臭氧防治植物病害的研究进展
- 格式:pdf
- 大小:257.81 KB
- 文档页数:4
课程论文题目臭氧对农业的影响学生姓名学号院系专业指导教师二O一四年五月二十七日臭氧对农业的影响摘要:臭氧层的破坏就是人类当今所要面临的重要环境问题中的一个,自科学家发现南极臭氧空洞以来,臭氧层破坏问题开始被越来越多的国家所重视,但在平时我们所关注较多的是臭氧含量减少对人体及其它生物的危害,而对臭层氧破坏对农业产生的影响和臭氧在农业上的应用这一层面上的研究却并不多见。
本文主要介绍一下臭氧层的概念,作用,臭氧层破坏产生的原因和臭氧对农业的影响。
关键词:臭氧;臭氧层破坏;农业;应用1引言近地层臭氧( O3) 是一种对陆地植被有很强毒性作用的气体污染物, 可以抑制植物的生长, 加速植物老化, 改变碳代谢, 降低产量, 对全球生态系统和农业安全存在严重威胁。
如何准确评价和预测O3 浓度持续升高对作物的影响是污染生态学研究的热点之一。
本文主要介绍一下臭氧层的概念,作用,臭氧层破坏产生的原因和臭氧对农业的影响。
2臭氧层的含义及作用2. 1含义:在大气平流层中距地面 20-40 公里的范围内有一圈特殊的大气层,这一层大气中臭氧含量特别高。
大气平均臭氧含量大约是 0.3ppm,而这里的臭氧含量接近 10ppm,高空大气层中90% 的臭氧集中在这里,因而称之为臭氧层。
2. 2 臭氧层的作用:大气臭氧层主要有三个作用如下:2.2.1保护作用臭氧层能够吸收太阳光中的波长300μm以下的紫外线,主要是一部分中波紫外线UV-B 和全部的短波紫外线UV-C,保护地球上的人类和动植物免遭短波紫外线的伤害。
只有长波紫外线UV-A和少量的中波紫外线UV-B能够辐射到地面,长波紫外线对生物细胞的伤害要比中波紫外线轻微得多。
所以臭氧层犹如一件宇宙服保护地球上的生物得以生存繁衍。
图2保护作用示意图2.2.2加热作用臭氧吸收太阳光中的紫外线并将其转换为热能加热大气,由于这种作用大气温度结构在高度50km左右有一个峰,地球上空15~50km存在着升温层。
臭氧在鲜切西兰花保鲜中应用的研究徐斐燕,蒋高强,陈健初(浙江大学食品与营养系,浙江 杭州 310029)摘 要:本实验用臭氧水对鲜切西兰花进行浸泡处理,以探讨其对鲜切西兰花表面微生物的杀灭作用及对鲜切西兰花贮藏过程中品质的影响。
实验结果表明,臭氧水浸泡处理能有效控制鲜切西兰花表面的微生物,并降低多酚氧化酶活性,保护VC,抑制叶绿素的降解,但对还原糖有一定的影响。
其中浓度为2.40×10-6的臭氧水处理使菌落总数降低了一个数量级,酶活降低40%,在贮藏末期叶绿素含量比对照高53%。
关键词:臭氧;鲜切西兰花;保鲜Study on Ozone Preservation of Fresh-cut Broccoli XU Fei-yan,JIANG Gao-qiang,CHEN Jian-chu(Department of Food and Nutrition, Zhejiang University, Hangzhou 310029, China)Abstract :Effect of ozone on the quality of fresh-cut broccoli was evaluated. Results indicated that ozone treatment was effectivein controlling the microbes in broccolis, lowering enzyme activity, maintaining ascorbic acid level of broccolis, decomposingchlorophyll, but decreasing reducing sugar. The optimum effect of preservation of fresh-cut broccoli appeared to be the treatmentof water ozonated to a 2.40 ×10-6 of concentration, with which the microbial population was lowered 1 lgCFU/g, the enzymeactivity lowered 40%, but the chlorophyll content increased much higher than the control.Key words:ozone;fresh-cut broccoli;fresh-keeping中图分类号:TS205.9 文献标识码:A 文章编号:1002-6630(2006)05-0254-04 西兰花又名绿菜花、青花菜,属十字花科芸苔属甘蓝变种,富含蛋白质、糖、脂肪、维生素和胡萝卜素,但其采后呼吸旺盛,极易衰老,表现为叶绿素降解而使花球黄化,茎和花蕾失去充盈态而变松软。
我国地面臭氧污染及其生态环境效应一、本文概述随着我国经济的快速增长和城市化进程的推进,地面臭氧污染问题日益凸显,成为大气环境领域研究的热点和难点。
本文旨在全面概述我国地面臭氧污染的现状、成因、变化趋势以及其对生态环境的影响,以期为相关政策的制定和污染防治措施的实施提供科学依据。
文章将首先介绍地面臭氧污染的基本概念、形成机制和主要来源,分析我国地面臭氧污染的空间分布特征和季节变化规律。
接着,文章将深入探讨地面臭氧污染对人体健康、农作物生长、生态系统稳定等方面的影响,揭示臭氧污染与生态环境之间的复杂关系。
在此基础上,文章还将梳理国内外关于地面臭氧污染防治的研究进展和实践经验,提出适合我国国情的臭氧污染防治对策和建议。
本文期望通过系统梳理和分析我国地面臭氧污染及其生态环境效应,为我国大气环境保护和生态文明建设提供有益参考,同时也为国际臭氧污染研究领域贡献中国智慧和方案。
二、地面臭氧污染的形成机制地面臭氧污染的形成是一个复杂的大气化学反应过程,涉及多种前体物、气象条件以及光化学反应等多个因素。
在众多因素中,氮氧化物(NOx)和挥发性有机物(VOCs)是最主要的臭氧前体物。
当太阳光照射到地面时,大气中的氮氧化物和挥发性有机物吸收太阳光中的紫外线,开始发生光化学反应。
在这个过程中,氮氧化物被氧化成二氧化氮(NO2),而挥发性有机物则被氧化成一系列有机过氧化物。
接着,这些有机过氧化物与二氧化氮进一步反应,形成臭氧(O3)。
这一反应在阳光充足、温度较高的条件下进行得尤为迅速,因此臭氧浓度往往在夏季和午后达到高峰。
气象条件也是影响臭氧生成的重要因素。
例如,低风速、高湿度和逆温等气象条件容易导致污染物在大气中积聚,从而增加臭氧的生成。
相反,强风、降雨等气象条件则有助于污染物的扩散和清除,从而降低臭氧浓度。
地面臭氧污染的形成是一个涉及多种因素的大气化学反应过程。
为了有效控制和减少臭氧污染,我们需要从源头控制氮氧化物和挥发性有机物的排放,同时还需要加强大气环境监测和预警,以及采取科学有效的气象干预措施。
一.摘要:“温室中的绿色生态臭氧病虫害防治”数学模型是通过臭氧来探讨如何有效地利用温室效应造福人类,减少其对人类的负面影响。
由于臭氧对植物生长具有保护与破坏双重影响,利用数学知识联系实际问题,作出相应的解答和处理。
问题一:根据所掌握的人口模型,将生长作物与虫害的关系类似于人口模型的指数函数,对题目给定的表1和表2通过数据拟合,在自然条件下,建立病虫害与生长作物之间相互影响的数学模型。
因为在数据拟合前,假设病虫害密度与水稻产量成线性关系,然而,我们知道,当病虫害密度趋于无穷大时,水稻产量不可能为负值,所以该假设不成立。
从人口模型中,受到启发,也许病虫害密度与水稻产量的关系可能为指数函数,当拟合完毕后,惊奇地发现,数据非常接近,而且比较符合实际。
接下来,关于模型求解问题,顺理成章。
问题二,在杀虫剂作用下,要建立生长作物、病虫害和杀虫剂之间作用的数学模型,必须在问题一的条件下作出合理假设,同时运用数学软件得出该模型,最后结合已知数据可算出每亩地的水稻利润。
对于农药锐劲特使用方案,必须考虑到锐劲特的使用量和使用频率,结合表3,农药锐劲特在水稻中的残留量随时间的变化,可确定使用频率,又由于锐劲特的浓度密切关系水稻等作物的生长情况,利用农业原理找出最适合的浓度。
问题三,在温室中引入O3型杀虫剂,和问题二相似,不同的是,问题三加入了O3的作用时间,当O3的作用时间大于某一值时才会起作用,而又必须小于某一值时,才不会对作物造成伤害,建O3对温室植物与病虫害作用的数学模型,也需用到数学建模相关知识。
问题四,和实际联系最大,因为只有在了解O3的温室动态分布图的基础上,才能更好地利用O3。
而该题的关键是,建立稳定性模型,利用微分方程稳定性理论,研究系统平衡状态的稳定性,以及系统在相关因素增加或减少后的动态变化,最后。
通过数值模拟给出臭氧的动态分布图。
问题五,作出农业生产特别是水稻中杀虫剂使用策略、在温室中臭氧应用于病虫害防治的可行性分析。
植物病毒病生物防治研究进展作者:肖钦之邓斌邹海露滕凯唐前君周志成来源:《南方农业·上旬》2021年第12期摘要植物病毒病是仅次于植物真菌病害的第二大类植物病害,其专化性强、危害大,较难防治。
生物防治是利用物种间的相互作用来防治植物病害,具有高度的选择性,可开发资源丰富,生产成本低,对环境友好且无药物残留,已成为当前国内外植物病害防治研究热点。
从弱毒疫苗防治、植物源活性物质防治、微生物源活性物质防治(细菌源活性物质、真菌源活性物质、放线菌源活性物质)等方面综述了植物病毒病生物防治研究进展,展望从海洋微生物、海洋动物等生物中发现新的具有抗病毒活性的物质,或者将现已发现的生物源活性物质作为先导物,结合少量化学药剂制成高效抗病毒剂来发掘更多的植物病毒病生物防治资源。
关键词植物病毒病;生物防治;弱毒疫苗;植物源活性物质;微生物源活性物质中图分类号:S476 文献标志码:C DOI:10.19415/ki.1673-890x.2021.34.014植物病害影响植物正常的生长发育,进而影响农作物经济效益和生态效益。
植物病害可分为两大类:侵染性病害和非侵染性病害。
植物病毒病属于侵染性病害,大多由昆虫传播,如昆虫取食染病的植物后再取食易感植物就会传播植物病毒病。
病毒是专性寄生物,自身无法代谢和增殖,只能依靠宿主核酸和蛋白质进行复制,而植物本身没有完整的免疫代谢系统,导致植物病毒病的防治变得更加困难[1]。
植物病毒病,又称“植物癌症”,是第二大植物病害,每年在全世界造成的经济损失高达600亿美元,其中仅粮食作物就损失高达200亿美元。
植物病毒病每年给我国带来难以计量的损失,如在20世纪七八十年代,我国北方地区的小麦因土传花叶病、小麦丛矮病的流行导致减产20%~30%,严重时甚至绝产;南方水稻病毒病的流行,致使水稻减产20%~30%;近年来黄瓜花叶病毒病、烟草花叶病毒病的流行已导致多种蔬菜减产[2]。
目前防治植物病毒病的方法主要有:農业防治,如种苗脱毒、合理轮作、选用抗病品种等;化学农药防治常见防治农药的有效成分为盐酸吗啉胍、混合脂肪酸·硫酸铜、三氮唑类化合物等[3]。