高二物理光的干涉
- 格式:ppt
- 大小:1.14 MB
- 文档页数:20
高二物理知识点梳理光的干涉与衍射高二物理知识点梳理:光的干涉与衍射光的干涉与衍射是高中物理中重要的概念和知识点之一,涉及到光的波动性和光的相互作用。
本文将梳理光的干涉与衍射相关的基本知识点,包括定义、干涉与衍射的条件、干涉与衍射的现象、常见实验以及应用等。
一、光的干涉和衍射概述在我们日常生活中,我们经常会遇到一些光现象,如彩虹、干涉条纹、衍射等。
这些现象都与光的干涉和衍射有关。
光的干涉是指两束或多束光波相互叠加产生干涉现象的现象。
光的衍射是指光波遇到障碍物的边缘或孔径时发生扩散并产生衍射现象。
二、干涉与衍射的条件光的干涉与衍射需要满足一定的条件才能发生。
这些条件包括:1. 光源单色性:光源应为单色光,即光波的频率相同。
2. 光源的相干性:光源的相干性决定了光波的相位关系,从而影响到干涉与衍射现象。
3. 干涉或衍射物的特性:干涉与衍射需要具备干涉或衍射物,如等厚薄膜、双缝、单缝等。
4. 干涉或衍射物的尺寸:干涉或衍射物的尺寸应与光的波长相当。
三、光的干涉现象1. 干涉条纹:当两束相干光波相遇时,会发生干涉现象,形成明暗相间的干涉条纹。
2. 条纹间距:干涉条纹的间距与入射光的波长、两个光源之间的距离以及干涉条纹的级数有关。
3. 干涉的种类:根据光的相位关系,干涉可以分为相长干涉和相消干涉两种。
4. 双缝干涉:双缝干涉是一种常见的干涉现象,通过双缝实验可以验证光的波动性。
四、光的衍射现象1. 衍射的特点:光的衍射具有波动性,它是光波的一种传播方式,波面扩散经过一个孔或窄缝时会产生衍射。
2. 衍射的条件:衍射的条件包括波长、障碍物的尺寸以及光屏的距离。
3. 单缝衍射:当一个光波通过一个狭缝时,会出现中央亮条纹和两侧暗条纹的衍射图样。
4. 衍射光栅:衍射光栅是一种具有多个狭缝的光学元件,通过衍射光栅可以实现光的分光。
五、光的干涉与衍射的应用1. 干涉仪:干涉仪是利用光的干涉原理制造的仪器,可用于测量物体的薄膜厚度、折射率等。
高中物理光的干涉知识点总结
光的干涉是光学中的一个重要概念,涉及到干涉现象的原理、种类、特征和应用等方面。
以下是高中物理光的干涉知识点总结:
1. 光的干涉原理
干涉原理是指两个或多个相干光源发出的光在某些情况下会发
生干涉现象。
干涉现象是由光的相干性引起的,当两个或多个光源发出的光相互接近时,它们就会干涉在一起,形成干涉条纹。
2. 干涉条纹的种类
干涉条纹的种类有:干涉衍射条纹、干涉屏散条纹、干涉筛法条纹、干涉干涉条纹等。
其中,干涉衍射条纹是最为普遍的干涉条纹类型,它是由于干涉仪本身的结构所引起的。
3. 干涉仪
干涉仪是一种利用干涉原理进行实验的工具,常见的干涉仪有干涉仪、单色干涉仪、干涉显微镜等。
干涉仪可以用来测量光的波长、频率、相位等参数,从而实现对光的深入探究。
4. 干涉条纹的特征
干涉条纹的特征包括:
- 干涉条纹具有重复性:相同频率的光在一起会产生干涉条纹,
不同频率的光在一起也会产生干涉条纹,条纹的频率会重复。
- 干涉条纹具有干涉斑:当光源不同的时候,产生的干涉斑大小
不同,干涉条纹的形态也不同。
- 干涉条纹具有随机性:干涉条纹的形态和位置取决于光源的位
置和时间。
5. 干涉的应用
干涉现象在科学研究和实际应用中有着广泛的应用,例如: - 利用干涉现象测量光的频率和波长
- 利用干涉现象分析光的干涉和衍射现象
- 利用干涉现象制作光纤通信和光学传感器等。
高二物理选修34第十三章:光的干涉制造人:陈合森日期:【学习目的】1、观察光的干预现象,看法干预条纹的特点。
2、能论述干预现象的成因及明暗条纹的位置特点3、知道相关光源的概念和发生干预现象的条件【重点难点】干预现象的成因及明暗条纹的位置特点、发生干预现象的条件教学进程一、杨氏双缝干预实验1.1801年,英国物理学家___________〔1773~1829〕在实验室里成功的观察到了光的干预.2.双缝干预实验〔1〕实验进程:让一束_____________的单色光投射到一个有两条狭缝的挡板上,两狭缝相距很近,两狭缝就成了两个波源,他们的频率、相位和振动方向总是_________的,两个光源收回的光在挡板前面的空间相互叠加发作_______.(2)实验现象:在屏上失掉_________条纹〔3〕实验结论:证明光是一种__________.(4)现象解释:S1、S2相当于两个频率、相位和振动方向相反的波源,当两个光源与屏上某点的距离只差等于半波长的________倍时〔即恰恰等于波长的_______倍时〕,两列光波在这点相互增强,出现_________;当两个光源与屏上某点的距离之差等于半波长的________倍时,两列光波在这点____________,出现暗条纹。
二、光发生干预的条件1.干预条件:两列波的_________同、振动方向相反、相位差恒定2.相关光源:收回的光可以发生干预的两个光源。
三、双缝干预条纹特征一系列平行的明暗相间的等间距条纹;各级明暗纹在中央明纹两侧对称散布。
相邻亮条纹或相邻暗条纹间的距离为_________________各种色光的波长由长到短的顺序为红、橙、黄、绿、蓝、靛、紫频率由低到高的顺序依次为:红、橙、黄、绿、蓝、靛、紫稳固练习:1.平行光照射在双缝上,在屏上失掉干预条纹,当〔〕A.双缝到屏的距离增大时,干预条纹间距也增大.B.双缝间距减小时,干预条纹间距也减小.C.波长变短,坚持光强不变时,那么条纹间距也不变.D.波长不变,光强削弱时,那么条纹间距也不变.2.假设把杨氏双缝干预装置从空气中移到透明液体中做实验,那么条纹宽度〔〕A.增大.B.减小.C.不变.D.缺少条件,无法判别.3.双逢干预实验装置如图3所示,双缝间的距离为d,双缝到像屏的距离为L,调整实验装置使得像屏上可以见到明晰的干预条纹,关于干预条纹的状况,以下表达正确的选项是( )A.假定将像屏向左平移一小段距离,屏上的干预条纹将不会发作变化B.假定将像屏向右平移一小段距离,屏上仍有明晰的干预条纹C.假定将像屏向上平移一小段距离,屏上仍有明晰的干预条纹D.假定将像屏向上平移一小段距离,屏上的干预条纹将将不会图3图6 发作变化4、假设把杨氏双缝干预实验,从空气中移动到某种透明的液体中做实验,那么条纹的间距:〔 〕A 、增大B 、减小C 、不变D 、缺少条件,无法判别5.在单色光的双缝干预实验中〔 〕A .两列光波的波峰和波峰堆叠处出现亮条纹 B. 两列光波的波谷和波谷堆叠处出现亮条纹C .干预条纹明暗相反,且条纹间距相等,中央条纹为亮条纹D .从两个狭缝抵达光屏上的路程差等于光的半个波长的整数倍时,出现暗条纹6.如下图是双缝干预实验表示图,屏上某处P 出现明条纹,那么P 处到双缝S1、S2的距离之差是〔 〕A .光波半波长的奇数倍.B .光波波长的奇数倍.C .光波半波长的偶数倍.D .光波半波长的整数倍.7.以下图是研讨光的双缝干预用的表示图,挡板上有两条狭缝S 1、S 2,由S 1和S 2收回的两列波抵达屏上时会发生干预条纹,入射激光的波长为λ,屏上的P 点到两缝S 1和S 2的距离相等,假设把P 处的亮条纹记作第0号亮纹,由P 向上数,与0号亮纹相邻的亮纹为1号亮纹,与1号亮纹相邻的亮纹为2号亮纹,那么P 1处的亮纹恰恰是10号亮纹.设直线S 1P 1的长度为γ1,S 2P 1的长度为γ2,那么γ2-γ1等于( )A. λ5B. 10λC. 20λD. 40λ8.光的颜色决议于 〔 〕A .波长.B .波速.C .频率.D .折射率.9.同一束单色光从空气射入水中,那么 〔 〕A .光的颜色、频率不变,波长、波速都变小.B .光的频率变小,颜色,波长、波速都不变.C .光的频率、速度变小,颜色、波长不变.D .频率、颜色、波长都不变,只要波速变小.10. 在双缝干预实验中,以白光为光源,在屏上观察到黑色干预条纹,假定在双缝中的一缝前放一白色滤光用只能透过红光〕,另一缝前放一绿色滤光片〔只能透过绿光〕,这时:A 、只要白色和绿色的干预条纹,其它颜色的双缝干预条纹消逝.B 、白色和绿色的干预条纹消逝,其它颜色的干预条纹依然存在.C 、任何颜色的干预条纹都不存在,但屏上仍有亮光.D 、屏上无任何亮光.11.如图6,在双缝干预实验中,SS 1=SS 2,且S 1、S 2到光屏上P 点的路程差△s=1.5×10-6m ,当S 为λ=0.6μm 的单色光源时,在P 点处将构成 条纹;当S 为λ=0.5μm 的单色光源时,在P 点处将构成条纹。
光的干涉知识集结知识元光的干涉知识讲解一、光的干涉1.干涉现象两束光相遇时,如果满足一定的条件,就会产生干涉现象,在屏上出现明暗相间的干涉条纹.2.由干涉现象得出的结论光具有波的特性,光是一种波.3.相干条件要使两列光波相遇时产生干涉现象,两光源必须具有相同的频率和振动方向,还要满足相位差恒定.相邻条纹间距公式:二、杨氏双缝干涉1.1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象。
2.双缝干涉的装置示意图实验装置如图所示,有光源、单缝、双缝和光屏。
(1)单缝的作用:获得一个线光源,使光源有唯一的频率和振动情况。
也可用激光直接照射双缝。
(2)双缝的作用:一束光被分成两束频率相同和振动情况完全一致的相干光。
3.让一束单色光投射到一个有两条狭缝S1和S2的挡板上,狭缝S1和S2相距很近,狭缝就成了两个波源,它们的频率、相位和振动方向总是相同的。
这两个波源发出的光在挡板后面的空间互相叠加,发生干涉现象,挡板后面的屏上得到明暗相间的条纹。
这种现象证明光是一种波。
4.屏上某处出现亮、暗条纹的条件实验装置如图所示,双缝S1、S2之间的距离为d,双缝到屏的距离为l,屏上的一点P到双缝的距离分别为r1和r2,路程差∆r=r2-r1。
(1)若满足路程差为波长的整数倍,即∆r=kλ(其中k=0,1,2,3,…),则出现亮条纹。
(2)若满足路程差为半波长的奇数倍,即(其中k=0,1,2,3,…),则出现暗条纹。
5.相邻亮条纹(暗条纹)间的距离∆x与波长λ的关系:,其中l为双缝到屏的距离,d为双缝之间的距离。
三、薄膜干涉1.薄膜干涉中相干光的获得光照射到薄膜上,在薄膜的前后两个面反射的光是由同一个实际的光源分解而成的,它们具有相同的频率,恒定的相位差。
2.薄膜干涉的原理光照在厚度不同的薄膜上时,前后两个面的反射光的路程差等于相应位置膜厚度的2倍,在某些位置,两列波叠加后相互加强,于是出现亮条纹;在另一些位置,叠加后相互削弱,于是出现暗条纹。
高中物理光的干涉实验在高中物理课程中,光的干涉实验是一项重要的实验内容。
通过这个实验,我们可以更深入地了解光的性质和行为。
本文将介绍光的干涉实验的原理、实验装置以及实验结果的分析。
一、实验原理光的干涉是指两束或多束光波相遇时发生的相互作用。
干涉实验通常使用的是两束光波。
当两束光波相遇时,会发生干涉现象,出现明暗相间的干涉条纹。
这是由于光波的波动性导致的。
光波的波动性使得光波在传播过程中会发生衍射、干涉等现象。
在干涉实验中,我们主要关注的是光的干涉现象。
当两束光波相遇时,它们会发生干涉,干涉现象的强弱取决于两束光波的相位差。
二、实验装置光的干涉实验一般使用的是杨氏双缝干涉实验装置。
这个装置由一个光源、一个狭缝、一个双缝、一个屏幕和一个观察器构成。
光源发出的光经过狭缝后,会形成一个光斑。
这个光斑经过双缝后,会分成两束光波,然后在屏幕上形成干涉条纹。
观察器可以用来观察和记录干涉条纹的形态。
三、实验结果分析通过观察干涉条纹的形态,我们可以得到一些有关光的性质的信息。
首先,干涉条纹的间距可以用来计算光的波长。
根据杨氏双缝干涉实验的公式,干涉条纹的间距与波长成正比。
其次,干涉条纹的亮度可以用来判断两束光波的相位差。
当两束光波的相位差为整数倍的2π时,会出现亮纹;当相位差为奇数倍的π时,会出现暗纹。
通过观察干涉条纹的亮度变化,我们可以推断两束光波的相位差。
此外,干涉条纹的形态还可以用来判断光的偏振状态。
当两束光波的偏振方向相同时,会出现清晰的干涉条纹;当两束光波的偏振方向垂直时,干涉条纹会变得模糊。
四、实验应用光的干涉实验在生活中有着广泛的应用。
例如,在光学仪器中,干涉条纹的形态可以用来判断光学元件的质量和性能。
在光学显微镜中,通过观察样品的干涉条纹,可以得到更清晰的图像。
此外,光的干涉实验还可以用来研究光的波动性和光的粒子性。
通过观察干涉条纹的形态和变化,可以深入理解光的性质和行为。
总结:光的干涉实验是一项重要的物理实验。
物理高二光的干涉知识点光的干涉是物理高二课程中的重要知识点之一。
干涉是指两束或多束光波相遇后,产生明暗相间的干涉条纹现象。
在干涉中,光的波动性起到了关键的作用。
本文将从光的波动性、干涉的条件、干涉模式以及干涉的应用等方面来介绍光的干涉知识点。
一、光的波动性光既可以被看作是一种电磁波,也可以被看作是由光子组成的粒子。
在干涉现象中,我们主要关注光的波动性。
光的波动性表现为光的传播具有波长、频率和振幅等特性。
光的波动性由麦克斯韦方程组以及光的波动模型来描述。
二、干涉的条件要产生干涉现象,我们需要满足以下两个基本条件:1.光源必须是相干光源,即光源发出的光波具有相同的频率、相位以及恒定的相对相位关系。
2.光波之间存在干涉的叠加,即光波在空间中有相互叠加并形成干涉现象。
三、干涉模式根据干涉条纹的形态和光源的性质,光的干涉可分为两种典型模式:分波前干涉和分波后干涉。
1.分波前干涉:分波前干涉是指在光源发出的光波通过干涉装置之前进行分波处理。
常见的分波前干涉有双缝干涉和光栅干涉等。
2.分波后干涉:分波后干涉是指光源发出的光波通过干涉装置后,再进行干涉现象的观察。
常见的分波后干涉有薄膜干涉和薄板干涉等。
四、干涉的应用光的干涉在实际生活和科学研究中有着广泛的应用。
以下是几个常见的干涉应用:1. Michelson 干涉仪:Michelson 干涉仪是一种重要的光学仪器,它可以用于测量光的波长、光速以及薄膜的厚度等。
2. 干涉消色差:利用干涉的原理,可以设计制造一些具有消色差效果的光学元件,例如消色差镜头、消色差光栅等。
3. 干涉显微镜:干涉显微镜是一种高分辨率的显微镜,它利用了干涉的原理来增强光学图像的清晰度和对比度。
4. 光的编码和解码:利用干涉的特性,可以将信息编码进光波中,通过解码方式获取信息,例如光栅码、二维码等。
综上所述,光的干涉是物理高二课程中的重要知识点,涉及到光的波动性、干涉的条件、干涉模式以及干涉的应用等方面。
高中物理光的干涉干涉是光学中的一个重要现象,它解释了光的波动性以及光的相互作用。
光的干涉可以分为干涉条纹和干涉色彩两大类,这些现象在我们的日常生活中随处可见。
本文将对光的干涉现象进行深入探讨,并介绍一些相关的实验和应用。
一、干涉条纹干涉条纹是光的干涉现象最常见的表现形式之一。
当两束光波之间存在相位差,并在一个区域内相互叠加时,我们就能够观察到干涉条纹的出现。
其中,最经典的实验是杨氏双缝实验。
杨氏双缝实验是杨振宁于1801年首次进行的实验,通过在光源和屏幕之间设置两个狭缝,可以观察到一系列明暗相间的干涉条纹。
这些条纹的出现是由于两个狭缝所发出的光波相遇时产生的干涉效应。
干涉条纹的出现可以通过光的波动性来解释。
当两个光波在同一点相遇时,如果它们的波峰或波谷处于同相位,那么它们将相互增强,形成明亮的区域;相反,如果它们的波峰或波谷处于反相位,那么它们将相互抵消,形成暗淡的区域。
通过对干涉条纹的观察,我们可以推断出光的波长和两个光波的相位差。
二、干涉色彩干涉色彩是另一种常见的光的干涉现象,它通过光的波动性和干涉效应产生。
当光波经过一个或多个介质之后,其波长、频率和相位会发生变化,从而产生不同的颜色。
干涉色彩的观察往往需要借助于干涉仪器,如牛顿环和薄膜干涉。
牛顿环实验是一种通过凸透镜和平板玻璃组成的干涉仪器。
当光线通过一个凸透镜和一个平板玻璃时,由于光线的相位差和干涉效应的作用,我们可以观察到一系列彩色的环形条纹。
这些彩色条纹的出现可以用来研究光的干涉性质,以及材料的厚度和折射率。
薄膜干涉是基于薄膜的厚度和介质折射率的干涉效应。
当光线通过一个薄膜时,由于反射和折射的干涉,我们可以观察到一系列明亮的彩色条纹。
这些条纹的颜色和强度可以用来推断薄膜的厚度和材料的折射率。
三、应用领域光的干涉现象在很多领域都有着重要的应用价值。
在光栅领域,光的干涉可以用来制造光栅,用于光学仪器的测量和分析。
例如,通过控制光线的干涉条纹,可以制造出高精度的光栅,用于分光仪、光谱仪等仪器。