外力作用下的振动
- 格式:ppt
- 大小:2.34 MB
- 文档页数:30
受迫振动运动方程
受迫振动运动方程描述了一个振动系统在外力作用下的运动。
一般来说,受迫振动系统的运动方程可以写成如下形式:
m * d²x/dt² + c * dx/dt + k * x = F(t)
其中,m是系统的质量,x是系统的位移,t是时间,F(t)是外力的函数,c是阻尼系数,k是弹性系数。
这个方程可以通过牛顿第二定律推导得到。
m * d²x/dt²表示质量m 的加速度,c * dx/dt表示阻尼力,k * x表示弹性力,F(t)表示外力。
受迫振动运动方程的解可以通过求解这个微分方程得到。
具体的解法取决于外力的形式和系统的特性。
常见的外力形式包括正弦函数、余弦函数、阶跃函数等。
受迫振动系统的运动方程在物理学和工程学中有广泛的应用,例如描述弹簧振子、电磁振子等。
解析求解这个方程可以帮助我们理解振动系统的行为和性质。
单摆(2课时)【教学目标】:1.知识与技能(1)知道什么是单摆,能从理想化的角度去理解单摆的结构(2)理解单摆振动的回复力来源及做简谐运动的条件,能从力的作用效果的观点去分析回复力,并且采用近似法表达单摆的回复力x L mg F -=。
(3)知道单摆的周期和什么因素有关,掌握单摆振动的周期公式,并能用公式解题。
2.过程与方法:通过猜想和实验,培养探究物理问题的能力,概括出影响周期的因素,并且能用实验周期公式来测量重力加速度【教学重点】:掌握好单摆的周期公式及其成立条件【教学难点】:单摆回复力的分析【教学器材】:两个单摆(摆长相同,质量不同),单摆课件【教法学法】:读书指导,猜想证明,实验对比,计算机辅助教学问题【教学过程设计】:第1课时1、 引入新课在前面我们学习了弹簧振子,知道弹簧振子做简谐运动。
那么:物体做简谐运动的条件是什么?答:物体做机械振动,受到的回复力大小与位移大小成正比,方向与位移方向相反。
今天我们学习另一种机械振动——单摆的运动2、 新课教学【板书】:单摆模型:阅读课本P12第2段,思考:什么是单摆?(学生阅读毕,出示三个摆——一为橡皮绳、一为粗麻绳,一根绳很短而球很大,问:以下三个摆是否是单摆?)均不是,若为橡皮绳,则绳的伸长不可忽略;若为粗麻绳,则绳的质量不可忽略;若绳太短而球很大,则绳长不是远大于小球直径。
为什么对单摆有上述限制要求呢?教师指出:线的伸缩和质量可以忽略——使摆线有一定的长度而无质量,质量全部集中在摆球上;线长比球的直径大得多,可把摆球当作一个质点,只有质量无大小,悬线的长度就是摆长.通过上述学习,我们知道单摆是实际摆的理想化的物理模型.因此,一根细线上端固定,下端系着一个小球,如果悬挂小球的细线的伸长和质量可以忽略,细线的长度又比小球的直径大得多,这样的装置就叫单摆。
(教师拿出单摆展示,同时演示单摆振动,介绍单摆的构成)物理上的单摆,是在一个固定的悬点下,用一根不可伸长的细绳,系住一个一定质量的质点,在竖直平面内摆动。
机械振动原理的例子机械振动原理是指物体在受到外力作用下,发生周期性的振动运动。
这种振动运动在我们的日常生活中随处可见,比如钟摆的摆动、汽车的震动、电动牙刷的震动等等。
下面,我将列举一些机械振动原理的例子,以便更好地理解这一原理。
1. 钟摆:钟摆是一种简单的机械振动系统,它由一个重物和一根细长的线组成。
当重物被拉到一侧时,它会受到重力的作用而开始摆动。
这种摆动是周期性的,即重物会在一定的时间内来回摆动。
2. 弹簧振子:弹簧振子是由一个弹簧和一个质点组成的振动系统。
当质点受到外力作用时,它会开始振动。
这种振动是周期性的,即质点会在一定的时间内来回振动。
3. 摩擦振动:摩擦振动是指两个物体之间的摩擦力引起的振动。
比如,当你用手指在桌子上摩擦一支笔时,笔尖会发出嗒嗒的声音,这就是摩擦振动的表现。
4. 汽车震动:汽车在行驶过程中会受到路面的不平整和发动机的震动等因素的影响,从而产生震动。
这种震动是周期性的,即汽车会在一定的时间内来回震动。
5. 电动牙刷:电动牙刷是一种利用电机产生振动的设备。
当电机转动时,它会带动牙刷头来回振动,从而起到清洁牙齿的作用。
6. 摆锤式振动器:摆锤式振动器是一种利用摆锤产生振动的设备。
当摆锤受到外力作用时,它会开始摆动,从而产生振动。
7. 风琴:风琴是一种利用气流产生振动的乐器。
当气流通过风箱时,它会带动风琴簧片来回振动,从而产生音乐。
8. 摇摆式振动器:摇摆式振动器是一种利用摇摆产生振动的设备。
比如,当你在游泳池里摇摆一个浮球时,它会产生周期性的振动。
9. 摩托车震动:摩托车在行驶过程中会受到路面的不平整和发动机的震动等因素的影响,从而产生震动。
这种震动是周期性的,即摩托车会在一定的时间内来回震动。
10. 摆线驱动器:摆线驱动器是一种利用摆线轮产生振动的设备。
当摆线轮受到外力作用时,它会开始摆动,从而带动其他部件产生振动。
机械振动原理是一种普遍存在于我们生活中的物理现象,它不仅有着广泛的应用,而且对于我们理解物理学的基本原理也有着重要的意义。
物体振动有关知识点总结一、振动的基本概念振动是指物体在受外力作用下,围绕平衡位置或平衡形态做不规则往复运动的现象。
它包括简谐振动和非简谐振动两种。
简谐振动是指当物体受到一个恢复力与它的位移成正比时,它将做简谐振动。
而非简谐振动是指当物体的振幅很大或受到摩擦等非弹性力时,它将做非简谐振动。
二、物体振动的特征1. 幅度:振动物体在平衡位置附近往复运动的最大位移称为振幅。
2. 频率:振动物体单位时间内完成振动往复运动的次数称为振动频率。
3. 周期:振动物体完成一次往复运动所需的时间称为振动周期。
4. 相位:描述振动物体在振动往复运动过程中所处的位置状态的物理量。
三、振动的分类振动可以根据其运动形式、受力形式或系统形式进行分类。
1. 按运动形式分类:振动可以分为直线振动和旋转振动两种。
2. 按受力形式分类:振动可以分为简谐振动和非简谐振动两种。
3. 按系统形式分类:振动可以分为单自由度系统和多自由度系统两种。
四、振动的频率和周期振动频率是指单位时间内完成振动往复运动的次数,通常用赫兹(Hz)作为单位,频率的倒数即为振动周期。
振动频率与振动周期有密切的关系,它们分别可以用以下公式表示:\[f = \frac{1}{T}\]\[T = \frac{1}{f}\]其中,f表示振动频率,T表示振动周期。
振动频率与振动周期是振动的基本特征,可以描述物体振动的快慢和规律性。
五、振幅和相位1. 振幅是振动物体在平衡位置附近往复运动的最大位移,它是振动物体振动能量的大小。
2. 相位是用来描述振动物体在振动往复运动过程中所处的位置状态的物理量,通常用角度或弧度表示。
六、阻尼振动阻尼振动是指振动系统受到外界阻力作用而发生的振动现象。
阻尼振动可以分为过阻尼、临界阻尼和欠阻尼三种情况。
过阻尼是指振动系统具有很大的阻尼,振动会迅速减弱并趋于平衡。
临界阻尼是指振动系统的阻尼刚好能使振动系统在最短的时间内达到平衡状态。
欠阻尼是指振动系统的阻尼不足,振动系统会发生频繁的振荡。
外力作用下的振动一、知识点梳理1.固有频率如果振动系统不受外力作用,此时的振动叫固有振动,其振动频率称为固有频率. 2.阻尼振动(减幅振动(1)定义:振动物体克服摩擦和其他阻力做功,自己的能量逐渐减小,振幅也随着变小,振幅逐渐减小的振动叫阻尼振动.(2)对阻尼振动的理解:①同一简谐运动能量的大小由振幅大小确定.②阻尼振动振幅减小的快慢跟所受阻尼的大小有关,阻尼越大,振幅减小得越快.③物体做阻尼振动时,振幅虽不断减小,但振动的频率仍由自身结构特点所决定,并不会随振幅的减小而变化. 用力敲锣,由于锣受到空气的阻尼作用,振幅越来越小,锣声减弱,但音调不变④阻尼振动若在一段不太长的时间内振幅没有明显的减小,可以把它当做简谐运动来处理.(3)从振幅有无变化来分,振动可分为阻尼振动和无阻尼振动.例1.(多选)下列说法正确的是()A.阻尼振动必定有机械能损失B.物体做阻尼振动时,由于振幅减小,频率也随着减小C.物体做阻尼振动时,振幅虽然减小,但是频率不变D.做阻尼振动的物体,振动频率仍由自身结构特点决定例2.(多选)单摆在空气中振动,振幅逐渐减小,下列说法正确的是()A.机械能逐渐转化为其他形式的能B.后一时刻的动能一定小于前一时刻的动能C.后一时刻的势能一定小于前一时刻的势能D.后一时刻的机械能一定小于前一时刻的机械能3.受迫振动(1)驱动力:加在振动系统上的周期性外力,叫做驱动力(2)受迫振动:系统在驱动力作用下的振动(3)受迫振动的周期和频率物体做受迫振动时,振动稳定后的频率等于驱动力的频率,跟物体的固有频率无关4.自由振动像弹簧振子和单摆那样,物体偏离平衡位置后,它们就在自己的弹力或重力作用下振动起来,而不需要其他外力的推动,这种振动叫做自由振动.5.共振(1)共振:驱动力频率驱f 等于系统的固有频率固f 时,受迫振动的振幅最大,这种现象叫做共振(2)共振的条件: 驱f 固f ,即驱动力的频率与物体的固有频率相等(3)共振曲线如图所示,共振曲线的横坐标为驱动力的频率,纵坐标为受迫振动物体的振幅,共振曲线直观地反映出驱动力的频率对受迫振动物体振幅的影响,由共振曲线可知,当驱动力的频率与物体的固有频率相等时,受迫振动的振幅最大. (4)共振的利用与防止①利用:由共振的条件知,要利用共振,就应尽量使驱动力的频率与物体的固有频率一致,如:共振筛、荡秋千、共振转速计共鸣箱,核磁共振仪等.②防止:由共振曲线可知,在需要防止共振危害时,要尽量使驱动力的频率和固有频率不相等,而且相差越多越好,如:部队过桥应便步走.例3.(多选)如图所示,两个质量分别为M 和m 的小球,悬挂在同一根水平细线上,当M 在垂直于水平细线的平面内摆动时,下列说法正确的是( ) A .两摆的振动周期是相同的B .当两摆的摆长相等时,m 摆的振幅最大C .悬挂M 的竖直细线长度变化时,m 的振幅不变D .m 摆的振幅可能超过M 摆的振幅例4.(多选)如图所示,一根绷紧的水平绳上挂五个摆,其中A 、E 摆长均为l ,先让A 摆振动起来,其他各摆随后也跟着振动起来则( ) A .其他各摆振动周期跟A 摆相同 B .其他各摆振动的振幅大小相等C .其他各摆振动的振幅大小不同,E 摆的振幅最大D .B 、C 、D 三摆振动的振幅大小不同,B 摆的振幅最小二、技巧总结2.对共振现象的两点说明(1)从受力角度来看:振动物体所受驱动力的方向跟它的运动方向相同时,驱动力对它起加速作用,使它的振幅增大,驱动力的频率跟物体的固有频率越接近,使物体振幅增大的力的作用次数就越多,当驱动力的频率等于物体的固有频率时,它的每一次作用都使物体的振幅增加,从而振幅达到最大.(2)从功能关系来看:当驱动力的频率越接近物体的固有频率时,驱动力与物体运动一致的次数越多,驱动力对物体做正功越多振幅就越大.当驱动力的频率等于物体的固有频率时,驱动力始终对物体做正功,使振动能量不断增加,振幅不断增大,直到增加的能量等于克服阻尼作用损耗的能量,振幅才不再增加.3.微波炉原理微波炉的微波频率与水分子振动的固有频率2500MHz非常接近,因此,当微波照射到食物时,微波施加的驱动力使食物中的水分子做受迫振动,并且处于共振状态而剧烈振动,使食物的温度迅速升高,由于这种“加热”方式是从里到外同时发生的,所以比其他煮熟食物的方式更快捷.4.减振原理思路一是给被保护的物体加一层减振的阻尼材料(如泡沫塑料等),使冲击过程的机械能尽可能多地转化为阻尼材料的内能,减轻被保护物体受到的冲击作用. 思路二是在物体与外界冲击作用之间安装一个“质量一弹簧”系统,如果该系统的固有周期比外界冲击力的周期大很多,它不会及时地把该冲击力传递给物体,这种延缓的过程实际上对冲击力起到了平均的作用。
振动的受迫振动及其应用1. 受迫振动的概念受迫振动是指在外力作用下,振动系统产生的振动。
这种振动的特点是振动系统的运动规律与外力有关,而与初始条件无关。
受迫振动的产生原因主要有两种:一是外部激励,如周期性变化的力、位移或加速度等;二是内部约束,如弹簧、阻尼器等。
2. 受迫振动的特点受迫振动具有以下几个特点:1.振动频率:受迫振动的频率等于外部激励的频率。
2.振动幅度:受迫振动的幅度随外部激励的变化而变化。
3.相位差:受迫振动与外部激励之间的相位差取决于振动系统的特性。
4.阻尼效应:阻尼对受迫振动有显著影响,阻尼越大,振动幅度越小。
3. 受迫振动的研究方法受迫振动的研究方法主要有两种:理论分析和实验研究。
1.理论分析:通过建立振动方程,分析振动系统的动力学特性。
常用的理论分析方法有振动力学、弹性力学、振动控制等。
2.实验研究:通过实际测试,获取振动系统的动力学特性。
常用的实验研究方法有自由振动实验、受迫振动实验、频谱分析等。
4. 受迫振动的应用受迫振动在工程领域具有广泛的应用,以下列举几个典型应用:1.机械结构设计:通过分析受迫振动,可以评估机械结构的稳定性和疲劳寿命。
2.振动控制:通过控制受迫振动的幅度和频率,可以减轻振动对机械设备的影响。
3.传感器设计:受迫振动传感器可以用于测量外部激励的频率、幅度和相位差。
4.振动测量:受迫振动测量技术可以用于评估材料的弹性模量、阻尼系数等参数。
5.生物医学:受迫振动在生物医学领域有广泛应用,如超声波成像、振动治疗等。
5. 受迫振动的实例分析以一个简单的受迫振动实例进行分析:假设一个质量为m的物体,通过一个弹簧与地面连接。
弹簧的劲度系数为k,阻尼系数为c。
物体受到一个周期性变化的力F(t)作用,其频率为ω。
根据牛顿第二定律,物体受到的合力F_h(t)为:F_h(t) = F(t) - m * a(t)其中,a(t)为物体的加速度。
根据胡克定律和阻尼定律,可以得到物体受到的弹簧力和阻尼力分别为:F_s(t) = k * x(t)F_d(t) = c * v(t)其中,x(t)为弹簧的变形量,v(t)为物体的速度。
物体的震动原理物体的震动是指物体在外力作用下产生的周期性振动。
震动是一种能量的传递和转换过程,具有重要的物理和工程学意义。
物体的震动原理可以从能量和力的角度来解释。
首先,当一个物体受到外力作用时,外力将物体从平衡位置拉扯或推动,使物体发生位移。
在物体发生位移的同时,物体内的分子、原子和离子也会受到相应的位移,从而引起物体内部的应变。
位移和应变的产生使物体具有了势能。
当外力消失时,由于物体内部的弹性力的作用,物体将会恢复到初始位置。
在物体恢复的过程中,物体的势能被转化为动能,物体快速通过平衡位置并继续向另一方向运动。
如此重复下去,物体就会发生周期性的振动。
物体的震动需要满足一定的条件。
首先,物体必须有弹性。
只有具有一定的弹性才能使物体受到外力后能产生位移和应变,并具有一定的恢复能力。
其次,物体需要具有一定的质量。
质量越大,物体的惯性越大,对外力的影响越小,从而使震动更加明显。
物体的震动还与其固有频率有关。
固有频率是指物体在无外界干扰下自由振动的频率。
物体的形状、材料和弹性模量等因素决定了其固有频率。
当外力的频率接近物体的固有频率时,物体会发生共振现象,使物体的振动幅度增大。
物体的震动还受到阻尼的影响。
阻尼是指震动过程中能量的损失。
阻尼的存在导致物体的振动逐渐减弱,最终停止。
阻尼分为无阻尼、强阻尼和弱阻尼三种类型。
无阻尼情况下,物体的振动会持续下去;强阻尼情况下,物体的振动会迅速衰减;弱阻尼情况下,物体的振动会逐渐衰减。
物体的震动是一种能量的传递和转换过程。
外力对物体的作用将能量传递给物体,使物体具有了势能。
随着物体的振动,势能和动能不断交换,能量在物体中传递并最终耗散。
物体的能量损失与阻尼、摩擦等因素有关。
物体的震动不仅在物理学中有重要的研究价值,而且在工程学中也有广泛的应用。
例如,地震是地球内部能量释放的结果,对人类社会造成了严重的灾害。
对地震的研究可以帮助我们更好地了解地球的内部结构和构造。
另外,工程结构的震动也需要进行评估和设计,以确保结构的安全性。
外力作用下的振动【学习目标】1.知道什么是阻尼振动和阻尼振动中能量转化的情况。
2.知道做受迫振动物体的振动频率跟固有频率无关,而等于驱动力的频率。
3.知道共振以及发生共振的条件,知道共振的应用和防止的实例。
4.会用单摆测定重力加速度.5.学会用公式法和图像法处理实验数据.【要点梳理】要点一、振动的分类1.振动的分类按振子受力的不同可将振动分为:(1)自由振动(又称固有振动).回复力是系统内部的相互作用力.弹簧振子的弹力是系统内部的力,单摆的重力的切向分量也是系统内部的力.(2)阻尼振动.系统受到摩擦力或其他阻力.系统克服阻力的作用要消耗机械能.因而振幅减少,最后停下来,阻尼振动的图像如图所示.要点诠释:物体做阻尼振动时,振幅虽不断减小,但振动的频率仍由自身结构特点所决定。
并不会随振幅的减小而变化.例如:用力敲锣,由于锣受到空气的阻尼作用,振幅越来越小,锣声减弱,但音调不变.(3)受迫振动.如系统受到周期性外力的作用,就可以利用外力对系统做功,补偿系统因阻尼作用而损失的能量,使系统持续地振动下去.这种周期性的外力叫驱动力.系统在驱动力作用下的振动叫受迫振动.2.受迫振动的频率系统做受追振动的频率总是等于驱动力的频率,与系统的固有频率无关.3.共振系统做受迫振动时,如果驱动力的频率可以调节,把不同频率的驱动力先后作用于同—个振动系统,其受迫振动的振幅将不同,如图是共振曲线图.驱动力频率f等于系统的固有频率f0时,受迫振动的振幅最大,这种现象叫做共振.要点诠释:驱动力频率接近物体的固有频率时,受迫振动的振幅最大,这种现象叫做共振.要点二、共振的应用与防止1.共振的应用与防止(1)共振的应用:由共振的条件知,要利用共振就应尽量使驱动力的频率与物体的固有频率一致.如:共振筛、共振转速计、共鸣箱、核磁共振仪等.①共振筛:共振筛是利用共振现象制成的.把筛子用四根弹簧支起来,在筛架上安装一个偏心轮,就成了共振筛.偏心轮在发动机的带动下转动时,适当调节偏心轮的转速,可以使筛子受到的驱动力的频率接近筛子的固有频率,筛子发生共振,提高了筛选工作的效率.②共鸣箱:乐器发出的声音也作为驱动力使乐器箱内的空气做受迫振动.当满足共振条件时,箱内空气处于共振状态而有较大的振幅,这种声音的共振现象通常叫做共鸣.各种各样的乐器如小提琴、大提琴、二胡、琵琶……它们都有形状不同、构造各异的共鸣箱,靠箱内空气的共鸣,才发出洪亮、美妙、动听的声音.③在无线电接收技术中用到的电谐振,它是共振的另一种表现形式.(2)共振的防止:由共振曲线可知,在需要防止共振时,要尽量使驱动力的频率和物体振动的固有频率不相等,而且相差越多越好.要点诠释:如:部队过桥时,为避免周期性的驱动力使桥发生共振,应便步走.2.微波炉原理微波炉的微波频率与水分子振动的固有频率2500 MHz非常接近,因此,当微波照射到食物时,微波施加的驱动力使食物中的水分子做受迫振动,并且处于共振状态而剧烈振动,使食物的温度迅速升高.由于这种“加热”方式是从里到外同时发生的,所以比其他煮熟食物的方式更快捷.3.减振原理思路一是给被保护的物体加一层减振的阻尼材料(如泡沫塑料等),使冲击过程的机械能尽可能多地转化为阻尼材料的内能,减轻被保护物体受到的冲击作用.思路二是在物体与外界冲击作用之间安装一个“质量一弹簧”系统,如果该系统的固有周期比外界冲击力的周期大很多,它不会及时地把该冲击力传递给物体,这种延缓的过程实际上对冲击力起到了平均的作用.4.声音的共振现象(共鸣)如:取两个频率相同的音叉A 和B ,相距不远并排放在桌面上,敲击音叉A 的叉股,使它发声,过一会儿用手抓住音叉A 的叉股,可听到没有被敲的音叉B 在发声.说明B 受A 的驱动作用而发生了共振.声音的共振在乐器上应用很广泛,如小提琴、二胡等,通过共振现象,可以增加声强,改善音色.二胡、小提琴等弦乐器主要是由弦的振动带动周围空气振动而发声的. 二胡、小提琴等弦乐器都带有一个“箱子”,这是因为这些“箱子”中都有空气,当弦乐器中的弦振动发声时,对“箱子”中的空气柱有一个周期性的驱动力,使“箱子”中的空气柱也振动起来,改变“箱子”的大小和形状,就会改变空气柱的固有频率,当它的固有频率与驱动力的频率相同时,就会出现声音的共振现象——共鸣,使乐器中原来的声音变得洪亮动听,因此把这个“箱子”叫做共鸣箱.弦乐器的弦一般很细,与周围空气的接触面积很小,即使再强烈的弦振动,也搅动不了多少空气,所以它发出的声音也不会很强,但是,把弦的振动传给共鸣箱后,就能搅动许多空气,这样就把声音放大了.要点诠释:乐器的共鸣箱不仅有放大声音的作用,而且兼有改善音色的作用.如:音箱的固有频率在低音范围,演奏到某些音调时,由于共鸣的作用,发音可以很强,使音色浑厚动听.要点三、利用单摆测定重力加速度1.实验内容 (1)实验目的:利用单摆测定当地的重力加速度,巩固和加深对单摆周期公式的理解. (2)实验原理:单摆在偏角很小时,可看成简谐运动,其固有周期2T =,可得224l g T π=.据此,通过实验方法测出摆长l 和周期T ,即可计算得到当地的重力加速度值.(3)实验器材:铁架台及铁夹,金属小球(最好上面有一个通过球心的小孔),秒表,细线(1 m 左右),刻度尺(最小刻度为m m ). (4)实验步骤:①让细线穿过球上的小孔,在细线的一端打一个稍大一些的线结,制成一个单摆. ②将铁夹固定在铁架台上端,铁架台放在实验桌边,使铁夹伸出桌面之外,然后把单摆上端固定在铁夹上,使摆球自由下垂.③用刻度尺测量单摆的摆长(摆线静止悬挂时从悬点到球心间的距离).④把此单摆从平衡位置拉开一个角度,并使这个角不太大,再释放小球.当摆球摆动稳定以后,过最低位置时,用秒表开始计时,测量单摆全振动30次(或50次)的时间,求出1次全振动的时间,即单摆的振动周期.⑤改变摆长,反复测量三次,将算出的周期T 及测得的摆长l 代入公式224lg T π=,求出重力加速度的值,然后求g 的平均值. 2.实验数据的处理(1)平均值法:每改变一次摆长,将相应的l 和T 代入公式224lg Tπ=中,求出g 值,并最后求出g 的平均值.(2)图像法:由2T =,得224T l g π=,作出2T l - 图像,即以2T 为纵轴,以l 为横轴.其斜率24k gπ=,由图像的斜率即可求出重力加速度g .3.实验注意事项(1)选择材料时应选择细而不易伸长的线,比如用单根尼龙丝、丝线等,长度一般不应短于1m ,小球应选用密度较大的金属球,直径应较小,最好不超过2 cm .(2)单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在铁夹中,以免摆动时发生摆线下滑、摆长改变的现象.(3)注意摆动时控制摆线偏离竖直方向不太大,可通过估算振幅的办法掌握. (4)摆球摆动时,要使之保持在同一个竖直平面内,不要形成圆锥摆.(5)计算单摆的振动次数时,应以摆球通过最低位置时开始计时为好,以后摆球应从同一方向通过最低点时计数,要多测几次(如30次或50次)全振动的时间,用取平均值的办法求周期.4.误差的分析(1)本实验系统误差主要来源于单摆模型本身是否符合要求.即:悬点是否固定,是单摆还是复摆.球、线是否符合要求,振动是圆锥摆还是同一竖直平面内的振动以及测量哪段长度作为摆长等等.只要注意了上面这些方面,就可以使系统误差减小到远远小于偶然误差,达到忽略不计的程度.(2)本实验偶然误差主要来自时间(即单摆周期)的测量上.因此,要注意测准时间(周期),要从摆球通过平衡位置开始计时,并采用倒数计时计数的方法,不能多记或漏记振动次数.为了减小偶然误差,进行多次测量后取平均值.(3)本实验中长度(摆线长、摆球的直径)的测量时,读数读到毫米位即可(即使用游标卡尺测摆球直径也只需读到毫米位),时间的测量中,秒表读数的有效数字的末位在“秒”的十分位即可,秒表读数不需要估读.【典型例题】类型一、阻尼振动的理解例1.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法正确的是( ). A .能量正在消失 B .摆球机械能守恒C.只有动能和重力势能的相互转化D.总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能【思路点拨】分析小球在摆动中各力的做功情况,则可得出能量的转化情况.【答案】D【解析】根据能量守恒定律可知,能量不会消失,故A错误;由题意可知,摆球的机械能由于阻力做功越来越小,故机械能不再守恒,减小的机械能转化为周围的内能;故D 正确,BC错误。
选修3-4第十一章5外力作用下的振动本章的主要内容是介绍在外力作用下的振动现象。
首先,我们将讨论振动的驱动力和响应,并阐述如何描述外力对振动系统的影响。
然后,我们将重点讨论阻尼振动、周期受迫振动和谐振的特性及其应用。
1.振动的驱动力和响应在实际的振动系统中,外力是造成振动的主要原因之一、它可以通过直接施加在物体上的外力、通过传感器从外界感受到的力或通过其他物体传递给物体的力来实现。
我们将振动系统分为两个主要部分:外力和物体的响应。
物体对外力的响应是通过振动特性来描述的,尤其是位移、速度和加速度等。
2.外力对振动系统的影响外力对振动系统的影响可以通过振动的频率和幅度来描述。
它可以改变振动系统的固有频率和增加振动的幅度。
当外力的频率接近于振动系统的固有频率时,振幅将会达到最大值,这种现象称为共振。
在共振条件下,外力以最大的能量作用于振动系统,并引起振动幅度的大幅增加。
3.阻尼振动阻尼是指当物体在振动时,由于受到外界介质的粘滞阻力而逐渐减小振幅的过程。
根据阻力的大小和振动系统的特性,阻尼可以分为三种类型:强阻尼、临界阻尼和弱阻尼。
强阻尼下,振幅将会逐渐减小并趋向于零;临界阻尼下,振幅会最快地减小到零;弱阻尼下,振幅会逐渐减小至一些稳定值。
4.周期受迫振动周期受迫振动是一种在外力作用下具有周期性振动的现象。
在周期性受迫振动中,外力具有与振动系统固有频率相同或接近的频率。
当外力频率与固有频率相同或接近时,会产生共振现象,振幅显著增加。
周期受迫振动广泛应用于各个领域,如电子学中的共振电路和天线,以及结构动力学研究中的地震响应等。
5.谐振的特性和应用谐振是一种特殊的周期受迫振动,它表现出固有频率和最大振幅。
谐振的特性体现在三个方面:共振频率、最大振幅和相位差。
共振频率是使振幅达到最大的频率,最大振幅是在共振频率附近振幅最大的值,而相位差是指外力和物体响应之间的时间差。
谐振现象广泛应用于天线、音乐乐器、电子仪器和建筑结构等领域。