a 1+a 2+…+a 10=-1.课时跟踪训练(九)离散型随机变量及其分布列1.一个袋子中有质量相等的红、黄、绿、白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是()A.小球滚出的最大距离B.倒出小球所需的时间C.倒出的三个小球的质量之和D.倒出的三个小球的颜色种数2.袋中有大小相同的5个钢球,分别标有1,2,3,4,5五个号码.在有放回地抽取条件下依次取出2个球,设两个球号码之和为随机变量X,则X所有可能值的个数是()A.25B.10C.9 D.53.设随机变量X等可能取值1,2,3,…,n,若P(X<4)=0.3,则n=()A.3 B.4C.10 D.不确定4.设随机变量X等可能地取值1,2,3,4,…,10.又设随机变量Y=2X-1,P(Y<6)的值为() A.0.3 B.0.5C.0.1 D.0.25.随机变量Y的分布列如下:则(1)x=(3)P(1<Y≤4)=________.6.随机变量X的分布列为P(X=k)=Ck(k+1),k=1,2,3,其中C为常数,则P(X≥2)=________. 7.若离散型随机变量X的分布列为:求常数a8.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)记“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举A 包含的基本事件; (2)设X =m 2,求X 的分布列.答案1.选D A ,B 不能一一列举,不是离散型随机变量,而C 是常量,是个确定值,D 可能取1,2,3,是离散型随机变量.2.选C 第一次可取1,2,3,4,5中的任意一个,由于是有放回抽取,第二次也可取1,2,3,4,5中的任何一个,两次的号码和可能为2,3,4,5,6,7,8,9,10.3.选C ∵X 等可能取1,2,3,…,n , ∴X 的每个值的概率均为1n.由题意知P (X <4)=P (X =1)+P (X =2)+P (X =3)=3n =0.3,∴n =10.4.选A Y <6,即2X -1<6,∴X <3.5.X =1,2,3,P =310.5.解析:(1)由 i =16p i =1,∴x =0.1.(2)P (Y >3)=P (Y =4)+P (Y =5)+P (Y =6) =0.1+0.15+0.2=0.45.(3)P (1<Y ≤4)=P (Y =2)+P (Y =3)+P (Y =4) =0.1+0.35+0.1=0.55. 答案:(1)0.1 (2)0.45 (3)0.556.解析:由P (X =1)+P (X =2)+P (X =3)=1,得C 1×2+C 2×3+C 3×4=1,∴C =43.P (X ≥2)=P (X =2)+P (X =3)=432×3+433×4=13.答案:137.解:由离散型随机变量的性质得⎩⎪⎨⎪⎧9a 2-a +3-8a =1,0≤9a 2-a ≤1,0≤3-8a ≤1,解得a =13,或a =23(舍).所以随机变量X 的分布列为:8.解:(1)由x 2-x -6≤0,得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0,所以A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0).(2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以X =m 2的所有不同取值为0,1,4,9, 且有P (X =0)=16,P (X =1)=26=13,P (X =4)=26=13,P (X =9)=16.故X 的分布列为课时跟踪训练(十) 超几何分布1.一个小组有6人,任选2名代表,求其中甲当选的概率是( ) A.12 B.13 C.14D.152.在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于( )A.27 B.38 C.37D.9283.某12人的兴趣小组中,有5名“三好生”,现从中任意选6人参加竞赛,用X 表示这6人中“三好生”的人数,则C 35C 37C 612是表示的概率是( )A .P (X =2)B .P (X =3)C .P (X ≤2)D .P (X ≤3)4.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张A 的概率为( )A.C 34C 248C 552B.C 348C 24C 552C .1-C 148C 44C 552D.C 34C 248+C 44C 148C 5525.某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的概率为________.6.知识竞答,共有10个不同的题目,其中选择题6个,判断题4个,小张抽4题,则小张抽到选择题至少2道的概率为________.7.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,求X 的分布列.8.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列.(2)顾客乙从10张奖券中任意抽取2张. ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值Y 元,求Y 的分布列.答案1.选B 设X 表示2名代表中有甲的个数,X 的可能取值为0,1, 由题意知X 服从超几何分布,其中参数为N =6,M =1,n =2,则P (X =1)=C 11C 15C 26=13.2.选A 黑球的个数X 服从超几何分布,则至少摸到2个黑球的概率P (X ≥2)=P (X =2)+P (X=3)=C 23C 15C 38+C 33C 05C 38=27.3.选B 6人中“三好生”的人数X 服从超几何分布,其中参数为N =12,M =5,n =6,所以P (X =3)=C 35C 37C 612.4.选D 设X 为抽出的5张扑克牌中含A 的张数.则P (X ≥3)=P (X =3)+P (X =4)=C 34C 248C 552+C 44C 148C 552.5.解析:至少有1名女生当选包括1男1女,2女两种情况,概率为C 13C 17+C 23C 210=815. 答案:8156.解析:由题意知小张抽到选择题数X 服从超几何分布(N =10,M =6,n =4), 小张抽到选择题至少2道的概率为:P (X ≥2)=P (X =2)+P (X =3)+P (X =4)=C 26C 24C 410+C 36C 14C 410+C 46C 04C 410=3742.答案:37427.解:由题意知,旧球个数X 的所有可能取值为3,4,5,6.则P (X =3)=C 33C 312=1220,P (X =4)=C 23C 19C 312=27220,P (X =5)=C 29C 13C 312=108220=2755,P (X =6)=C 39C 312=84220=2155.所以X 的分布列为。
课时跟踪检测(三)三视图
层级一学业水平达标
1.若一个几何体的主视图和左视图都是等腰三角形,俯视图是带圆心的圆,则这个几何体可能是()
A.圆柱B.三棱柱C.圆锥D.球体
解析:选C主视图和左视图都是等腰三角形,俯视图是带圆心的圆说明此几何体是圆锥.
2.如图所示的是一个立体图形的三视图,此立体图形的名称为()
A.圆锥B.圆柱C.长方体D.圆台
解析:选B由俯视图可知几何体的上、下底面是全等的圆,结合主视图和左视图,可知其为圆柱.
3.如图所示,五棱柱的左视图应为()
解析:选B从五棱柱左面看,是2个矩形,上面的小一点,故选B.
4.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()。