自动控制原理实验报告实验二-频率响应测试
- 格式:docx
- 大小:436.20 KB
- 文档页数:12
自动控制频率特性测试实验报告1. 引言在现代自动控制系统中,频率特性是一个重要的参数,对于系统的稳定性和性能起着决定性的作用。
频率特性测试实验旨在评估自动控制系统的频率响应,并分析系统在不同频率下的性能。
本实验报告将介绍自动控制频率特性测试实验的目的、实验器材、实验步骤和实验结果分析。
2. 实验目的本实验的主要目的是通过频率响应测试,评估自动控制系统的频率特性以及系统在不同频率下的性能。
具体目标包括:1.测试系统的幅频特性,即系统的增益与频率之间的关系;2.测试系统的相频特性,即系统的相移与频率之间的关系;3.分析系统的频率特性对系统的稳定性和性能的影响。
3. 实验器材本实验所需的器材包括:•信号发生器:用于产生不同频率的输入信号;•可变增益放大器:用于控制输入信号的幅度;•相位巡迥器:用于调节输入信号的相位;•示波器:用于观测输入信号和输出信号;•自动控制系统:接受输入信号并提供相应的控制输出。
4. 实验步骤4.1 准备工作1.确保实验器材连接正确,信号发生器连接到自动控制系统的输入端,示波器连接到自动控制系统的输出端。
2.将可变增益放大器和相位巡迥器分别接入信号发生器的输出端,用于调节输入信号的幅度和相位。
4.2 测试幅频特性1.设置信号发生器的频率为起始频率,将幅度设置为合适的值。
2.将相位巡迥器的相位设置为零,确保输入信号的相位与输出信号相位一致。
3.记录输入信号和输出信号的幅度,并计算增益。
4.逐渐增加信号发生器的频率,重复步骤3,直到达到结束频率。
4.3 测试相频特性1.设置信号发生器的频率为起始频率,将幅度和相位设置为合适的值。
2.记录输入信号和输出信号的相位差,并计算相移。
3.逐渐增加信号发生器的频率,重复步骤2,直到达到结束频率。
4.4 结果记录与分析1.将实验得到的数据记录下来,包括输入信号频率、幅度、输出信号频率、幅度、相位差等。
2.绘制幅频特性曲线图,分析系统的增益随频率变化的规律。
自动控制原理实验报告作者姓名学科专业机械工程及自动化班级学号X X年10月27日实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2、学习在电子模拟机上建立典型环节系统模型的方法。
3、学习阶跃响应的测试方法。
二、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。
2、建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。
三、实验原理1、一阶系统阶跃响应性能指标的测试系统的传递函数为:()s()1C s KR s Ts φ=+()=模拟运算电路如下图:其中21R K R =,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.25,0.5,1。
记录实验数据,测量过度过程的性能指标,其中按照经验公式取3s t T=2、二阶系统阶跃响应性能指标的测试系统传递函数为:令ωn=1弧度/秒,则系统结构如下图:二阶系统的模拟电路图如下:在实验过程中,取22321,1R C R C ==,则442312R R C R ζ==,即4212R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,1;记录所测得的实验数据以及其性能指标,其中经验公式为3.5%100%,s net σζω=⨯=.四、试验设备:1、HHMN-1型电子模拟机一台。
2、PC机一台。
3、数字万用表一块。
4、导线若干。
五、实验步骤:1、熟悉电子模拟机的使用,将各运算放大器接成比例器,通电调零。
2、断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。
3、将D/A输出端与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。
自动控制原理课程实验报告实验题目:线性系统的频率响应分析1.实验目的:1.熟悉并掌握TD-ACC+设备的使用方法及各典型环节模拟电路的构成方法。
2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响2.实验仪器:PC机一台,TD-ACC+实验系统一套。
3.基本原理、内容、结果及分析:3.1基本原理1.频率特性:当输入正弦信号时,线性系统的稳态响应具有随频率( ω由0 变至∞) 而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。
2.线性系统的频率特性:系统的正弦稳态响应具有和正弦输入信号的幅值比|Φ(jω)|和相位差∠Φ(jω)随角频率(ω由0 变到∞) 变化的特性。
而幅值比|Φ(jω)|和相位差∠Φ(jω)恰好是函数Φ(jω)的模和幅角。
所以只要把系统的传递函数Φ(s),令s=jω,即可得到Φ(jω)。
当ω由0到∞变化时,|Φ(jω)|随频率ω的变化特性成为幅频特性,∠Φ(jω)随频率ω的变化特性称为相频特性。
幅频特性和相频特性结合在一起时称为频率特性。
3.频率特性的表达式(1) 对数频率特性:又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。
这两组曲线连同它们的坐标组成了对数坐标图。
对数频率特性图的优点:①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。
②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。
③通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。
一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。
2. 掌握典型环节的数学模型及其在控制系统中的应用。
3. 熟悉控制系统的时间响应和频率响应分析方法。
4. 培养实验操作技能和数据处理能力。
二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。
本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。
2. 控制系统:开环控制系统和闭环控制系统。
3. 时间响应:阶跃响应、斜坡响应、正弦响应等。
4. 频率响应:幅频特性、相频特性等。
三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用示波器观察并记录各个环节的阶跃响应曲线。
- 分析并比较各个环节的阶跃响应曲线,得出结论。
2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。
- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。
- 分析并比较各个环节的频率响应特性,得出结论。
3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。
- 使用示波器观察并记录二阶系统的阶跃响应曲线。
- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。
4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。
- 使用示波器观察并记录系统的稳态响应曲线。
- 计算并分析系统的稳态误差。
五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。
- 积分环节:K=1,阶跃响应曲线如图2所示。
成绩北京航空航天大学自动控制原理实验报告学院机械工程及自动化学专业方向工业工程与制造班级110715学号********学生姓名吕龙指导教师自动控制与测试教学实验中心实验一一、二阶系统的电子模拟及时域响应的动态测试实验时间2013.10.30 实验编号同组同学无一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2.学习在电子模拟机上建立典型环节系统模型的方法。
3.学习阶跃响应的测试方法。
二、实验内容1.建立一阶系统的电子模型,观测并记录不同时间常数T时的跃响应曲线,测定其过渡过程时间Ts。
2.建立二阶系统的电子模型,观测并记录不同阻尼比ζ时的跃响应曲线,测定其超调量σ%及过渡过程时间Ts。
三、实验原理1.一阶系统:系统传递函数为:模拟运算电路如图1-1所示:图1-1由图得:在实验当中始终取, 则,取不同的时间常数T分别为: 0.25、 0.5、1。
记录不同时间常数下阶跃响应曲线,测量纪录其过渡过程时 ts。
(取误差带)2.二阶系统:其传递函数为:令,则系统结构如图1-2所示:图1-2根据结构图,建立的二阶系统模拟线路如图1-3所示:图1-3取,,则及取不同的值, , ,观察并记录阶跃响应曲线,测量超调量σ%(取误差带),计算过渡过程时间Ts。
四、实验设备1.HHMN-1型电子模拟机一台。
2.PC 机一台。
3.数字式万用表一块。
4.导线若干。
五、实验步骤1. 熟悉HHMN-1 型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。
2. 断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。
3. 将与系统输入端连接,将与系统输出端连接。
线路接好后,经教师检查后再通电。
4.运行软件,分别获得理论和实际仿真的曲线。
5. 观察实验结果,记录实验数据,绘制实验结果图形,填写实验数据表格,完成实验报告。
六、实验结果1.一阶系统T 0.25 0.5 1R2/MΩ0.25 0.5 11 1 1实测值/s 0.76 1.55 3.03理论值/s 0.75 1.50 3.00响应曲线(1)T = 0.25:(2)T = 0.5:(3)T = 12.二阶系统0.25 0.5 1.0R4/MΩ 2 1 0.51 1 1实测40.5 16.0 0理论44.4 16.3 0 实测值/s 10.95 5.2 4.9理论值/s 14 7 4.7响应曲线(1)R4=2MΩ(2)R4=1MΩ(3)R4=0.5MΩ七、结果分析从得到的数据可以看出,不论是一阶还是二阶系统,实测值均与理论值有着或多或少的偏差。
实验二 系统频率特性的测定一、 实验目的1、掌握系统频率的测试方法、原理。
2、学会由开环系统对数频率特性,确定系统传递函数的方法。
二、 实验设备硬件设备:微机一台,示波器一台,AEDK-ACT 实验系统一套。
软件设备:Windows 2000操作平台,AEDK-ACT 系统集成操作软件。
三、 实验原理图1被测系统方框图系统(或环节)的频率特性G(j ω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角:G(j ω)=︱G(j ω)︱∠G(j ω)(1)本实验应用频率特性测试仪测量系统或环节的频率特性。
图1所示系统的开环频率特性为:G 1(j ω) G 2(j ω) H(j ω)= )E(j )B(j ωω=︱)E(j )B(j ωω︱∠)E(j )B(j ωω (2) 采用对数幅频特性和相频特性表示,则式(3—2)表示为:20lg ︱G 1(j ω) G 2(j ω) H(j ω) ︱= 20lg )E(j )B(j ωω=20lg ︱)B(j ω︱-20lg ︱)E (j ω︱ (3)G 1(j ω) G 2(j ω) H(j ω) = ∠)E(j )B(j ωω=∠)B(j ω- ∠)E (j ω (4)将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施加于被测系统的输入端[r (t )],然后分别测量相应的反馈信号[b (t )]和误差信号[e (t )]的对数幅值和相位。
频率特性测试仪测试数据经相关运算后在显示器中显示。
根据式(3)和式(4)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸上做出实验曲线:开环对数幅频曲线和相频曲线。
根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角确定频率特性(或传递函数)。
所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与确定的频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。
北京航空航天大学自动控制原理实验报告学院能源与动力工程学院专业方向飞行器动力工程班级 140416学号 ********学生姓名蓝健文实验一二阶系统的电子模拟及时域响应的动态测试一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。
2.学习在电子模拟机上建立典型环节系统模型的方法。
3.学习阶跃响应的测试方法。
二、实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T时的阶跃响应曲线,并测定其过渡过程时间,即调节时间 t s。
2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的阶跃响应曲线,并测定其超调量σ%及过渡过程时间 t s。
三、实验原理1、一阶系统系统传递函数为:ϕ(s)=C(s)R(s)=KTs+1模拟运算电路如图1所示:图 1 由图 1 得U0(s) U i(s)=(R2/R1)R2Cs+1=KTs+1实验当中始终取R2=R1,则K=1,T=R2C,取不同的时间常数T,T=0.25s、T=0.5s、T=1s,记录阶跃响应曲线,测量过渡过程时间 t s。
将参数及指标填在后面数据分析部分的表1中。
2、二阶系统其传递函数为:ϕ(s)=C(s)R(s)=ωn2s+2ζωn2s+ωn2令ωn=1 rad/s,则系统结构如图2所示:图 2根据结构图,建立的二阶系统模拟线路如图3所示:图 3取R2 C1=1 ,R3 C2 =1,则R4 R3=R4C2=12ζ及ζ=1 2R4C2ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1 ,观察并记录阶跃响应曲线,测量超调量σ% ,计算过渡过程时间 t s。
将参数及各项指标填入数据分析部分的表2中。
以上实验,配置参数时可供选择的电阻R值有100kΩ,470kΩ(可调),2.2MΩ(可调),电容C值有1μF,10μF。
四、实验设备1.数字计算机2.电子模拟机3.万用表4.测试导线五、实验步骤1. 熟悉HHMN-1 型电子模拟机的使用方法,将各运算放大器接成比例器,通电调零。
自动控制原理实验报告(II)一、实验名称: 频率响应测试二、画出系统模拟运算电路图, 并标出电阻、电容的取值1.模拟电路图各电阻、电容取值:R1=100KΩ R2=1MΩ R3=1MΩ R4=1MΩC1=0.1μF C2=0.1μF2.系统结构图系统理论传递函数为:R=100KΩ时G(s)=100s2+10s+100R=200KΩ时G(s)=200s2+10s+200三、画出两组李沙育图形图表 1 R=100KΩ w=9.5rad/s图表 2 R=200KΩ w=13.5rad/s五、根据实验数据计算两种系统的传递函数的参数并确定传递函数1.R=100KΩ时取第五组数据:由ω=9.5rad/s 时相角Ψ= 90° , 所以有ωn=ω=9.5rad/s又M=A cA r =12ξ= 1.025ξ=0.4878 故, 系统传递函数为:G(s)= ωn 2S2+2ξωn S+ωn2=90.25S2+9.76S+90.252.R=200KΩ时取第五组数据:由ω=13.5rad/s 时相角Ψ= 90° , 所以有ωn=ω=13.5rad/s又M=A cA r =12ξ= 1.44ξ=0.3472 故, 系统传递函数为:G(s)= ωn 2S2+2ξωn S+ωn2=182.25S2+6.9S+182.25六、误差分析1.R=100KΩ时ξ的误差为ξ%=0.4878−0.50.5×100%=−2.44%2.R=200KΩ时ξ的误差为ξ%=0.3472−0.50.5×100%=−30.56%从误差数据可以看出, 相对误差值较小, 在实验允许误差范围内, 分析可知, 误差来源有以下原因:温度引起电阻值的变化;接触部分接触电阻的影响;取点精确度影响等因素造成的扰动误差。
西南交通大学自动控制原理课程实验报告册
《自动控制原理》课程实验报告(一)
《自动控制原理》课程实验报告(二)
《自动控制原理》课程实验报告(三)
《自动控制原理》课程实验报告(四)
三、思考题
1. 参数在一定范围内取值才能使闭环系统稳定的系统称为条件稳定系统。
对于这类系
统可以通过根轨迹法来确定使系统稳定的参数取值范围,也可以适当调整系统参数或增加校正网络以消除条件稳定性问题。
对于下图所示条件稳定系统:
试问能否通过增加开环零极点消除系统条件稳定性问题,即对于所有根轨迹增益,根轨迹全部位于s左半平面,闭环系统稳定。
《自动控制原理》课程实验报告(五)
《自动控制原理》课程实验报告(六)
《自动控制原理》课程实验报告(七)
《自动控制原理》课程实验报告(八)
《自动控制原理》课程实验报告(九)。
实验名称:频率响应测试课程名称:自动控制原理实验目录(一)实验目的3(二)实验内容3(三)实验设备3(四)实验原理4(五)K=2频率特性试验结果4(六)K=2频率特性试验数据记录及分析7(七)K=5频率特性试验结果9(八)K=5频率特性试验数据记录及分析12(九)实验总结及感想错误!未定义书签。
图片目录图片1 系统结构图3图片2 系统模拟电路3图片3 K=2仿真对数幅相特性曲线4图片4 K=5仿真对数幅相特性曲线4图片5 f=0.7时输出波形及李沙育图形5图片6 f=1.4时输出波形及李沙育图形5图片7 f=2.1时输出波形及李沙育图形5图片8 f=2.8时输出波形及李沙育图形5图片9 f=3.5时输出波形及李沙育图形6图片10 f=4.2时输出波形及李沙育图形6图片11 f=4.9时输出波形及李沙育图形6图片12 f=5.6时输出波形及李沙育图形6图片13 f=6.3时输出波形及李沙育图形7图片14 f=7.0时输出波形及李沙育图形7图片15 k=2拟合频率特性曲线9图片16 f=0.9波形及李沙育图形9图片17 f=1.8波形及李沙育图形10图片18 f=2.7波形及李沙育图形10图片19 f=3.6波形及李沙育图形10图片20 f=4.5波形及李沙育图形10图片21 f=5.4波形及李沙育图形11图片22 f=6.3波形及李沙育图形11图片23 f=7.2形及李沙育图形11图片24 f=8.1波形及李沙育图形11图片25 f=9.0波形及李沙育图形12图片26 k=2拟合相频特性曲线14图表目录表格1 K=2电路元件参数7表格2 K=2实测电路数据处理7表格3 K=5电路元件参数12表格4 K=5实测电路数据处理12频率响应测试(一) 实验目的1. 掌握频率特性的测试原理及方法。
2. 学习根据所测定出的系统的频率特性,确定系统传递函数的方法。
(二) 实验内容测定给定环节的的频率特性,系统模拟电路、结构图分别如下所示:图片1系统结构图由图可知,系统的传递函数为:2100()10100k G s s s k =++,其中1Rk R =,实验中R 的取值分别为200k Ω,500k Ω,且1R 始终为100k Ω。