人教A版选修一数学:2.1《合情推理与演绎推理》测试1(新人教A版选修1—2).docx
- 格式:docx
- 大小:249.10 KB
- 文档页数:9
第二章合情推理与演绎推理答案2.1.1 合情推理与演绎推理(1)1、d n a a n )1(1-+=2、B3、A4、()nn n n )1(1169411+-++-+-+Λ 5、θθθn cos 23cos 22cos 2 6、V+F —E=2 7、解:9)5(,5)4(,2)3(,0)2(====f f f f 可以归纳出每增加一条直线,交点增加的个数为原有直线的条数4)4()5(,3)3()4(,2)2()3(=-=-=-∴f f f f f f猜测得出1)1()(-=--n n f n f有)1(432)2()(-++++=-n f n f Λ )2)(1(21)(-+=∴n n n f 因此)2)(1(21)(,5)4(-+==n n n f f 8、解:4211223⨯= 432212233⨯=+ 44332122333⨯=++ 4544321223333⨯=+++ ()414321223333+=+++++n n Λ 由此可以有求和的一般公式为()414321223333+=+++++n n Λ 2.1.2合情推理与演绎推理(2)1、C2、D3、D4、类比5、(1)圆柱面(2)两个平行平面6、()()()x C x S x S 22= ()()()()()y S x C y C x S y x S +=+7、在等比数列{}n a 中,若q p n m +=+,()*,,,N q p n m ∈,则q p n m a a a a ⋅=⋅8、(1)(平面)在平行四边形中,对角线互相平分;(立体)在平行六面体中,对角线相交于同一点,且在这一点互相平分;(2)(平面)在平行四边形中,各对角线长的平方和等于各边长的平方和;(立体)在平行六面体中,各对角线长的平方和等于各棱长的平方和;(3)(平面)圆面积等于圆周长与半径之积的1/2;(立体)球体积等于球面积与半径之积的1/3;(4)(平面)正三角形外接圆半径等于内切圆半径的2倍,(立体)正四面体的外接球半径等于内切球半径的3倍。
第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理课时训练3 合情推理1.如图,观察图形规律,在其右下角的空格处画上合适的图形,应为( ).解析:观察图中每一行,每一列的规律,从形状和是否有阴影入手.每一行,每一列中三种图形都有,故填长方形.又每一行每一列中的图形的颜色应有二黑一白,故选A.答案:A2.观察下列各等式:=2,=2,=2,=2,依照以上各式成立的规律,得到一般性的等式为( ).A.=2B.=2C.=2D.=2解析:观察发现:每个等式的右边均为2,左边是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4,因此只有A正确.答案:A3.有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是( ).A.26B.31C.32D.36解析:有菱形纹的正六边形个数如下表:图案 1 2 3 …个数 6 11 16 …由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第六个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.答案:B4.已知扇形的弧长为l,半径为r,类比三角形的面积公式S=,可推知扇形面积公式S扇等于( ).A. B. C. D.不可类比解析:类比方法:扇形→三角形,弧长→底边长,半径→高,猜想S扇=.答案:C5.下面使用类比推理,得出正确结论的是( ).A.“若a·3=b·3,则a=b”类比推出“若a·0=b·0,则a=b”B.“(a+b)c=ac+bc”类比推出“(a·b)c=ac·bc”C.“(a+b)c=ac+bc”类比推出“(c≠0)”D.“a x·a y=a x+y”类比推出“log a x·log a y=log a(x+y)”答案:C6.图(1)所示的图形有面积关系:,则图(2)所示的图形有体积关系:=.解析:由三棱锥的体积公式V=Sh及相似比可知,.答案:7.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是.解析:平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.答案:表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大8.观察下列等式(1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5……照此规律,第n个等式可为.解析:观察规律,等号左侧为(n+1)(n+2)…(n+n),等号右侧分两部分,一部分是2n,另一部分是1×3×…×(2n-1).答案:(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)9.圆周上2个点可连成1条弦,这条弦可将圆面划分成2部分;圆周上3个点可连成3条弦,这3条弦可将圆面划分成4部分;圆周上4个点可连成6条弦,这6条弦最多可将圆面划分成8部分.请你归纳出圆周上的点的个数与所连成弦条数的关系,这些弦最多可把圆面分成多少部分?解:由已知条件得:圆周上的点数连成的弦数把圆面分成的部分数2 1=2=21=22-13 3=4=22=23-14 6=8=23=24-1………由此可以归纳出,当点数为n时,连成的弦数为;弦把圆面分成的部分数为2n-1.10.类比等差数列的定义,给出等和数列的概念,并利用等和数列的性质解题:已知数列{a n}是等和数列,a1=2,公和为5,求a18和S21.解:等和数列的概念:一般地,如果一个数列从第2项起,每一项与它的前一项的和等于同一常数,那么这个数列叫做等和数列,这个常数叫做等和数列的公和.由题意可知a1+a2=5,又a1=2,∴a2=3,又a2+a3=5,∴a3=2.故数列{a n}的形式为:2,3,2,3,2,3,…,∴a18=3,∴S21=S20+a21=10(2+3)+2=52.。
第二章 推理与证明 2.1 合情推理与演绎推理 2.1.1 合情推理第1课时 归纳推理双基达标限时20分钟1.已知a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 33为( ).A .3B .-3C .6D .-6解析 a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,a 8=6,…,故{a n }是以6个项为周期循环出现的数列,a 33=a 3=3. 答案 A2.已知f 1(x )=cos x ,f 2(x )=f ′1(x ),f 3(x )=f 2′(x ),f 4(x )=f ′3(x ),…,f n (x )=f n -1′(x ),则f 2 007(x )等于( ).A .sin xB .-sin xC .cos xD .-cos x解析 由已知,有f 1(x )=cos x ,f 2(x )=-sin x , f 3(x )=-cos x , f 4(x )=sin x , f 5(x )=cos x ,…可以归纳出:f 4n (x )=sin x , f 4n +1(x )=cos x , f 4n +2(x )=-sin x , f 4n +3(x )=-cos x (n ∈N +),∴f 2 007(x )=f 3(x )=-cos x . 答案 D3.如果数列{a n }的前n 项和S n =32a n -3,那这个数列的通项公式是( ).A .a n =2(n 2+n +1) B .a n =3·2nC .a n =3n +1D .a n =2·3n解析 当n =1时,a 1=32a 1-3,∴a 1=6,由S n =32a n -3,当n ≥2时,S n -1=32a n -1-3,∴当n ≥2时,a n =S n -S n -1=32a n -32a n -1,∴a n =3a n -1.∴a 1=6,a 2=3×6,a 3=32×6. 猜想:a n =6·3n -1=2·3n.答案 D 4.设f (x )=2xx +2,x 1=1,x n =f (x n -1)(n ≥2),则x 2,x 3,x 4分别为________.猜想x n =________. 解析 x 2=f (x 1)=21+2=23,x 3=f (x 2)=12=24x 4=f (x 3)=2×1212+2=25,∴x n =2n +1.答案 23,24,25 2n +15.观察下列各式9-1=8,16-4=12,25-9=16,36-16=20,….这些等式反映了自然数间的某种规律,设n 表示自然数,用关于n 的等式表示为________.解析 由已知四个式子可分析规律: (n +2)2-n 2=4n +4. 答案 (n +2)2-n 2=4n +4 6.对于函数f (x )=x -1x +1,设f 2(x )=f [f (x )],f 3(x )=f [f 2(x )],…,f n +1(x )=f [f n (x )](n ∈N *,且n ≥2),(1)写出f 2(x ),f 3(x ),f 4(x ),f 5(x )的表达式; (2)根据(1)的结论,请你猜想并写出f 4n -1(x )的表达式.解 (1)∵f (x )=1-2x +1∴f 2(x )=1-2fx +1=1-x +1x =-1x, f 3(x )=1+x1-x,f 4(x )=x , f 5(x )=f (x )…,故f n (x )是以4为周期.(2)f 4n -1(x )=f 3(x )=1+x1-x.综合提高限时25分钟7.设0<θ<π2,已知a 1=2cos θ,a n +1=2+a n ,猜想a n =( ).A .2cos θ2nB .2cos θ2n -1C .2cos θ2n +1D .2 sin θ2n解析 法一 ∵a 1=2cos θ,a 2=2+2cos θ=21+cos θ2=2cos θ2, a 3=2+a 2=21+cosθ22=2cos θ4,…, 猜想a n =2cos θ2.法二 验n =1时,排除A 、C 、D ,故选B. 答案 B8.根据给出的数塔猜测123 456×9+7等于( ).1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111……A .1 111 110B .1 111 111C .1 111 112D .1 111 113解析 由数塔猜测应是各位都是1的七位数,即1111111. 答案 B9.把1、3、6、10、15、21、…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图)试求第七个三角形数是________.解析 观察知第n 个三角形数为1+2+3+…+n =n n +2,∴当n =7时,+2=28.答案 2810.(2010·浙江)在如下数表中,已知每行、每列中的数都成等差数列,解析 由题中数表知:第n 行中的项分别为n,2n,3n ,…,组成一等差数列,所以第n 行第n +1列的数是:n 2+n . 答案 n 2+n11.若数列{a n }的通项公式a n =1n +12,记f (n )=(1-a 1)·(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )的值. 解 f (1)=1-a 1=1-14=34,f (2)=(1-a 1)(1-a 2)=f (1)·⎝⎛⎭⎪⎫1-19=34·89=23=46, f (3)=(1-a 1)(1-a 2)(1-a 3)=f (2)·⎝ ⎛⎭⎪⎫1-116=23·1516=58.由此猜想:f(n)=n+2n+.12.(创新拓展)观察下表:12,34,5,6,78,9,10,11,12,13,14,15,……问:(1)此表第n行的最后一个数是多少?(2)此表第n行的各个数之和是多少?(3)2 010是第几行的第几个数?解(1)∵第n+1行的第一个数是2n,∴第n行的最后一个数是2n-1.(2)2n-1+(2n-1+1)+(2n-1+2)+…+(2n-1)=n-1+2n-n-12=3×22n-3-2n-2为所求.(3)∵210=1 024,211=2 048,1 024<2 010<2 048,∴2 010在第11行,该行第1个数是210=1 024.由2 010-1 024+1=987,知2 010是第11行的第987个数.。
合情推理与演绎推理测试题 (选修1 -2 )试卷总分值150 ,其中第一卷总分值100分 ,第二卷总分值50分 ,考试时间120分钟第一卷 (共100分 )一.选择题:本大题共12小题 ,每题5分 ,共60分 ,在每题给出的四个选项中 ,只有一项为哪一项符合题目要求的;请将答案直接填入以下表格内. )题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.如果数列{}n a 是等差数列 ,那么 A.1845a a a a +<+B. 1845a a a a +=+C.1845a a a a +>+D.1845a a a a =2.下面使用类比推理正确的选项是 A. "假设33a b ⋅=⋅,那么a b =〞类推出 "假设00a b ⋅=⋅,那么a b =〞 B. "假设()a b c ac bc +=+〞类推出 "()a b c ac bc ⋅=⋅〞C. "假设()a b c ac bc +=+〞 类推出 "a b a bc c c+=+ (c ≠0 )〞 D. "n n a a b =n (b )〞 类推出 "n n a a b +=+n(b )〞 3.有这样一段演绎推理是这样的 "有些有理数是真分数 ,整数是有理数 ,那么整数是真分数〞结论显然是错误的 ,是因为)()(,sin )('010x f x f x x f == ,'21()(),,f x f x ='1()()n n f x f x += ,n ∈N ,那么2007()f x =A.sin xB.-sin xC.cos xD.-cos x01232004410010010210=⨯+⨯+⨯+⨯ ,那么在5进制中数码2004折合成十进制为A.29B. 254C. 602D. 200421y ax =+的图像与直线y x =相切 ,那么a =A.18B.14C.12D. 17.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有24x y =上一点A 的纵坐标为4 ,那么点A 与抛物线焦点的距离为A.2B.3C.4D. 59.设 ()|1|||f x x x =--, 那么1[()]2f f =A. 12-B. 0C.12D. 1)3,5(-=→x a , ),2(x b =→,且→→⊥b a , 那么由x 的值构成的集合是A.{2,3}B. { -1, 6}C. {2}D. {6} 11. 有一段演绎推理是这样的: "直线平行于平面,那么平行于平面内所有直线;直线b ⊆/平面α ,直线a ≠⊂平面α ,直线b ∥平面α ,那么直线b ∥直线a 〞的结论显然是错误的 ,这是因为12.2()(1),(1)1()2f x f x f f x +==+*x N ∈() ,猜测(f x )的表达式为 A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+二.解答题:本大题共5小题 ,每题8分 ,共40分. 13.证明:5,3,2不能为同一等差数列的三项.△ABC 中 ,CB CB A cos cos sin sin sin ++=,判断△ABC 的形状.15.:空间四边形ABCD 中 ,E ,F 分别为BC ,CD 的中点 ,判断直线EF 与平面ABD 的关系 ,并证明你的结论.16.函数x x x f -+=)1ln()( ,求)(x f 的最|大值.17.△ABC 三边长,,a b c 的倒数成等差数列 ,求证:角B 090<.第二卷 (共50分 )三.填空题.本大题共4小题 ,每空4分 ,共16分 ,把答案填在题中横线上 .18. 类比平面几何中的勾股定理:假设直角三角形ABC 中的两边AB 、AC 互相垂直 ,那么三角形三边长之间满足关系:222BC AC AB =+ .假设三棱锥A -BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直 ,那么三棱锥的侧面积与底面积之间满足的关系为 .22112343=++=2,,3+4+5+6+7=5中 ,可得到一般规律为 (用数学表达式表示)20.函数y =f (x )在 (0 ,2 )上是增函数 ,函数y =f(x +2)是偶函数 ,那么f(1),f(2.5),f(3.5)的大小关系是 .21.设平面内有n条直线(3)n ≥ ,其中有且仅有两条直线互相平行 ,任意三条直线不过同一点.假设用()f n 表示这n条直线交点的个数 ,那么(4)f = ; 当n>4时 ,()f n = (用含n 的数学表达式表示 )四.解答题. (每题13分 ,共26分.选答两题 ,多项选择那么去掉一个得分最|低的题后计算总分 )22.在各项为正的数列{}n a 中 ,数列的前n 项和n S 满足⎪⎪⎭⎫ ⎝⎛+=n n n a a S 121 (1 ) 求321,,a a a ; (2 ) 由 (1 )猜测数列{}n a 的通项公式; (3 ) 求n S23.自然状态下鱼类是一种可再生资源 ,为持续利用这一资源 ,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响 ,用n x 表示某鱼群在第n 年年初的总量 ,+∈N n ,且1x >0.不考虑其它因素 ,设在第n 年内鱼群的繁殖量及捕捞量都与n x 成正比 ,死亡量与2n x 成正比 ,这些比例系数依次为正常数c b a ,,. (Ⅰ )求1+n x 与n x 的关系式;(Ⅱ )猜测:当且仅当1x ,c b a ,,满足什么条件时 ,每年年初鱼群的总量保持不变 ? (不要求证明 )24. 设函数)(sin )(R x x x x f ∈=.(1 )证明:Z k x k x f k x f ∈=-+,sin 2)()2(ππ;五.解答题. (共8分.从以下题中选答1题 ,多项选择按所做的前1题记分 ) 25. 通过计算可得以下等式:1121222+⨯=-1222322+⨯=- 1323422+⨯=-┅┅12)1(22+⨯=-+n n n将以上各式分别相加得:n n n +++++⨯=-+)321(21)1(22即:2)1(321+=++++n n n 类比上述求法:请你求出2222321n ++++ 的值.26. 直角三角形的两条直角边的和为a ,求斜边的高的最|大值 27.))((R x x f ∈恒不为0 ,对于任意R x x ∈21,等式()()⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫⎝⎛+=+222212121x x f x x f x f x f 恒成立.求证:)(x f 是偶函数. 28.ΔABC 的三条边分别为a b c ,,求证:11a b ca b c+>+++合情推理与演绎推理测试题答案 (选修1 -2 )一.选择题:本大题共12小题 ,每题5分 ,共60分 ,在每题给出的四个选项中 ,只有一项为哪一项符合题目要求的;请将答案直接填入以下表格内. )题号 1 23 4 5 6 7 8 9 10 11 12 答案BCCDBBADDCAB二.解答题:本大题共5小题 ,每题8分 ,共40分.13.证明:假设2、3、5为同一等差数列的三项 ,那么存在整数m,n 满足3 =2 +md ① 5 =2 +nd ②①⨯n -②⨯m 得:3n -5m =2(n -m)两边平方得: 3n 2+5m 2-215mn =2(n -m)2左边为无理数 ,右边为有理数 ,且有理数≠无理数 所以 ,假设不正确 .即 2、3、5不能为同一等差数列的三项 14. ∆ABC 是直角三角形; 因为sinA =CB CB cos cos sin sin ++据正、余弦定理得 : (b +c )(a 2-b 2-c 2) =0; 又因为a,b,c 为∆ABC 的三边 ,所以 b +c ≠0所以 a 2 =b 2 +c 2即∆ABC 为直角三角形.15.平行; 提示:连接BD ,因为E ,F 分别为BC ,CD 的中点 , EF ∥BD. 16.提示:用求导的方法可求得)(x f 的最|大值为017.证明:222cos 2a c b B ac +-=≥222ac b ac - =212b ac -=211()b bb ac a c -=-++ ,,a b c 为△ABC 三边 ,a c ∴+b > ,1ba c∴-+0>cos B ∴0> ∴B 090<. 三.填空题.本大题共4小题 ,每空4分 ,共16分 ,把答案填在题中横线上 .18. 2222AD B ACD ABC BCD S S S S ∆∆∆∆++= .19. 2(1)(2)......(32)(21)n n n n n ++++++-=-20. f(2.5)>f(1)>f(3.5) 21. 5; 12(n+1)(n-2).四.解答题. (每题13分 ,共26分.选答两题 ,多项选择那么去掉一个得分最|低的题后计算总分 )22. (1 )23,12,1321-=-==a a a ; (2 )1--=n n a n ; (3 )n S n =.23.解 (I )从第n 年初到第n +1年初 ,鱼群的繁殖量为ax n ,被捕捞量为b x n ,死亡量为221,,*.(*)n n n n n n cx x x ax bx cx n N +-=--∈因此 1(1),*.(**)n n n x x a b cx n N +=-+-∈即(II )假设每年年初鱼群总量保持不变 ,那么x n 恒等于x 1 , n ∈N* ,从而由 (* )式得 ..0*,,0)(11cba x cxb a N n cx b a x n n -==--∈--即所以恒等于 因为x 1>0 ,所以a >b. 猜测:当且仅当a >b ,且cba x -=1时 ,每年年初鱼群的总量保持不变.24. 证明:1 )(2)()22f x k f x x k x k x x πππ+-=++()sin()-sin=2x k x x x π+()sin -sin =2k x πsin 2) ()sin cos f x x x x '=+0000()sin cos 0f x x x x '=+= ① 又2200sin cos 1x x += ②由①②知20sin x =2021x x + 所以2422220000002200[()]sin 11x x f x x x x x x ===++ 五.解答题. (共8分.从以下题中选答1题 ,多项选择按所做的前1题记分 ) 25.[解] 1131312233+⨯+⨯=- 1232323233+⨯+⨯=-1333334233+⨯+⨯=- ┅┅133)1(233+⨯+⨯=-+n n n n将以上各式分别相加得:n n n n ++++⨯+++++⨯=-+)321(3)321(31)1(222233所以: ]2131)1[(3132132222n nn n n +---+=++++ )12)(1(61++=n n n 2 27.简证:令12x x = ,那么有()01f = ,再令12x x x =-=即可 28.证明:设(),(0,)1xf x x x=∈+∞+ 设12,x x 是(0,)+∞上的任意两个实数 ,且210x x >≥ ,1212121212()()11(1)(1)x x x x f x f x x x x x --=-=++++ 因为210x x >≥ ,所以12()()f x f x < .所以()1xf x x=+在(0,)+∞上是增函数 . 由0a b c +>>知()()f a b f c +> 即11a b ca b c+>+++.。
第二章 推理与证明 2.1 合情推理与演绎推理 2.1.1 合 情 推 理基础梳理1.归纳推理.由某类事物的部分对象具有某些特征,推出这类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.2.类比推理.由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.3.合情推理.归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.通俗地说,合情推理是指“合乎情理”的推理.基础自测1.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可推知扇形面积公式S 扇等于(C )A .r 22B .l 22C .lr2D .不可类比 解析:由扇形的弧长与半径类比于三角形的底边与高可得C .故选C .2.从1=12,2+3+4=32,3+4+5+6+7=52,…,可得一般规律为___________________________________________________.解析:猜想:第n 个等式的左边是2n -1个连续整数的和,第1个数为n ,等式的右边是整数个数的平方,即一般规律为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)23.根据下列5个图形及相应点的个数的变化规律,试猜想第n 个图形中有______________个点.解析:第n 个图有n 个分支,每个分支上有(n -1)个点(不含中心点),再加上中心1个点,则有n(n -1)+1=n 2-n +1个点.答案:n 2-n +14.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AE EB =ACBC,把这个结论类比到空间:在三棱锥ABCD 中(如图所示),平面DEC 平分二面角ACDB 且与AB 相交于点E ,则得到的类比结论是________.解析:把线段比类比到面积比,得AE EB =S △ACDS △BCD.答案:AE EB =S △ACDS △BCD(一)解读合情推理数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前,合情推理常常能为我们提供证明的思路和方向.合情推理的一般过程为:(二)解读归纳推理 (1)归纳推理的分类.①完全归纳推理:由某类事物的全体对象推出结论. ②不完全归纳推理:由某类事物的部分对象推出结论. 需要注意的是,由完全归纳推理得到的结论是准确的,由不完全归纳推理得到的结论不一定准确.(2)归纳推理的特点.由于归纳是根据部分已知的特殊现象推断未知的一般现象,因而归纳推理具有以下特点:①所得结论超越了前提所包含的范围;②所得结论具有猜测性质,准确性需要证明; ③归纳的基础在于观察、实验或经验. (3)归纳推理的一般步骤.①通过观察、分析个别情况,发现某些相同特征;②将发现的相同特征进行归纳,推出一个明确表达的一般性命题(猜想).(三)解读类比推理(1)类比推理的特点.①类比是从一种事物的特殊属性推测另一种事物的特殊属性;②类比是以原有知识为基础,猜测新结论;③类比能发现新结论,但结论具有猜测性,准确性需要证明.(2)类比推理的一般步骤.①明确两类对象;②找出两类对象之间的相似性或者一致性;③用一类事物的性质去推测另一类事物的性质,得到一个明确的结论1.归纳推理的一般步骤:(1)通过观察个别情况发现某些相同性质.(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).2.归纳推理的思维进程.实验、观察→概括、推广→猜测一般性结论.即对有限的资料进行观察、分析、归纳、整理,提出带有规律性的结论,然后对该猜想的正确性加以检验.3.一般地,归纳的个别情况越多,越具有代表性,推广的一般性命题就越可靠.4.运用类比推理的一般步骤:(1)找出两类事物之间的相似性或一致性.(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.5.类比推理常见的几种题型.(1)类比定义:本类题型解决的关键在于弄清两个概念的相似性和相异性以及运用新概念的准确性.(2)类比性质(定理):本类题型解决的关键在于要理解已知性质(定理)的内涵、应用环境及使用方法,通过研究已知性质(定理),刻画新性质(定理)的“面貌”.(3)类比方法(公式):本类题型解决的关键在于解题方法1.下图为一串白黑相间排列的珠子,按这种规律往下排列起来,那么第36颗珠子的颜色是(A)○○○●●○○○●●○○○●●○○……A.白色 B.黑色C.白色可能性大 D.黑色可能性大2.数列2,5,11,20,x,47,…中的x等于(B)A.28 B.32C.33 D.273.已知三角形的三边长分别为a ,b ,c ,其内切圆的半径为r ,则三角形的面积为:S =12(a +b +c )r ,利用类比推理,可以得出四面体的体积为(C ) A .V =13abcB .V =13ShC .V =13(S 1+S 2+S 3+S 4)·r (其中S 1,S 2,S 3,S 4分别是四面体四个面的面积,r 为四面体内切球的半径)D .V =13(ab +bc +ca )h (h 为四面体的高)4.等差数列{a n }中,有2a n =a n -1+a n +1(n ≥2,且n ∈N *),类比以上结论,在等比数列{b n }中类似的结论是________.答案:b 2n =b n -1·b n +1(n ≥2,且n ∈N *)1.下列关于归纳推理的说法中错误的是(A ) A .归纳推理是由一般到一般的一种推理过程 B .归纳推理是一种由特殊到一般的推理过程 C .归纳推理得出的结论具有偶然性,不一定正确 D .归纳推理具有由具体到抽象的认识功能2.由数列1,10,100,1 000,…猜测该数列的第n 项可能是(B )A .10nB .10n -1C .10n +1D .11n3.根据给出的数塔猜测123 456×9+7等于(B )1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111A .1 111 110B .1 111 111C .1 111 112D .1 111 113解析:由数塔呈现的规律知,结果是各位都是1的7位数.4.下面使用类比推理正确的是(C ) A .“若a ·3=b ·3,则a =b ”类推出“a ·0=b ·0,则a =b ” B .“(a +b )c =ac +bc ”类推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类推出“a +b c=a c +bc(c ≠0)”D .“(ab )n=a n b n”类推出“(a +b )n=a n+b n”5.n 个连续自然数按规律排列如下:根据规律,从2010到2012,箭头的方式依次是(C)A.↓→ B.→↑C.↑→ D.→↓解析:观察特例的规律知:位置相同的数字是以4为公差的等差数列,由11→12可知从2010到2012为↑→.↑106.如图所示,面积为S的凸四边形的第i条边的边长为a i(i=1,2,3,4),此四边形内任一点P到第i条边的距离记为h i(i=1,2,3,4),若a11=a22=a33=a44=k,则∑i=14(a i h i)=2Sk.类比以上性质,体积为V的三棱锥的第i个面的面积记为S i(i=1,2,3,4),此三棱锥内任一点Q到第i个面的距离为H i(i=1,2,3,4),若S11=S22=S33=K,则∑i=14(S i H i)=(B) A.4VKB.3VKC.2VKD.VK解析:从平面类比到空间,通常是边长类比为面积,面积类比为体积,又凸四边形中,面积为S=12(a1h1+a2h2+a3h3+a4h4),而在三棱锥中,体积为V=13(S1H1+S2H2+S3H3+S4H4),即存在系数差异,所以,上述性质类比为B.7.观察下列不等式:1+122<32,1+122+132<53,1+122+132+142<74,…照此规律,第五个不等式为_______________________________.解析:观察不等式的左边发现,第n个不等式的左边=1+122+132+…+1(n+1)2,右边=2(n+1)-1n+1,所以第五个不等式为1+122+132+142+152+162<116.8.下图是用同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律,第n 个图案中需用黑色瓷砖________块(用含n 的代数式表示).解析:第(1),(2),(3),…个图案黑色瓷砖数依次为: 15-3=12,24-8=16,35-15=20,… 由此可猜测第n 个图案黑色瓷砖数为: 12+(n -1)×4=4n +8. 答案:4n +89.图1是一个边长为1的正三角形,分别连接这个三角形三边中点,将原三角形剖分成4个三角形(如图2),再分别连接图2中一个小三角形三边的中点,又可将原三角形剖分成7个三角形(如图3),…,依此类推,设第n 个图中三角形被剖分成a n 个三角形,则第4个图中最小三角形的边长为__________;a 100=__________.答案:18 29810.圆的面积S =πr 2,周长c =2πr ,两者满足c =S ′(r ),类比此关系写出球的公式的一个结论是:________.解析:圆的面积、周长分别与圆的体积和表面积类比可得,球的体积V =43πR 3,表面积S =4πR 2,满足S =V ′(R ).答案:V 球=43πR 3,S 球=4πR 2,满足S =V ′(R ).11.在等差数列{a n }中,若a 10=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立.类比上述性质,在等比数列{b n }中,若b 9=1,则有等式__________________成立.解析:a 10是等差数列{a n }的前19项的中间项,而b 9是等比数列{b n }的前17项的中间项.所以答案应为:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).答案:b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).12.设a n 是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n ≥1,n ∈N),试归纳出这个数列的一个通项公式.解析:当n =1时,a 1=1,且2a 22-a 21+a 2·a 1=0,即2a 22+a 2-1=0解得a 2=12;当n =2时,由3a 23-2⎝ ⎛⎭⎪⎫122+12a 3=0,即6a 23+a 3-1=0,解得a 3=13,…由此猜想;a n =1n.13.在圆x 2+y 2=r 2中,AB 为直径,C 为圆上异于AB 的任意一点,则有k AC ·k BC =-1,你能用类比的方法得出椭圆x 2a 2+y 2b2=1(a >b >0)中有什么样的结论?解析:设A (x 0,y 0)为椭圆上的任意一点,则A 点关于中心的对称点B 的坐标为(-x 0,-y 0),点P (x ,y )为椭圆上异于A ,B 两点的任意一点,则k AP ·k BP =y -y 0x -x 0·y +y 0x +x 0=y 2-y 20x 2-x 20.由于A ,B ,P 三点都在椭圆上.∴⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,x 20a 2+y 20b 2=1,两式相减有x 2-x 20a 2+y 2-y 20b 2=0,∴y 2-y 20x 2-x 20=-b 2a 2,即k AP ·k BP =-b 2a2. 故椭圆x 2a 2+y 2b2=1(a >b >0)中过中心的一条弦的两个端点A ,B ,P 为椭圆上异于A ,B的任意一点,则有k AP ·k BP =-b 2a2.►品味高考1.(2014·陕西卷)已知f (x )=x1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +,则f 2 014(x )的表达式为________.解析:由f 1(x )=x1+x ⇒f 2(x )=f ⎝ ⎛⎭⎪⎫x 1+x =x1+x 1+x 1+x=x1+2x ;又可得f 3(x )=f (f 2(x ))=x1+x 1+x1+2x=x1+3x,故可猜想 f 2 014(x )=x1+2 014x.答案:x1+2 014x2.(2013·陕西卷)观察下列等式: (1+1)=2×1(2+1)(2+2)=22×1×3(3+1)(3+2)(3+3)=23×1×3×5 …照此规律,第n 个等式可为_______________________________.答案:(n +1)(n +2)·…·(n +n )=2n×1×3×5×…×(2n -1)3.在平面直角坐标系中,若点P (x ,y )的坐标x ,y 均为整数,则称点P 为格点.若一个多边形的顶点全是格点,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .例如图中△ABC 是格点三角形,对应的S =1,N =0,L =4.(1)图中格点四边形DEFG 对应的S ,N ,L 分别是________;(2)已知格点多边形的面积可表示为S =aN +bL +c ,其中a ,b ,c 为常数.若某格点多边形对应的N =71,L =18,则S =________(用数值作答).解析:(1)四边形DEFG 是一个直角梯形,观察图形可知:S =(2+22)×2×12=3,N =1,L =6.(2)由(1)知,S 四边形DEFG =a +6b +c =3. S △ABC =4b +c =1.在平面直角坐标系中,取一“田”字型四边形,构成边长为2的正方形,该正方形中S =4,N =1,L =8.则S =a +8b +c =4.联立解得a =1,b =12,c =-1.∴S =N +12L -1,∴若某格点多边形对应的N =71,L =18,则S =71+12×18-1=79.答案:(1)3,1,6 (2)794.传说古希腊毕达拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过下图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 2 012是数列{a n }中的第________项; (2)b 2k -1=________(用k 表示).解析:由以上规律可知三角形数1,3,6,10,…的一个通项公式为a n =n (n +1)2,写出其若干项有:1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,发现其中能被5整除的为10,15,45,55,105,120 ,故b 1=a 4,b 2=a 5,b 3=a 9,b 4=a 10,b 5=a 14,b 6=a 15. 从而由上述规律可猜想:b 2k =a 5k =5k (5k -1)2(k 为正整数),b 2k -1=a 5k -1=(5k -1)(5k -1+1)2=5k (5k -1)2,故b 2 012=b 2×1 006=a 5 030,即b 2 012是数列{a n }中的第5 030项.答案:(1)5 030 (2)5k (5k -1)2点评:本题考查归纳推理,猜想的能力,归纳推理题型重在猜想,不一定要证明,但猜想需要有一定的经验和能力,不能凭空猜想.。
2016-2017学年高中数学专题2.1.1 合情推理练习(含解析)新人教A版选修1-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学专题2.1.1 合情推理练习(含解析)新人教A版选修1-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学专题2.1.1 合情推理练习(含解析)新人教A版选修1-2的全部内容。
合情推理班级:姓名:_____________1.某同学在电脑上打下了一串黑白圆,如图所示,,按这种规律往下排,那么第36个圆的颜色应是( )A。
白色B.黑色C。
白色可能性大D.黑色可能性大2.已知数列{a n}满足a0=1,a n=a0+a1+a2+…+a n—1(n≥1),则当n≥1时,a n等于( )A。
2n B。
n(n+1)C。
2n-1 D.2n-1【解析】选C。
a0=1,a1=a0=1,a2=a0+a1=2a1=2,a3=a0+a1+a2=2a2=4,a4=a0+a1+a2+a3=2a3=8,…,猜想n≥1时,a n=2n—1.3。
给出下列三个类比结论:①类比a x·a y=a x+y,则有a x÷a y=a x—y;②类比log a(xy)=log a x+log a y,则有sin(α+β)=sinαsinβ;③类比(a+b)2=a2+2ab+b2,则有(a+b)2=a2+2a·b+b2。
其中结论正确的个数是()A。
0 B.1 C。
2 D.3【解析】选C.根据指数的运算法则知a x÷a y=a x-y,故①正确;根据三角函数的运算法则知:sin(α+β)≠sinαsinβ,②不正确;根据向量的运算法则知:(a+b)2=a2+2a·b+b2,③正确.4。
数学•选修1—2(人教力版)2. 1合情推理与演绎推理2. 1.2演绎推理A达标训练1.下面说法正确的有()①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关.A. 1个B. 2个C. 3个D. 4个解析:①③④正确,②错误的原因是:演绎推理的结论要为真, 必须前提和推理形式都为真.答案:C2・下列三段可以组成一个“三段论”,则“小前提”是()①因为指数函数y=a(a> 1)是增函数②所以尸尸是增函数③而尸罗是指数函数A.①B.②C.①②D.③解析:根据三段论的原理,可知选D. 答案:D3.三段论“①只有船准时起航,才能准时到达目的港,②这艘船是准时到达目的港的,③所以这艘船是准时起航的・”中“小前提” 是()A.①B.②C.①②D.③答案:B4. 在不等边三角形中,$边最大,要想得到为钝角的结论, 三边❺b, c 应满足的条件是()A. a 2<Z?2 + cB. acC ・ a^>I )+cD ・ a^:b 2 +c答案:C“由于所有能被6整除的数都能被3整除,18是能被6整除 的数,所以18能被3整除•”这个推理是()A.大前提错误B.结论错误解析:易知该推理是一个正确的三段论,所以选C.答案:C6. 在△磁中,E 、F 分别为曲、07的中点,则有彩比;这个 问题的大前提为()A. 三角形的中位线平行于第三边B. 三角形的中位线等于第三边的一半C. 莎为中位线D. EF//CB 答案:A1.下列推理是演绎推理的是()A. M, N 是平面内两定点,动点尸满足|刊1 + |刖=2$>|洌,解析: 由cos 4 ^+c 2-a 2A = 2bc<0知I )+c —a 2<0,所以应选C. 5. C.正确的 D.小前提错误得点F 的轨迹是椭B.由ai = l, a n=2n—l9求出S, 猜想出数列的前刀项和S的表达式C.由2 2/+/=?的面积为"猜想出椭圆手+务=1的面积为兀abD.科学家利用鱼的沉浮原理制造潜艇义作为大前提的演绎推理.答案:A2.推理“①矩形是平行四边形,②正方形是矩形,③所以正方形 是平行四边形”中的小前提是() A.① C.③B.②D.①和② 解析:①为大前提,②为小前提,③为结论. 答案:B3. (2013 •深圳二模)非空数集力=仙,釦念,…,aj (z?eN*) 中,所有元素的算术平均数记为EG4),即E (A ) = 若非空数集〃满足下列两个条件:①〃②= E3 ,则称〃为 力的一个“保均值子集”・据此,集合{1,2, 3, 4, 5}的“保均值子集”有()A. 5个B. 6个C. 7个D. 8个答案:C4.以下是小王同学用“三段论”证明命题“直角三角形两锐角之 和为90。
第二章 推理与证明2.1 合情推理与演绎推理一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知数列13521,,n -,,,,L L 则23是这个数列的 A .第10项 B .第11项 C .第12项 D .第21项【答案】C【解析】令2123n -=,解得12n =,故23是这个数列的第12项.故选C . 2.某演绎推理的“三段”分解如下:①函数()13xf x =是减函数;②指数函数是减函数;③函数()13x f x =是指数函数,则按照演绎推理的三段论模式,排序正确的是 A .①→②→③ B .③→②→① C .②→①→③ D .②→③→①【答案】D3.下列推理是类比推理的是A .A ,B 为定点,动点P 满足 PA + PB =2a > AB ,则P 点的轨迹为椭圆 B .由a 1=1,31n a n =-,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积2πr ,猜想出椭圆22221x y a b+=的面积为πS ab =D .以上均不正确 【答案】C【解析】A 是演绎推理,B 是归纳推理,C 是类比推理.故选C . 4.“因为偶函数的图象关于轴对称,而函数是偶函数,所以的图象关于轴对称”.在上述演绎推理中,所得结论错误的原因是 A .大前提错误 B .小前提错误C .推理形式错误D .大前提与推理形式都错误【答案】B5.设0()sin x f x =,10()()f f x x '=,21()()f f x x '=,…,1()(),n n f f n x x +='∈N ,则2017()f x = A .cos x - B .sin x - C .cos x D .sin x【答案】C【解析】1()cos f x x =,2()(cos )sin ,f x x 'x ==-,3()cos ,f x x =-,4()sin f x x =, 故2017450411()()()cos f x f x f x x ⨯+===.故选C . 学6.在平面几何中有如下结论:设正三角形ABC 的内切圆面积为1S ,外接圆面积为2S ,则1214S S=,推广到空间中可以得到类似结论:已知正四面体P ABC -的内切球体积为1V ,外接球体积为2V ,则12V V = A .18 B .19 C .164D .127【答案】D【解析】如图,连接AE ,7.将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为13 5 79 11 13 15 1719 21 23 25 27 29 31……A.811 B.809C.807 D.805【答案】B【解析】由题意知前20行共有正奇数2L个,则第21行从左向右的第5个++++==1353920400⨯-=.故选B.数是第405个正奇数,所以这个数是240518098.有两种花色的正六边形地面砖,按下图的规律拼成若干个图案,则第6个图案中有灰色的正六边形的个数是……A.26 B.31 C.32 D.36 【答案】B【解析】有灰色的正六边形个数如下表:图案123…个数61116…由表可以看出有灰色的正六边形的个数依次组成一个以6为首项,5为公差的等差数列,所以第6个图案中有灰色的正六边形的个数是65(61)31+⨯-=.故选B.学9.有三个人,甲说:“我不是班长”,乙说:“甲是班长”,丙说:“我不是班长”.已知三个人中只有一个说的是真话,则班长是A.甲B.乙C.丙D.无法确定【答案】C二、填空题:请将答案填在题中横线上.10.设等差数列{}n a的前n项和为n S,则4S,84S S-,128S S-成等差数列;类比以上结论有:设等比数列{}n b的前n项积为n T,则4T,______________,128TT成等比数列.【答案】84TT【解析】由题意,等差数列{}n a的前n项和为n S,则4S,84S S-,128S S-成等差数列,运用类比思想,只需要将差改为比即可,故有4T,84TT,128TT成等比数列.11.用演绎推理证明2)0(,,y x x=∈-∞是减函数时,大前提是______________.【答案】减函数的定义【解析】大前提:减函数的定义,在x I ∈内,若有12x x >,则有12()()f x f x <, 小前提:2)0(,,y x x =∈-∞时12x x >,有12()()f x f x <, 结论:2)0(,,y x x =∈-∞是减函数. 12.已知下列等式:,,,,……则根据以上四个等式,猜想第个等式是__________()*n ∈N . 【答案】13.在下列类比推理中,正确的有_____________.①把()a b c +与(log )a x y +类比,则有log )l g og (o l a a a x y x y +=+; ②把()a b c +与sin()x y +类比,则有sin()sin sin x y x y +=+;③把实数,a b 满足:“若0,0ab b =≠,则0a =”,类比平面向量的数量积,“若·0=a b ,≠0b ,则=0a ”;④平面内,“在ABC △中,ACB ∠的平分线CE 将三角形分成两部分的面积比=AEC BEC SACS BC△△”,将这个结论类比到空间中,有“在三棱锥A BCD -中,平面DEC 平分二面角A CD B --,且与AB 交于点E ,则平面DEC 将三棱锥分成两部分的体积比A CDE ACDB CDE BDCV S V S --=△△. 【答案】④三、解答题:解答应写出文字说明、证明过程或演算步骤. 14.把下列演绎推理写成三段论的形式.(1)在标准大气压下,水的沸点是100℃,所以在标准大气压下把水加热到100℃时,水会沸腾; (2)一切奇数都不能被2整除,20(2)1+是奇数,所以20(2)1+不能被2整除; 学 (3)三角函数都是周期函数,cos y α=是三角函数,因此cos y α=是周期函数. 【解析】(1)在标准大气压下,水的沸点是100℃,………………大前提 在标准大气压下把水加热到100℃,…………………………………小前提 水会沸腾.………………………………………………………………结论 (2)一切奇数都不能被2整除, ……………………………………大前提20(2)1+是奇数, ……………………………………………………小前提 20(2)1+不能被2整除. ……………………………………………结论(3)三角函数都是周期函数,………………………………………大前提cos y α=是三角函数,………………………………………………小前提 cos y α=是周期函数.………………………………………………结论15.已知()33xf x +,分别求()0)(1f f +,()12()f f -+,()23()f f -+的值,然后归纳猜想一般性结论,并证明你的结论.【解析】由1()33xf x=+,得01113()()313333f f =+=+++,12113()()3333123f f-=+=++-+,23113()()3333233f f-=+=++-+,归纳猜想一般性结论为3()(1)3f fx x-++=,证明如下:111131()(1)333313333xx x x xf f xx-++-++=+=++++⋅+1113313313313=33333333(133)x x xx x x x+++⋅⋅+⋅++===++++⋅.16.(1)在平面上,若两个正方形的边长的比为,则它们的面积比为.类似地,在空间中,对应的结论是什么?(2)已知数列满足11212,4nnnaa aa+-==+,求,并由此归纳得出的通项公式(无需证明).17.如图1,已知PAB△中,,点在斜边上的射影为点.(1)求证:222111PH PA PB =+; (2)如图2,已知三棱锥中,侧棱,,两两互相垂直,点在底面内的射影为点.类比(1)中的结论,猜想三棱锥中与,,的关系,并证明.因为,,,所以平面, 学。
满足y=x 2,则log 2(22)x y +的最小值是78;④若a 、b ∈R ,则221a b ab a b +++>+。
其中正确的是( )。
(A) ①②③ (B) ①②④ (C) ②③④ (D) ①②③④解析 用综合法可得应选(B ) 例2 函数y =f (x )在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .解析∵函数y =f (x )在(0,2)上是增函数, ∴ 0<x+2<2即-2<x <0∴函数y=f(x+2) 在(-2,0)上是增函数, 又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2) 在(0,2)上是减函数 由图象可得f(2.5)>f(1)>f(3.5)故应填f(2.5)>f(1)>f(3.5)例3 已知a ,b ,c 是全不相等的正实数,求证3>-++-++-+ccb a b bc a a a c b解析∵ a ,b ,c 全不相等∴ a b 与b a ,a c 与c a ,b c 与c b 全不相等。
∴ 2,2,2b a c a c ba b a c b c+>+>+>三式相加得6b c c a a ba ab bc c+++++>∴ (1)(1)(1)3b c c a a ba ab bc c+-++-++->即 3b c a a c b a b c a b c+-+-+-++>练习一、选择题1.如果数列{}n a 是等差数列,则( )。
(A )1845a a a a +<+ (B ) 1845a a a a +=+ (C )1845a a a a +>+ (D )1845a a a a =2.在△ABC 中若b=2asinB 则A 等于( )(A)06030或 (B)06045或 (C)0012060或 (D)0015030或 3.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+•+.其中不成立的有(A )1个 (B )2个 (C )3个 (D )4个二、填空题4. 已知 5,2==b a ,向量b a 与的 夹角为0120,则a b a .)2(-=5. 如图,在直四棱柱A 1B 1C 1D 1—ABCD 中,当底面四边形ABCD 满足n,n证明:如图,连接BD ,∵在△ABC 中,BE=CE DF=CF ∴E F ∥BD又BD ⊂平面ABD ∴BD ∥平面ABD7.解:∵f(x-4)=f(2-x),∴函数的图象关于x= -1对称 ∴12-=-ab即b =2a 由③知当x = 1时,y=0,即ab +c =0;由①得 f (1)≥1,由②得 f (1)≤1. ∴f (1)=1,即a +b +c =1,又ab +c =0 ∴a =41 b =21 c =41 ,∴f (x )=4121412++x x 假设存在t ∈R ,只要x ∈[1,m ],就有f (x +t )≤x 取x =1时,有f (t +1)≤1⇒41(t +1)2+21(t +1)+41≤1⇒-4≤t ≤0 对固定的t ∈[-4,0],取x =m ,有f (t +m )≤m ⇒41(t +m )2+21(t +m )+41≤m ⇒2m +2(t-1)m +(t 2+2t +1)≤0 ⇒t t 41---≤m ≤t t 41-+- ∴m ≤t t 41--≤)4(4)4(1-⋅-+--=9当t = -4时,对任意的x ∈[1,9],恒有f(x-4)≤x ⇒41(2x -10x +9)=41(x-1)(x-9)≤0∴m 的最大值为9.解法二:∵f (x -4)=f (2-x ),∴函数的图象关于x =-1对称 ∴ 12-=-abb =2a 由③知当x=1时,y=0,即a b +c =0;由①得 f (1)≥1,由②得 f (1)≤1∴f (1)=1,即a +b +c =1,a b +c =0∴a =41 b =21 c =41∴f (x )=4121412++x x =41(x +1)2由f (x +t )=41(x +t +1)2≤x 在x ∈[1,m ]上恒成立 ∴4[f (x +t )-x ]=x 2+2(t -1)x +(t +1)2≤0当x ∈[1,m ]时,恒成立 令 x =1有t 2+4t ≤0⇒-4≤t ≤0令x =m 有t 2+2(m +1)t +(m -1)2≤0当t ∈[-4,0]时,恒有解令t = -4得,2m - 10m +9≤0⇒1≤m ≤9 即当t = -4时,任取x ∈[1,9]恒有f (x -4)-x =41(2x -10x +9)=41(x-1)(x-9)≤0 ∴ m max =92.2直接证明2.2.1 综合法一、选择题(1)由等差数列的性质:若m+n=p+q 则q p n m a a a a +=+可知应填(B )。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校高二文科数学备课组长:林飞燕主备人:陈艺全2015年3月10日§2.1.1 合情推理与演绎推理(一)【内容分析】:归纳是重要的推理方法,在掌握一定的数学基础知识(如数列、立体几何、空间向量等等)后,对数学问题的探究方法加以总结,上升为思想方法。
【教学目标】:1、知识与技能:(1)结合数学实例,了解归纳推理的含义(2)能利用归纳方法进行简单的推理,2、过程与方法:通过课例,加深对归纳这种思想方法的认识。
3、情感态度与价值观:体验并认识归纳推理在数学发现中的作用。
【教学重点】:(1)体会并实践归纳推理的探索过程(2)归纳推理的局限【教学难点】:引导和训练学生从已知的线索中归纳出正确的结论【练习与测试】: (基础题)1)数列2,5,11,20,,47,x …中的x 等于( ) A .28 B .32 C .33 D .272)从222576543,3432,11=++++=++=中得出的一般性结论是_____________。
3)定义,,,A B B C C D D A ****的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A )、(B )所对应的运算结果可能是( ).4 A.,B D A D ** B.,B D A C ** C.,B C A D ** D.,C D A D ** 4)有10个顶点的凸多面体,它的各面多边形内角总和是________.答案:1)B 523,1156,20119,-=-=-=推出2012,32x x -==2)2*1...212...32(21),n n n n n n n N ++++-+++-=-∈ 注意左边共有21n -项 3)B4)(n-2)3600(中等题)1)观察下列的图形中小正方形的个数,则第n 个图中有 个小正方形.2)-1 .3 .-7 .15 .( ) ,63 , , , 括号中的数字应为( ) A.33 B.-31 C.-27 D.-57 3)设平面内有n 条直线(n ≥ 3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用表示 n 条直线交点的个数,则 f (4 )=( ) A.3 B.4 C.5 D.64)顺次计算数列:1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,的前4项,由此猜测123...)1()1(...321++++-++-++++=n n n a n 的结果. 答案:1)1+2+3+4+…+(n+1)=)2)(1(21++n n 2)B 正负相间,3=1+2,7=3+22,15=7+23,15+24=31,31+25=63 3)C4)依次为,1,22,32,42,所以a n =n 2。
高中数学学习材料唐玲出品合情推理与演绎推理测试题(选修1-2)试卷满分150,其中第Ⅰ卷满分100分,第Ⅱ卷满分50分,考试时间120分钟第Ⅰ卷(共100分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将答案直接填入下列表格内.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.如果数列{}n a 是等差数列,则 A.1845a a a a +<+B. 1845a a a a +=+C.1845a a a a +>+D.1845a a a a =2.下面使用类比推理正确的是 A.“若33a b ⋅=⋅,则a b =”类推出“若00a b ⋅=⋅,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ⋅=⋅”C.“若()a b c ac bc +=+” 类推出“a b a bc c c+=+ (c ≠0)” D.“n n a a b =n (b )” 类推出“n n a a b +=+n(b )” 3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误4.设)()(,sin )('010x f x f x x f ==,'21()(),,f x f x ='1()()n n f x f x +=,n ∈N ,则2007()f x =A.sin xB.-sin xC.cos xD.-cos x5.在十进制中01232004410010010210=⨯+⨯+⨯+⨯,那么在5进制中数码2004折合成十进制为 A.29 B. 254 C. 602 D. 2004 6.函数21y ax =+的图像与直线y x =相切,则a = A.18B.14C.12D. 17.下面的四个不等式:①ca bc ab c b a ++≥++222;②()411≤-a a ;③2≥+abb a ;④()()()22222bd ac d c b a +≥+∙+.其中不成立的有A.1个B.2个C.3个D.4个8.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为A.2B.3C.4D. 5 9.设 ()|1|||f x x x =--, 则1[()]2f f =A. 12-B. 0C.12D. 110.已知向量)3,5(-=→x a , ),2(x b =→,且→→⊥b a , 则由x 的值构成的集合是A.{2,3}B. {-1, 6}C. {2}D. {6} 11. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为A.大前提错误B.小前提错误C.推理形式错误D.非以上错误 12.已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式为 A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2()21f x x =+二.解答题:本大题共5小题,每小题8分,共40分. 13.证明:5,3,2不能为同一等差数列的三项.14.在△ABC 中,CB CB A cos cos sin sin sin ++=,判断△ABC 的形状.15.已知:空间四边形ABCD 中,E ,F 分别为BC ,CD 的中点,判断直线EF 与平面ABD 的关系,并证明你的结论.16.已知函数x x x f -+=)1ln()(,求)(x f 的最大值.17.△ABC 三边长,,a b c 的倒数成等差数列,求证:角B 090<.第Ⅱ卷(共50分)三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。
18. 类比平面几何中的勾股定理:若直角三角形ABC 中的两边AB 、AC 互相垂直,则三角形三边长之间满足关系:222BC AC AB =+。
若三棱锥A-BCD 的三个侧面ABC 、ACD 、ADB两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 .19.从22112343=++=2,,3+4+5+6+7=5中,可得到一般规律为 (用数学表达式表示)20.函数y =f (x )在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .21.设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f = ; 当n>4时,()f n = (用含n 的数学表达式表示)四.解答题. (每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分) 22.在各项为正的数列{}n a 中,数列的前n 项和n S 满足⎪⎪⎭⎫⎝⎛+=n n n a a S 121 (1) 求321,,a a a ;(2) 由(1)猜想数列{}n a 的通项公式;(3) 求n S23.自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用n x 表示某鱼群在第n 年年初的总量,+∈N n ,且1x >0.不考虑其它因素,设在第n 年内鱼群的繁殖量及捕捞量都与n x 成正比,死亡量与2n x 成正比,这些比例系数依次为正常数c b a ,,. (Ⅰ)求1+n x 与n x 的关系式;(Ⅱ)猜测:当且仅当1x ,c b a ,,满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)24. 设函数)(sin )(R x x x x f ∈=.(1)证明:Z k x k x f k x f ∈=-+,sin 2)()2(ππ;(2)设0x 为)(x f 的一个极值点,证明240201)]([x x x f +=.五.解答题. (共8分.从下列题中选答1题,多选按所做的前1题记分) 25. 通过计算可得下列等式:1121222+⨯=-1222322+⨯=-1323422+⨯=-┅┅12)1(22+⨯=-+n n n将以上各式分别相加得:n n n +++++⨯=-+)321(21)1(22即:2)1(321+=++++n n n 类比上述求法:请你求出2222321n ++++ 的值. 26. 直角三角形的两条直角边的和为a ,求斜边的高的最大值 27.已知))((R x x f ∈恒不为0,对于任意R x x ∈21, 等式()()⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫⎝⎛+=+222212121x x f x x f x f x f 恒成立.求证:)(x f 是偶函数. 28.已知ΔABC 的三条边分别为a b c ,,求证:11a b ca b c+>+++合情推理与演绎推理测试题答案(选修1-2)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将答案直接填入下列表格内.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCCDBBADDCAB二.解答题:本大题共5小题,每小题8分,共40分.13.证明:假设2、3、5为同一等差数列的三项,则存在整数m,n 满足3=2+md ① 5=2+nd ②①⨯n-②⨯m 得:3n-5m=2(n-m)两边平方得: 3n 2+5m 2-215mn=2(n-m)2左边为无理数,右边为有理数,且有理数≠无理数 所以,假设不正确。
即 2、3、5不能为同一等差数列的三项 14. ∆ABC 是直角三角形; 因为sinA=CB CB cos cos sin sin ++据正、余弦定理得 :(b+c )(a 2-b 2-c 2)=0; 又因为a,b,c 为∆ABC 的三边,所以 b+c ≠0所以 a 2=b 2+c 2即∆ABC 为直角三角形.15.平行; 提示:连接BD ,因为E ,F 分别为BC ,CD 的中点, EF ∥BD. 16.提示:用求导的方法可求得)(x f 的最大值为017.证明:222cos 2a c b B ac +-=≥222ac b ac -=212b ac-=211()b b b a c a c -=-++,,a b c 为△ABC 三边,a c ∴+b >,1ba c∴-+0>cos B ∴0> ∴B 090<. 三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。
18. 2222ADB ACD ABC BCD S S S S ∆∆∆∆++= .19. 2(1)(2)......(32)(21)n n n n n ++++++-=-20. f(2.5)>f(1)>f(3.5) 21. 5; 12(n+1)(n-2).四.解答题. (每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分) 22.(1)23,12,1321-=-==a a a ;(2)1--=n n a n ;(3)n S n =. 23.解(I )从第n 年初到第n+1年初,鱼群的繁殖量为ax n ,被捕捞量为b x n ,死亡量为221,,*.(*)n n n n n n cx x x ax bx cx n N +-=--∈因此 1(1),*.(**)n n n x x a b cx n N +=-+-∈即(II )若每年年初鱼群总量保持不变,则x n 恒等于x 1, n ∈N*,从而由(*)式得 ..0*,,0)(11cba x cxb a N n cx b a x n n -==--∈--即所以恒等于 因为x 1>0,所以a >b. 猜测:当且仅当a >b ,且cba x -=1时,每年年初鱼群的总量保持不变. 24. 证明:1)(2)()22f x k f x x k x k x x πππ+-=++()sin()-sin =2x k x x x π+()sin -sin =2k x πsin 2) ()sin cos f x x x x '=+0000()sin cos 0f x x x x '=+= ① 又2200sin cos 1x x += ②由①②知20sin x =2021x x + 所以2422220000002200[()]sin 11x x f x x x x x x ===++ 五.解答题. (共8分.从下列题中选答1题,多选按所做的前1题记分) 25.[解] 1131312233+⨯+⨯=- 1232323233+⨯+⨯=-1333334233+⨯+⨯=- ┅┅ 133)1(233+⨯+⨯=-+n n n n将以上各式分别相加得:n n n n ++++⨯+++++⨯=-+)321(3)321(31)1(222233所以: ]2131)1[(3132132222n nn n n +---+=++++ )12)(1(61++=n n n 26.24a 27.简证:令12x x =,则有()01f =,再令12x x x =-=即可 28.证明:设(),(0,)1xf x x x=∈+∞+设12,x x 是(0,)+∞上的任意两个实数,且210x x >≥,1212121212()()11(1)(1)x x x x f x f x x x x x --=-=++++ 因为210x x >≥,所以12()()f x f x <。