风电机组发电机故障分析诊断
- 格式:pdf
- 大小:263.86 KB
- 文档页数:2
风力发电机故障检修与处理摘要:随着我国社会的不断向前发展,各种资源面临短缺,人们对于可再生性清洁资源的使用重视程度越来越高。
风力发电是实现将可再生性风能资源有效转化成电力资源,为社会提供更加优质和充足的电能,推动整个社会快速向前发展。
在风力发电过程中需要使用到大量的风力发电机组,由于风力发电机组的系统构成相对比较复杂,在工作过程中转子叶片的转速会随着外部风速的变化而做出相应的调整。
基于此,本文将对风力发电机故障检修与处理对策进行分析。
关键词:风力发电机组;故障诊断;处理技术1 风力发电机的介绍风力发电机是把风能转换成机械能,机械能转换成电能的一种电力装置,通常由风轮、发电机、调向器、塔架以及储能装置等构件组成。
风力发电的原理可以做出如下阐述:风力驱动风车叶片转动过程,运用增速机去增加旋转速度,进而使发电机发电。
结合当前我国的风力发电机技术能力,大概是3m/s的微风速度就能开始进行并网发电。
2 风力发电机的常见故障2.1 变流器故障变流器是风力发电机的重要组件之一,其作用主要是在叶轮转速持续改变下调控输出端的电压水平,具体控制原理即是维持变流器内电压水平及频率和电网电压水平及频率的一致性。
通常而言,电流电压是造成变流器运行过程中发生故障问题的主要因素,在电流、电压过高的运行工况下,很容易使变流器设备发生过热现象,而电流电压过低则会导致欠电压现象,当发生以上异常状况时,便会造成变流器的开关超出设备正常运用可承受的电压电流极限范围,进而导致变流器出现运行故障,严重时发生被击穿损坏的情况。
当前,国内发电场配备的变流器设备运行期间主要采用两种散热方式,其一是风冷,其二是水冷,主要的散热作用对象是变流器柜体,这主要是由于柜体温度过高时,便会干扰内部热敏感元件及线路运行的稳定性,造成变流器运行异常。
2.2 发电机故障发电机的作用主要是实现自然能、机械能、电能之间的能量转换,最后通过电网把电能传输到用电客户应用。
风电机组最常见的故障解析在风电场干过运维的都知道,风电机组最常见的故障就是以下几种,小编整理出来,并附上故障分析,分享给大家。
1刹车盘的变形刹车盘先后出现较明显的变形,直接影响到了低风速下风电机组的并网运行,经与外方技术人员讨论后认为,刹车力矩偏大,刹车时间较短,产生的热量过于集中,先后将原先使用的15#液压油换为32#液压油,并换装了刹车阻尼管,延长了刹车动作到机组制动的时间,同时更换了卡钳式弹簧刹车体内的叠簧,降低了刹车力,通过上述改进,新更换的刹车盘,目前未出现变形现象。
同时,相对柔软的刹车过程,也大大降低了整个过程对齿轮箱的冲击载荷,刹车片的磨损也有所减轻,一定程度上节约了运行费用。
2液压油位低某台600kw 风电机组一段时间内接连报液压油位低故障,多次登机检查未发现渗漏部位。
经分析认为有可能齿轮箱内部的叶尖液压管路发生泄漏。
运行人员进一步检查该机组齿轮箱,发现润滑油油位偏高且油质改变,经油质化验发现润滑油粘度降低。
对齿轮箱内部液压管路进行的压力实验也发现管路存在轻微渗漏。
在对齿轮箱内部液压管路进行防渗处理之后,机组液压管路恢复正常。
由于故障的发现和处理较为及时,目测检查齿轮表面未发现异常现象,在重新更换润滑油后,机组投入正常运行。
3.偏航减速器常见故障处理偏航减速器的主要作用是驱动机舱旋转,跟踪风向的变化,偏航过程结束后又担任着部分制动机舱的作用。
工作特点是间歇工作起停较为频繁,传递扭矩较大,传动比高。
因其工作特点及安装位置限制,多采用蜗轮蜗杆机构或多级行星减速机构。
我场风电机组的偏航减速器较多采用的是多级行星减速机构。
由多年的运行经验来看,采用双偏航减速器驱动的风电机组,减速器的工作情况较为正常。
而采用单电机驱动的风电机组,减速器的工作情况相对较差。
经解体检查发现部分故障机组的行星机构存在疲劳裂纹或者断裂损坏。
比较典型的有-a.某型150kw 风电机组采用单侧偏航减速器驱动,约四分之。
风电机组故障诊断综述风电机组是利用风能来产生电力的设备,它在发电过程中具有高效、无污染的优点。
但是在长期运行过程中,风电机组也难免会出现各种故障,这些故障可能会影响发电效率,甚至导致设备的损坏。
因此对于风电机组的故障诊断至关重要。
本文将对风电机组故障诊断进行综述,介绍风电机组故障的常见类型、诊断方法以及发展趋势。
一、风电机组故障的常见类型1. 叶片故障风电机组的叶片是捕捉风能的关键部件,叶片的损坏会严重影响风力发电系统的性能。
常见的叶片故障包括裂纹、腐蚀、磨损等,这些故障会导致叶片形状变化、结构松动等问题。
2. 主轴故障主轴是风电机组的核心部件之一,主要承担叶片和风机的扭转力。
主轴故障包括轴承故障、主轴弯曲、主轴松动等,这些故障会导致风机转子的不稳定运行,进而影响整个发电系统的性能。
3. 发电机故障发电机是风电机组的电力转换部件,常见的故障包括绕组短路、轴承故障、发电机定子和转子绝缘损坏等,这些故障会导致发电机输出功率下降,甚至完全失效。
4. 控制系统故障风电机组的控制系统是保障风机安全运行和稳定发电的关键部件,常见的故障包括传感器故障、控制器故障、通信故障等,这些故障会引起风机异常运行、停机或者损坏。
二、风电机组故障诊断方法1. 振动分析振动信号是风电机组故障的重要特征之一,通过对风电机组在运行过程中的振动信号进行分析,可以判断风电机组各部件的运行状态。
振动分析方法包括频谱分析、波形分析、共振频率分析等。
3. 热像诊断风电机组各部件在运行过程中会产生不同的热量,通过红外热像技术可以对风电机组各部件的温度分布进行检测和诊断,判断是否存在异常热点,从而判断各部件的运行状况。
4. 数据分析风电机组在运行过程中会产生大量的数据,通过对这些数据进行采集和分析,可以了解风电机组各部件的运行状况,及时发现并诊断故障。
5. 综合诊断综合利用以上各种诊断方法,对风电机组进行综合诊断,从静态和动态两个方面全面了解风电机组的运行状态,及时判断和排除故障。
风力发电机故障诊断技术分析摘要:随着风电的发展,风机分布及风力机选型问题是风电场经营者必须考虑因素,尽可能地保证机组的发电能力,该试验不仅证实机组可以按照设计要求安全运行,同时也对其发电能力进行了验证,基于此,本文对风力发电机组常见运行故障以及风力发电机故障诊断技术的措施进行了分析。
关键词:风力发电;机组;故障诊断;故障预测1 风力发电机组常见运行故障1.1 叶片故障风力发电机组中叶片是其主要构件之一。
机组在工作过程中叶片将承受十分巨大的压力,由于机组全天候运作,因此叶片承受的压力会伴随在机组运行全程,是最容易出现故障的构件之一。
比如,叶片运行时会和蒸汽和空气接触,在压力的影响下会加快叶片腐蚀,从而出现陀螺的问题。
当叶片运作时间过长时,内部配件容易出现松动的问题,从而导致叶片连接不稳定,引发故障。
如果叶片受外力影响产生裂纹及形变,将释放出高频瞬态的声发射信号,此信号是叶片损伤评估的主要途径之一。
当叶片出现故障后,将导致叶片的转子受力失衡,此种受力会通过主轴传送到机组内部,从而导致机舱出现震动,轻者导致局部故障,重者导致机组基础失衡。
1.2 齿轮箱故障风力发电机组中齿轮箱的作用是连接机组主轴和发电机,可让主轴转速更快,一方面满足机组运行需求,另一方面提升经济效益。
齿轮箱中包含行星齿轮和两级平行齿轮两部分,由于齿轮箱工况恶劣,且运行中受力情况复杂,当机组处于运行状态时很容易对齿轮箱施加冲击力与交变应力,促使齿轮箱出现磨损、滑动等问题。
齿轮箱作为内部构件,大多数情况不暴露在空气中,因此发生故障的几率很小。
即便如此,齿轮箱仍然是故障诊断与异常排查的重要环节,这是因为齿轮箱故障后机组将无法运行,并且齿轮箱维修周期较长,且维修费用高昂,所以齿轮箱故障诊断是近年风电机组故障诊断的核心方向,是确保风电机组稳定运行的基础。
2 风力发电机故障诊断技术的措施2.1 实施高电压状态、低电压状态短时运行策略使双馈风力发电机组具备高电压穿越的能力;在以上措施的基础上,再增加如下技术措施:(1)当电网电压出现过低时,动态调节风力发电机的定子和网侧变频器GSC的无功功率,结合高阻抗电压的变压器,能将风机出口电压最大上调20%Un,让双馈风力发电机组在较低电压状态下短时运行;(2)当电网电压出现异常增高时,动态调节风力发电机的定子和网侧变频器GSC的无功功率,结合高阻抗电压的变压器,能将风机出口电压最大下调20%Un,让双馈风力发电机组在较高电压状态下短时运行;所述Un为风力发电机组额定电压。
风力发电机状态监测和故障诊断技术的研究与进展一、本文概述随着全球能源结构的转型和可再生能源的大力发展,风力发电作为一种清洁、可再生的能源形式,其地位日益凸显。
风力发电机(Wind Turbine,WT)作为风力发电系统的核心设备,其运行状态和性能直接影响到整个风电场的发电效率和经济效益。
因此,对风力发电机进行状态监测和故障诊断技术的研究,对于保障风电系统的安全稳定运行、提高发电效率、延长设备寿命具有重要的理论和实践价值。
本文旨在全面综述风力发电机状态监测和故障诊断技术的研究现状与发展趋势。
文章首先介绍了风力发电机的基本结构和工作原理,分析了风力发电机运行过程中可能出现的故障类型及其成因。
然后,重点阐述了当前风力发电机状态监测和故障诊断的主要技术方法,包括基于振动分析的故障诊断、基于声学信号的故障诊断、基于电气参数的故障诊断等。
对近年来新兴的和大数据技术在风力发电机故障诊断中的应用进行了详细介绍。
本文还总结了风力发电机状态监测和故障诊断技术的发展趋势和挑战,包括技术方法的创新、多源信息融合技术的应用、智能化和自动化水平的提升等。
文章展望了未来风力发电机状态监测和故障诊断技术的发展方向,以期为我国风电行业的健康发展提供理论支持和技术指导。
二、风力发电机的基本原理与结构风力发电机是一种将风能转化为机械能,再进一步转化为电能的装置。
其基本原理基于贝茨定律,即风能转换效率的理论最大值约为16/27,约为3%。
风力发电机主要由风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。
风轮是风力发电机的主要部件,一般由2-3个叶片组成。
风轮受风力作用而旋转,将风能转化为机械能。
风轮的转速随风速的变化而变化,为了保证发电机能够在风速变化的情况下稳定工作,需要通过增速机构提高风轮的转速。
发电机则将风轮旋转的机械能转化为电能。
发电机的类型有很多,如永磁发电机、电励磁发电机等,其选择取决于风力发电机的具体设计需求和运行环境。
浅谈风力发电机组齿轮箱常见故障分析及检测方法摘要:随着科技的不断发展,齿轮箱相关技术也在不断完善,混沌诊断识别法、油液分析法以及振动法等都是较为有效的故障诊断方式。
齿轮箱内部的诸多零部件,如轴承、齿轮、轴等,在齿轮运转的过程中都会以一定的频率振动,在这种情况下,点蚀就会出现在轴承上,或者由于一些其他因素,如磨损、高温等都会对轴承产生影响,不仅会造成轴承的过度消耗,还会抑制发电机组的运转。
故而,针对风力发电机组齿轮存在的故障展开分析与检测具有重要的现实意义。
关键词:风力发电机;齿轮箱;常见故障分析;检测前言:近些年来,我国风力发电范围不断增加,但是风电机组齿轮箱仍然存在一定的故障,影响了风电机组的正常运转。
为了有效降低风电机组的故障率,必须要做好风力发电机组齿轮箱轴承故障诊断,并探索可行的防控举措,进而保障风力发电机组齿轮箱的正常运行。
1风力发电机组齿轮箱结构轴承、传动部件、箱体以及润滑系统是齿轮箱的主要结构组成。
对于传动部件而言,其中同样有较多组成部件:输入轴、中间轴、输出轴、内齿圈、行星轮、行星架等。
齿轮箱会根据不同的使用需求采用不同的动力传动方式,主要有三类,分别为行星齿轮传动、定轴齿轮传动以及二者结合的组合传动。
齿圈轴通过箱体的支撑可以为输出轴提供叶轮的转动力,所以箱体必须要有较高的强度才可以承受住来自设备内外的载荷。
2齿轮箱故障分析方法齿轮箱含有较多零部件,其故障原因通常较为复杂,这就对工作人员的水平提出了较高的要求,工作人员不仅要具备较高的技术能力,还要在故障排查工作中足够细心,对转轴弯曲、轴面磨损、点蚀、共振等加以分析。
在深入了解故障特征的过程中,故障分析标准也是不可或缺的内容,工作人员应当根据相关标准采用合适的方法,最大程度地将振动过程中的数据收集起来,并且要对其中的重要参数如时域峰值、平均振动能量进行分析,这样才可以精确找到齿轮箱的故障问题所在。
频谱分析方法,实际上就是要求工作人员在齿轮箱振动过程中准确检测齿轮的外环固有频率、加速度信号以及啮合频率,通过这些参数来确定齿轮箱的问题。
浅谈风力发电机组振动状态监测与故障诊断摘要:随着科技的发展,风电机组单机容量变大,内部的结构越来越复杂,还会受到天气的不可控因素的影响,比如会受到下雨时,打雷闪电等,本文对风力发电机组振动状态监测与故障诊断进行分析,以供参考。
关键词:风力发电;机组振动;状态监测;故障诊断引言风能是自然界中常见的自然现象,特别是在经济不发达,风能资源丰富的山地地区。
考虑到风能对当前社会结构的重要性,它提高了风力发电机运行的可检测性,并允许在整个发电机组运行期间及时发现问题,使整个风力发电机运行更平稳和安全。
1概述近年来国内风电发展迅速,风电机组容量的提升能够有效提高风能利用率和施工效率以及降低后期运维成本。
在机组容量和体型逐渐增大的同时,风电机组的安全成为风电领域内研究的重点。
江苏某风电场安装了多台6.45MW机组,此类型机组是目前国内厂家生产新型大容量机组之一,此机组塔筒高度为110m,叶轮直径达到171m。
国外GE公司生产的12MW风机单支叶片更是长达107m。
机组容量增大的同时叶片也在不断增大。
风电机组叶片成本约占风电机组总成本的15%~20%,风电机组叶片在风电机组运行过程中受风力作用而产生较大的弹性形变,故通常选用质量较轻、强度较大、耐腐蚀、抗疲劳的材料来制作风电机组叶片。
此外,由于结冰或者风力和风向的突变导致叶片振动过大,从而超过设计载荷发生断裂或者扫塔的现象也时有发生,而振动检测是叶片故障识别的常用方法之一,所以研究大型风电机组的叶片振动情况,对于叶片安全检测和监测具有重要的意义,研究结果也可对风电机组的控制策略优化提供重要指导作用。
在风力发电机组中,齿轮箱也存在着异常问题,表面磨损,齿轮轻度裂纹,设备老化等问题,以下对论文展开叙述。
2风力发电机组安全系统2.1分析(1)安全有关停止功能在机组通过安全防护装置(如传感器)检测到风轮转速超过限值、扭缆超过限值、过度振动及控制系统失效等信号时,安全系统起动机组紧急制动进入停止状态。
风电机组发电机故障分析诊断
发表时间:2019-11-08T10:43:51.677Z 来源:《电力设备》2019年第14期作者:李拴生[导读] 摘要:近年来,人们的发电方式不断变化,从最初的烧煤发电,演变至现在的清洁能源发电,其中风力发电被人们广泛接受。
(山西龙源风力发电有限公司山西太原 030006) 摘要:近年来,人们的发电方式不断变化,从最初的烧煤发电,演变至现在的清洁能源发电,其中风力发电被人们广泛接受。
虽然风力发电减少着对大气的污染,但是由于其技术不够成熟,导致运行时频发故障。
本文从风力发电机组的概述出发,首先分析了风力发电机组的常见故障,最后探讨了风电机组发电机故障分析诊断措施,供同行参考。
关键字:风电机组发电机;故障分析诊断 1 风力发电机组的概述
1.1 风力发电机组的构成
风力发电机组是指将其他形式的能源,转变为电能机械设备,由风轮、对风装置、机头座和回转体、调速装置、传动装置、制动器、发电机等设备组成。
现阶段,风力发电机组在科技、农业生产、国防等方面都得以广泛应用。
发电机形式多样,但其原理都基于电磁力定律、电磁感应定律,因此其构造原则为:用合适的导电材料、导磁材料构成相互感应的电路和磁路,从而产生电磁功率,达到能量转换的效果。
1.2 风力发电机组的工作方式
在风力发电机组发电时,需要保证输出的电频率恒定。
这无论是对风光互补发电,还是风机并网发电而言,都是非常必要的。
要想保证频率恒定,一方面要保证发电机转速稳定,也就是恒频恒速的运行,因为发电机组经由传动装置运行,所以其必须保持恒定的转速,以免影响风能的转换效率。
另一方面,发电机的转动速度随着风速变化,借助其他手段保证电能频率恒定,也就是变速恒频运行。
风力发电机组的风能使用系数,和叶尖速比有着直接的关系,存在某些明确的叶尖速比,使CP值最大。
因此,在变速恒定运行的情况下,发电机和风力机的转动速度,虽然发生着某种变化,但是并不影响电能的输出频率。
1.3 风力发电的优势
由于风电属于新能源,无论是技术还是成本,都和传统的水电、火电存在巨大差异,因此其要想快速发展,需要政策给予足够的扶持。
分析得知,风力发电具有如下优势:(1)风是由大气受到太阳辐射引起的空气对流,可以说是太阳能的另外形式。
风能是自然界的产物,不需要进行任何加工,也不会污染大气环境,可以直接拿来使用。
相较于火力发电,其具备可再生、无污染的优势。
(2)现阶段,风力发电机组已能批量生产,特别是风力发电技术成熟的国家,2MW、5MW这种容量较高的机组,已正式投入运行。
相较之下,我国的风力发电发展空间较大。
(3)风力发电占地面积小,建设周期短,成本低,发电量大,可灵活用于不同环境下,不受地形限制。
而且,随着科学技术的发展,可实现远程控制。
2风电机组发电机故障统计
在设备出现故障需要进行检定时,一定要按统一规定来确定故障原因。
明确了各种故障发生的原因,就可以依据故障原因的不同进行统计,以便及时解决故障问题。
(1)机组故障数据统计。
笔者对达里风电场在一年度所出现的风电机组故障情况进行了统计,并把故障参数分别列了出来,例如停机台次、停机时间、损失电量比例等。
经分析得出,设备运行初期,传感器和液压系统故障相对较多,其次是机械系统、电气系统和控制系统故障。
工作一段时间之后,机械系统故障率开始增加。
(2)机组液压故障统计。
定桨距风电机组液压系统主要用于控制叶尖制动、机械刹车和系统动作。
笔者对一年达里风电场各风电机组出现液压故障的次数进行了统计,并对多种故障原因进行分析,得出以下结论机械刹车系统出现故障的次数比叶尖系统出现故障的次数少很多。
其中,叶尖压力最大时报警次数最多,但它对电量损失的影响相对较小。
电路断路器故障和叶尖液压系统故障出现的次数较多,但它们造成的电量损失都较大,因此应高度重视。
(3)机组机械故障统计。
风电机组功能主体是机械系统,它包括了大部分零部件,在工作中承受交变载荷,所以故障率相对较高,是风电机组检修和维护的主要对象。
机械系统故障会影响到机械刹车、齿轮箱、偏航系统、发电机以及叶尖机械结构等,主要故障形式是齿轮箱油温过高,其出现次数最多,造成电量损失较大。
这种故障一般是由润滑油选择不合理导致,它使齿轮箱工作过程中散发出大量的热量,这就要求要选择合适的润滑油也有可能是齿轮箱润滑系统散热装置设计不科学,致使热量不能及时排散引起的,这就要求重新设计和更换散热装置。
从维护和运行角度考虑,一定要采取有效的措施,严密维护和监视齿轮箱润滑系统散热装置,减少齿轮箱油温超标故障次数,从而确保风电机组的发电量。
(4)机组重大问题统计。
这里所说的重大问题,就是指风电机组出现了相当严重的故障,风电场现场检修人员和运行人员无法进行处理,一定要求助于综合素质较高的专业技术人员,甚至一定要把大型部件全部更换掉才能解决,这样会使机组长时间处于停机状态,从而导致电量损失较大。
这类故障包括齿轮箱损坏、叶片裂纹、轮毅裂纹、主控模块损坏等,通常情况下风电场不会存储这些备件,所以一旦出现相关问题,就必须去专业公司或设备生产厂家维修或采购。
整体来看,造成停机时间最长的是齿轮箱损坏,更换齿轮箱会造成相当大的电量损失。
前几年,叶片裂纹故障出现次数较多,可是叶片修补相对简单,所以电量损失较小。
除此之外,还存在其他重大故障,比如电控柜烧毁等,不过这只是个别案例,发生几率较小。
笔者通过对这类重大故障的统计得知,早期投运的风电机组主要问题是齿轮箱故障,其严重影响了风电机组的可靠经济运行,这就要求相关人员一定要对风电机组设计、制造、运行和管理的每个环节高度重视,运用特定的方法提升齿轮箱的运行监测技术和设计制造水平,进而确保风电机组齿轮箱运行的安全性和可靠性。
3风电机组发电机故障诊断方法
3.1基于解析模型的故障诊断法
在故障诊断刚起步时就开始应用这种故障诊断方法。
使用该方法时,必须有准确的数学模型。
该方法是把实测信息和模型输出信息进行分析对比,计算出实际输出和和理论输出之间的差值,根据对这些差值的分析、运算来进行故障分析诊断。
在运算过程中,参数与状态是难点,需要对系统比较了解的前提下计算出系统的精确数学模型。
在实际工况下,需要进行建模的生产设备具有不确定性,生产设备的模型会随着时间、温度和人为因素进行变化。
3.2基于信号处理的故障诊断法
这种方法把研究对象当作是一個黑盒子,只需要知道被控对象的输入和相应的输出信号对其进行建模,不需要知道具体的数学解析模型。
研究对象的输入信号,输出信号,可以通过传感器测量并记录下来。
使用信号特征向量提取方法提取信号的特征值,在建模阶段,可以通过建立特征值和故障之间的关系来建立对象的故障模型,然后把实时信号引入到模型中,通过信号分析来判断故障的种类和具体位置。
基于信号处理的故障诊断方法具有比较好的实时性,这种诊断方法有非常快的诊断速度,灵敏度高,而且容易实现。
但是缺陷很多,如:虽然诊断速度快,但是诊断精确度较低,极易出现故障的误判和漏判。
基于信号处理的故障诊断方法主要分为3种,分别是频谱分析法、信息融合法、小波变化法。
3.3基于神经网络的故障诊断法
基于神经网络的故障诊断有很多优点:神经网络的知识表达形式统一,经过归一化后,知识库管理容易,通用性强,便于移植扩展。
神经网络的知识获取容易实现,可以实现并行联想和自适应推理,而且容错能力强。
神经网络能够表示事物之间的复杂关系。
神经网络可以避免专家系统遇到的很多问题,比如:组合爆炸、无穷递归等问题。
神经网络推理过程简单,可以实现实时在线诊断。
神经网络在故障诊断的研究主要分为以下三个方向:(1)在模式识别方向。
神经网络可以作为故障分类器进行设备的故障分类。
(2)在预测方向。
用神经网络可以作为动态模型的设备的故障预测。
(3)在知识处理方向。
可以把神经网络和专家系统融合,建立混合故障诊断系统。
4结束语
综上所述,风力发电技术作为一种新兴技术,当前仍存在诸多问题,影响发电效率,引发安全事故。
因此,相关人员需要深入分析风电机组发电机故障诊断问题,采用有效措施进行处理,降低故障发生率,延长整个机组的使用寿命。
参考文献:
[1]崔锐,李晓江,石敏,等.1.5 MW直驱式风力发电机组建模与仿真[J].能源与节能,2016,21(9):58-59,72.
[2]王子佳.基于S能量熵的直驱式风电机组故障诊断方法[J].科技资讯,2016,14(29):36-39.。