基于Ansys Workbench的圆柱销接触分析
- 格式:docx
- 大小:826.03 KB
- 文档页数:14
基于ANSYS软件的接触问题分析及在工程中的应用基于ANSYS软件的接触问题分析及在工程中的应用一、引言接触问题是工程领域中常见的一个重要问题,它在很多实际应用中都具有关键作用。
接触分析能够帮助工程师设计和改进各种产品和结构,从而提高其性能和寿命,减少故障和事故的发生。
ANSYS作为一款强大的工程仿真软件,提供了多种接触分析方法和工具,为工程师们解决接触问题提供了便利。
本文将重点介绍基于ANSYS软件的接触问题分析方法和其在工程中的应用。
二、接触问题的分析方法接触问题的分析方法主要包括两种:解析方法和数值模拟方法。
解析方法基于一系列假设和理论分析,能够给出理论解析解,但局限于简单的几何形状和边界条件。
数值模拟方法通过建立几何模型和边界条件,利用数值计算的方法求解接触过程的力学行为和变形情况,可以适用于复杂的几何形状和边界条件。
ANSYS软件采用的是数值模拟方法,它基于有限元法和多体动力学原理,可以使用接触元素来建立模型,模拟接触过程中的相互作用,得到接触点的应力、应变以及变形信息,从而分析接触的性能和行为。
接下来将介绍ANSYS软件中的接触分析方法和其在工程中的应用。
三、接触分析方法1. 接触元素:ANSYS软件提供了多种接触元素供用户选择,包括面接触元素、体接触元素和线接触元素。
用户可以根据具体的接触问题选择合适的接触元素,建立几何模型来模拟接触行为。
2. 接触定义:在ANSYS软件中,用户可以通过定义接触性质、接触参数和接触约束来描述接触问题。
接触性质包括摩擦系数、接触行为模型等;接触参数包括接触初始状态、接触刚度等;接触约束包括接触面间的约束条件等。
3. 接触分析:通过在ANSYS软件中建立模型,定义接触参数和加载条件,进行接触分析,得到接触点的应力、应变和变形信息。
可以通过分析结果来评估接触性能,发现可能存在的问题,并进行改进和优化。
四、ANSYS软件在工程中的应用1. 机械工程领域:在机械工程中,接触问题广泛存在于各种设备和结构中,如轴承、齿轮、支撑结构等。
前面一篇基于Ansys经典界面的接触分析例子做完以后,不少朋友希望了解该例子在Workbench中是如何完成的。
我做了一下,与大家共享,不一定正确。
毕竟这种东西,教科书上也没有,我只是按照自己的理解在做,有错误的地方,恳请指正。
1.问题描述一个钢销插在一个钢块中的光滑销孔中。
已知钢销的半径是0.5 units, 长是2.5 units,而钢块的宽是4 Units, 长4 Units,高为1 Units,方块中的销孔半径为0.49 units,是一个通孔。
钢块与钢销的弹性模量均为36e6,泊松比为0.3.由于钢销的直径比销孔的直径要大,所以它们之间是过盈配合。
现在要对该问题进行两个载荷步的仿真。
(1)要得到过盈配合的应力。
(2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。
2.问题分析由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。
进行该分析,需要两个载荷步:第一个载荷步,过盈配合。
求解没有附加位移约束的问题,钢销由于它的几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。
第二个载荷步,拔出分析。
往外拉动钢销1.7 units,对于耦合节点上使用位移条件。
打开自动时间步长以保证求解收敛。
在后处理中每10个载荷子步读一个结果。
本篇只谈第一个载荷步的计算。
3.生成几何体上述问题是ANSYS自带的一个例子。
对于几何体,它已经编制了生成几何体的命令流文件。
所以,我们首先用经典界面打开该命令流文件,运行之以生成四分之一几何体;然后导出为一个IGS文件,再退出经典界面,接着再到WORKBENCH中,打开该IGS文件进行操作。
(3.1)首先打开ANSYS APDL14.5.(3.2)然后读入已经做好的几何体。
从【工具菜单】-->【File】-->【Read Input From】打开导入文件对话框找到ANSYS自带的文件\Program Files\Ansys Inc\V145\ANSYS\data\models\block.inp【OK】后四分之一几何模型被导入,结果如下图(3.3)导出几何模型从【工具菜单】】-->【File】-->【Export】打开导出文件对话框,在该对话框中设置如下即把数据库中的几何体导出为一个block.igs文件。
前言WokBench 是众所周知的好东西,以下是自己琢磨的一个小应用,肯定有不对的地方,欢迎指出,便于大家共同提高。
问题描述这是一个塑料小卡扣的例子,主要想使用WorkBench 了解在使用中,塑料件的变形是否足够。
模型是用ProE 制作的,为了简化,只切取了关于变形的部分,如下图:其中蓝色的部分是活动的,只有一个方向的运动,红色的部分是固定的。
大体的尺寸如下,单位是毫米:注意:在模型中,蓝色和红色部件的距离要控制好(这是由ProE 中,模型装配关系决定的),如果太近,软件将自动计算出一个接触区域,但对于这个例子,还需要手动扩大接触区域。
如果距离太远,在手动设置Pinball 类型的接触区域时,Pinball 的半径要设得很大,可能导致无法计算。
请参考上面的尺寸图纸调节两个部件之间的距离。
之后,设置接触面(2、3):需要将两个部件在运动过程中,会接触的地方一一标出,千万不要加无用的面。
将Pinball Region 设置为Radius 方式(4),并将Radius 设置一个合适的值(5),本例设置了3 毫米(如图,会形成一个蓝色的大圆球),求解的时候软件会使用这个PinBall 自动探测接触。
还需要将接触方式设置为无摩擦的(6)。
最后将接触面计算方式设置为Adjust To Touch(7)。
也可以尝试其他的方式,不过对于这个仅研究红色部件变形的例子就无所谓了。
关于单元格WorkBench 中可以不自行划分单元格(在解算的时候,如果没有手动的设置,软件就会先自动划分),软件帮你自动产生。
如果你的其他设置正确,即便是这个自动的值也能很精确了。
添加分析这个分析用静力学就可以了(1)。
之后要设置Analysis Setting(2)。
将Nuber Of Step 设置为2(3)。
注意:1)蓝色部件在运动的过程中,先压迫红色部件,再逐渐松开,因此必须将这个过程至少分解为至少两个阶段(阶段指“Step”)。
基于ANSYS的圆柱直齿轮接触应力分析摘要:根据轮齿齿廓的数学模型,在ANSYS环境下建立了轮齿平面有限元模型,并进行了应力分析计算.与传统的方法相比,有限元分析法能准确地获得齿轮的真实应力场,为齿轮强度计算提供了可靠的依据.通过实例阐述了直齿轮的建模方法,并介绍了具体的设计原理,将生成的一对齿轮进行标准安装生成啮合模型。
通过ANSYS转化成由节点及元素组成的有限元模型,运用完全牛顿-拉普森方法进行接触应力的静力学求解,并介绍了算法原理。
说明了新的接触单元法的精确性、有效性和可靠性。
关键词:齿轮Ansys 接触应力接触分析有限元Based on the ANSYS spur gear contact stress analysisAbstract: According to the mathematic model of a tooth profile of gear,the finite element model of a flat of gear tooth was established under the environment of ANSYS and the stress of a gear tooth was analyzed and caculated by means of finite element method. The real stress field of gear obtained by finite element method was more accurate than that obtained by traditional method.Therefore,it can provide the dependable basis for strength calculation of teeth of the gear.The method of modeling of spur gear is illustrated by an example. The concrete design principles are introduced as well.A constructed pair of gears is fixed normatively to give birth to gear model. By way of ANSYS,the gear model is transformed to the finite element model consisting of nodes and elements. Then NR method is used to get the statics solution by contact stress,and the arithmetic principle is introduced. The new contact element method proposed in the thesis is proved to be precise,valid and reliability. Keyword:gear Ansys contact stress contact analysis finite element0 引言齿轮传动是机械传动中最广泛应用的一种传动,它具有效率高、结构紧凑、工作可靠、寿命长等优点。
基于ANSYS Workbench对圆柱面过盈配合接触应力的研究李亚洲;汤易升;陈炜;张西正【摘要】利用有限元分析软件ANSYS Workbench,模拟空心轴与包容件的过盈配合过程,通过改变单一因素的实验方法,分析圆柱面过盈配合中接触应力分布情况和各个因素的关系.本文分析了过盈量、包容件外径、接触宽度、轴向拉力和压力的影响因素.对实验结果进行分析得出如下结论:轴和包容件的接触区域的最高等效应力区,受到边缘效应的影响,最高应力集中区出现在端部边缘处.包容件在靠近边缘的中间部位出现低应力区域.空心轴表面的应力值呈现出从一端到另端逐渐增加的现象.%Using finite element analysis software ANSYS Workbench,the simulation of the hollow shaft and containing a process,by changing the single factor experiment method,analysis of interference fit of cylinder is contact stress distribution and the relationship between the factors.The interference are analyzed in this paper,the quantity,inclusive a diameter,contact width,the influence factors of axial tension and stress.Analysis of experimental results the following conclusions:shaft and tolerance of contact area of the maximum equivalent stress area,under the influence of edge effect,high stress,high in the end edge.Containing a appears near the edge of the middle low stress area.On the surface of the hollow shaft stress value present a growing phenomenon from one end to the other end.【期刊名称】《天津理工大学学报》【年(卷),期】2017(033)003【总页数】5页(P1-5)【关键词】过盈配合;有限元;影响因素;等效应力【作者】李亚洲;汤易升;陈炜;张西正【作者单位】天津理工大学机械工程学院天津市先进机电系统与智能控制重点实验室,天津300384;天津理工大学机械工程学院天津市先进机电系统与智能控制重点实验室,天津300384;天津理工大学机械工程学院天津市先进机电系统与智能控制重点实验室,天津300384;军事医学科学院卫生装备研究所,天津300161;天津理工大学机械工程学院天津市先进机电系统与智能控制重点实验室,天津300384;军事医学科学院卫生装备研究所,天津300161【正文语种】中文【中图分类】TH140过盈连接普遍采用的方法是热胀冷缩或强力压入将有过盈量的两个接触面装配到一起[1-6].在接触面上会产生很大的径向力.在过盈连接承受轴向力和扭矩时,接触区域将产生相应的摩擦力与力矩来抵御外部施加的力和力矩[7-8].过盈连接是一种半永久性连接.它有很多优点,结构简单,生产成本低,消除了焊接产生局部应力,零部件容易产生局部疲劳与断裂的缺点,也解决了部分金属材料和机械结构进行螺纹加工困难的问题,常用于薄壁件连接处(不易加工螺纹),具有良好的对中性,应力分布相对比较均匀,承载能力强,结构紧凑美观等优点[9].现阶段对过盈配合的研究,已经在很多方面进行了.有从过盈连接的接触面变形类型来研究的,将过盈面的的变形分为弹性变形和塑性变形两个阶段进行不同的研究[10].弹形是指在过盈连接件,拆卸后,原先的接触面能够恢复到原有的直径不发生永久性变形.塑性变形,接触表面的材料受到很大的力,超出其强度极限,导致接触面发生了永久性变形.另一种研究分类,将过盈连接的研究,根据接触面的形状不同,分为圆锥面和圆柱面[11]对圆柱面的研究相对比较多,主要研究领域集中在轴和轮毂配合方面,研究方法普遍采用弹性力学与材料力学的理论公式进行推导计算.应用传统的经典弹性力学,可以解决轴和包容件的应力特性问题.但随着工程研究的深入,人们需要更加直观和准确研究接触区域的非线性力学问题.一些学者提出了对过盈连接应力分布影响因素的研究.由于经典的弹性力学方法已经不再适用,无法满足对过盈配合区域的直观的定性分析.现阶段普遍采用的研究方法是将数值计算的方法引入到对过盈连接影响因素的研究中.随着有限元分析的方法的发展,很多学者利用有限元分析软件,对过盈配合面进行应力分析,能更加准确、直观、细致的分析出过盈配合的变形过程[12].本文利用有限元分析软件ANSYS Workbench,通过控制单一变量的方法,对过盈链接的影响因素进行了研究,得到每个单变量因素对接触区域应力分布的影响、应力值的影响规律.建立的有限元模型,材料选择为结构钢,空心轴总长为30 mm,外径为Φ48 mm,内径为Φ40 mm;轴套总长为Φ30 mm,基本配合外径为Φ40 mm,过盈量大小取(0.042 mm,0.059 mm,0.076 mm)内径为Φ32 mm轴和轴套均采用合金钢材,其材料常数为:弹性模量E=2.01×109Pa,泊松比ν=0.27,材料密度ρ=7 800 kg/m3.模型的建立采用中间格式倒入的方法,首先在Solid works 里建立空心轴与包容件的模型,利用中间格式导入到ANSYS Workbench软件中进行过盈配合的模拟装配.模拟装配过程如图1所示.利用Solid works建立图1a三维模型,将建立的三维模型转化为中间格式x-t的文件,导入到ANSYS Workbench中,后对网格属性,材料属性进行设置,进行网格的划分得到图1b.网格划分完成,对包容件施加约束和位移加载,方法,对包容件端部固定,同时对空心轴一端施加位移,完成的模拟装配过程.得到如图1c所示模拟装配后的应力分布图.2.1 过盈量变化对等效应力的影响的计算研究本次研究借助ANSYS Workbench软件,通过控制单一影响因素,观察结果变化的方法,研究过盈量大小,对过盈配合区域的接触应力分布的影响.本次实验,Φ40 mm孔与轴的配合采用基孔制,过盈量根据国标GB1801-1979选取H7/n7、H7/s6、H7/u6,三种过盈配合关系,通过计算得到最大的过盈量分别是0.042 mm,0.059 mm,0.076 mm.根据控制单一变量的原理,保持接触宽度,轴向力,包容件外径大小,都不变,单一改变过盈量,对三组实验对象进行模拟装配.如2图所示,图2a、2b、2c分别代表过盈量为0.042 mm、0.059 mm、0.072 mm包容件的等效应力分布图,图2中包容件的应力分布有明显的规律性,在靠近边缘的中部出现了低应力区域.图3a、3b、3c分别代表空心轴的应力分布情况,空心轴外表面接触区域应力分布,呈现出从一端到另一端逐渐增加的变化,最大应力集中到插入端.图4a所示为过盈量为0.042 mm、0.059 mm、0.072 mm的包容件,从未被约束端到被约束端的应力分布情况,从曲线图4a可知,不同过盈量下包容件表面的应力分布均发生了突变,出现低应力区,从三条曲线的总体趋势来看,接触区域的应力值大小与过盈量大小成正比,随过盈量的增加而增加.图4b代表不同过盈量下,轴的接触区域的等效应力分布曲线.从曲线中可以看出,轴的接触区域应力值,从一端到另一端不断增加,从不同过盈量的轴对比发现,轴的接触区域应力值随着过盈量的增大而升高.2.2 接触宽度的变化对应力集中情况影响的研究对接触宽度的变化对应力集中情况的研究实验,采用同样的方法,保持过盈量,包容件外径大小,轴向力F不发生变化的情况下,单一改变接触宽度的大小,建立接触宽度b=30、40、50 mm的分析模型.此实验过盈量为0.059 mm,包容件的外径Φ48 mm.图5a、5b、5c表示不同接触宽度下包容件的应力分布情况,通过对结果的观察分析可知,包容件的接触区域应力分布受到边缘效应的影响,在靠近边缘处的中间部位出现了低应力区域.图6a、6b、6c为空心轴的应力分布情况,从图中可以观察到空心轴的应力分布情况呈现一定的规律性,轴的应力值从一端到另一端逐渐增加.图7a、7b分别代表包容件与轴,在不同宽度影响下接触区域的应力曲线图.观察图7a可知,包容件的接触应力在其他影响因素不变的情况下,随着接触宽度的增加,包容件的等效应力值降低,宽度越小边缘效应越明显,边缘处应力集中越明显,最大应力值越大.图7b为空心轴的应力分布,从一端到另一端应力值逐渐增加,宽度越大应力值的变化速度越慢,曲线的越平缓,边缘处的应力集中情况越不明显. 2.3 包容件外径大小对接触应力的影响研究对包容件外径大小对配合面的应力分布影响的研究,是在保证过盈量,接触面的基本直径,轴向力,接触宽度,不发生变化的情况下,单一改变包容件的外径大小,来进行模拟装配过程.实验分析中,建立直径接触面Φ40 mm,轴向力F=0,接触宽度b=30 mm,过盈量为0.056,包容件外径大小分别是Φ48 mm、Φ56 mm、Φ62 mm的分析模型.对三个模型进行模拟装配分析,分析情况如图8、图9所示. 图8a、8b、8c分别为外径大小Φ48 mm、Φ56 mm、Φ62 mm包容件的接触区域应力分布图,从分析结果分析可知,在接近边缘的区域出现低应力区.图9a、9b、9c分别是外径为Φ48 mm、Φ56 mm、Φ62 mm的包容件对应空心轴,接触区域的应力分布情况,从图中看出空心轴的等效应力值,从一端到另一端逐渐增加,在边缘处出现最大值.图10a所示为不同外径下包容件的接触区域应力分布情况,包容件的接触区域受边缘效应的影响,最大等效应力值出现在边缘处,同时在接近边缘的中间部位有低应力区域出现.从图10a的曲线图可以看出,包容件的半径越大,从低应力区到应力集中的边缘处这段区域变化越平缓.包容件半径越大,低应力区所占据的区域范围越大,低应力区域的应力值过渡越平缓.包容件半径越大,低应力区的最小等效应力值和边缘处的最大等效应力值越小.图10b所示为空心轴的应力分布情况,从图中可知,接触的初始区域应力值变化都比较平缓,接触中期区域的应力值发生了急剧增加,包容件半径越大的对应的轴应力急剧增加的速度越慢.相反包容件半径小的等效应力值的急剧增加速度越大.2.4 轴向力对接触区应力影响的研究研究轴向力对配合区域接触应力的影响所建立的分析模型,控制单一变量,保持包容件外径,过盈量,接触宽度不变的情况下,单一改变轴向所加载的力的大小和力的方向,本次实验所建立的模型,过盈量为0.059 mm,包容件外径Φ48 mm,接触宽度b=30 mm,轴向力加载,分四种情况,F=±60 MPa和F=±130 MPa,正代表压力,负号代表拉力.模拟过盈装配的分析结果如下.图11a、11b分别代表轴向受60 MPa和120 MPa的压力作用下的配合中包容件的等效应力分布图.图11e代表空心轴在左右两端未受到力的作用时,包容件的接触区域的应力分布图.图12a、12b代表轴向受到60 MPa和120 MPa拉力力作用的配合中包容件的等效应力分布图.图12e代表空心轴不受轴向力时的应力分布图.从图11a、11b分析可知,轴向力没有影响边缘效应的出现,靠近边缘的中间区域仍然出现了低应力区,边缘处出现应力集中.图12a、12b可知空心轴的应力分布仍然保持从一端到另一端逐渐增加的趋势,边缘处应力值最大.图13a、13b分别代表不同轴向力作用下,包容件的接触区域应力分布和空心轴的接触区域应力分布情况.由图13a所示可知,包容件在接触的开始区域与中部区域应力值变化都非常平缓.其中这部分区域的应力值,在不同的轴向力作用下呈现一定的规律性,120 MPa压力>60 MPa压力>0作用力>60 MPa拉力>120 MPa拉力.图13b分析可知,轴的接触区域应力值分布情况的总体趋势与包容件相反,120MPa压力<60 MPa压力<0作用力<60 MPa拉力<120 MPa拉力.分析轴向力对应力值分布影响规律可知,轴向力对包容件应力值的影响,实质上是轴向力影响了接触区域的过盈量的值.轴在受到压力时,发生了弹性变形,半径变大,相当于增加了轴的过盈量.故压力作用下应力值高于没有作用力时的应力值,高于拉力作用下的应力值.1)圆柱面形状的过盈配合应力分布情况,受过盈量、结合面宽度、包容件直径、轴向力的影响.同时包容件的应力分布情况近似成对号函数的分布,轴的应力分布呈现近似于线性分布,包容件与轴都呈现出边缘效应,包容件的现象更明显,由边缘效应所产生的应力集中现象,应力值远远高于其他部位的应力值,这对过盈配合的可靠性产生极坏的影响.2)过盈量的大小对应力值的影响有着直接对应的关系,随着过盈量的增加,应力值增加.接触区域宽度对过盈配合区域应力值分布有一定的影响,接触区域越宽,包容件的应力集中现象越弱,边缘处的最大等效应力值越小,过盈连接越可靠.包容件外径大小对应力分布有影响,但实验结果的曲线具有一定的复杂性,总体表现是半径越小,包容件的边缘处应力集中越明显,应力值变化越快.3)轴向力对应力分布影响显著,包容件的区域应力值分布呈现出的规律为轴两端受到压力时,大于两端不受力,大于两端受到拉力作用.在承受范围内,两端力越大,这种现象越明显.轴的表面接触区域的应力值分布,在受到拉力作用时,区域的应力值高于受到压力作用,两端的力越大这种现象越明显.影响包容件应力值分布的原因,最终可以归结于过盈量的变化,轴在受到压力和拉力时,发生弹性变形改变原有过盈量,引起包容件应力分布的变化.【相关文献】[1]杨广雪,谢基龙,李强,等.过盈配合微动损伤的关键参数[J].机械工程学报,2010,46(16):53-59.[2]黄庆学,王建梅,静大海,等.油膜轴承锥套过盈装配过程中的压力分布及损伤[J].机械工程学报,2006,42(10):102-108.[3]陈连.过盈连接可靠性设计研究[J].中国机械工程,2005,16(1):28-30.[4]张洪才.Ansys14.0理论解析与工程应用实例[M].北京:机械工业出版社,2012.[5]刘江.Ansys14.5 workbench机械仿真实例详解[M].北京:机械工业出版社,2014. [6]张杰,韩传军.轴向载荷下空心轴过盈联接的力学特性[J].四川大学学报,2013,45(S1):53-57.[7]李伟建,潘存云.圆柱面过盈连接的应力分析[J].机械制造与技术,2008,27(3):313-317.[8]张敬佩,李初晔.过盈配合产生的接触压力和拔出力计算[J].机械设计与制造,2010(10):195-197.[9]王少江,李学明,张安鹏,等.大型焊接齿轮与轴过盈配合有限元分析[J].煤矿机械,2015,36(5):134-136.[10]滕瑞静,张余斌,周晓军,等.圆柱面过盈连接的力学特性及设计方法[J].机械工程学报,2012,48(13):160-166.[11]李伟建,潘存云.圆柱面过盈连接的应力分析[J].机械科学与技术,2008,27(3):313-317.[12]张杰,韩传军.轴向载荷下空心轴的过盈连接力学特性[J].四川大学学报:工程科学版,2013(S1):53-57.。
①下面对非对称行为接触表面的正确选择给出选择指导:–如果一凸的表面要和一平面或凹面接触,应该选取平面或凹面为目标面.–如果一个表面有粗糙的网格而另一个表面网格细密,则应选择粗糙网格表面为目标面.–如果一个表面比另一个表面硬,则硬表面应为目标面.–如果一个表面为高阶而另一个为低阶,则低阶表面应为目标面.–如果一个表面大于另一个表面,则大的表面应为目标面.②法向刚度WB-Mechanical系统默认自动设定。
–用户可以输入“法向刚度因子Normal Stiffness Factor” (FKN) 它是计算刚度代码的乘子.因子越小,接触刚度就越小。
•默认 FKN =10 (对于绑定和不分离的接触)•默认 FKN=10(其他形式接触) 默认 FKN1.0 (其他形式接触)•接触问题法向刚度选择一般准则:–体积为主的问题: 用“Program Controlled”或手动输入“Normal Stiffness Factor”为“1”–弯曲为主的问题: 手动输入“Normal Stiffness Factor”为“0.01”到“0.1”之间的数值。
-在大变形问题的无摩擦或摩擦接触中建议使用“Augmented Lagrange”法向接触刚度 knormal是影响精度和收敛行为最重要的参数.–刚度越大,结果越精确,收敛变得越困难.–如果接触刚度太大,模型会振动,接触面会相互弹开。
- 其中update stifness 设置可以控制计算收敛与否。
③-刚度增加, 渗透减少,而最大压力增加. 并且通常会有更多的迭代和更长运行时间④ 不管使用了何种接触行为 (对称或反对称), 模型的变形和等效应力本质是相同的. 对称行为可以提高收敛. 但对称接触结果不容易解释,为接触面与目标面结果的平均值。
0.0032902 0.0033033 0.0033052 0.0033055 0.0033053565.05Mp a 774.12Mp a 811.34Mp a 816.26Mp a 812.78Mp a0.011864 0.0016253 0.0017035 0.000017138 0.00001998417 17 20 24 57⑤在详细窗口中用户可以选择“Adjusted to Touch”或“AddOffset”-“AdjstedtoToch”让Simlation 决定需要多大的接触偏移量来闭合缝隙建立初始接触。
前面一篇基于Ansys经典界面的接触分析例子做完以后,不少朋友希望了解该例子在Workbench中是如何完成的。
我做了一下,与大家共享,不一定正确。
毕竟这种东西,教科书上也没有,我只是按照自己的理解在做,有错误的地方,恳请指正。
1.问题描述
一个钢销插在一个钢块中的光滑销孔中。
已知钢销的半径是0.5 units, 长是2.5 units,而钢块的宽是4 Units, 长4 Units,高为1 Units,方块中的销孔半径为0.49 units,是一个通孔。
钢块与钢销的弹性模量均为36e6,泊松比为0.3.
由于钢销的直径比销孔的直径要大,所以它们之间是过盈配合。
现在要对该问题进行两个载荷步的仿真。
(1)要得到过盈配合的应力。
(2)要求当把钢销从方块中拔出时,应力,接触压力及约束力。
2.问题分析
由于该问题关于两个坐标面对称,因此只需要取出四分之一进行分析即可。
进行该分析,需要两个载荷步:
第一个载荷步,过盈配合。
求解没有附加位移约束的问题,钢销由于它的几何尺寸被销孔所约束,由于有过盈配合,因而产生了应力。
第二个载荷步,拔出分析。
往外拉动钢销1.7 units,对于耦合节点上使用位移条件。
打开自动时间步长以保证求解收敛。
在后处理中每10个载荷子步读一个结果。
本篇只谈第一个载荷步的计算。
3.生成几何体
上述问题是ANSYS自带的一个例子。
对于几何体,它已经编制了生成几何体的命令流文件。
所以,我们首先用经典界面打开该命令流文件,运行之以生成四分之一几何体;然后导出为一个IGS文件,再退出经典界面,接着再到WORKBENCH中,打开该IGS文件进行操作。
(3.1)首先打开ANSYS APDL14.5.
(3.2)然后读入已经做好的几何体。
从【工具菜单】-->【File】-->【Read Input From】打开导入文件对话框
找到ANSYS自带的文件
\Program Files\Ansys Inc\V145\ANSYS\data\models\block.inp 【OK】后四分之一几何模型被导入,结果如下图
(3.3)导出几何模型
从【工具菜单】】-->【File】-->【Export】打开导出文件对话框,在该对话框中设置如下
即把数据库中的几何体导出为一个block.igs文件。
【OK】以后该文件被导出。
(3.4)退出ANSYS APDL14.5.
选择【OK】退出经典界面。
4.打开Ansys WorkBench,并新建一个静力学分析系统。
结果如下图
导入几何体模型。
在Geometry单元格中,选择Import Geometry -->Browse,如下图
找到上一步所生成的block.igs文件。
则该静力学系统示意图更新如下。
可见,几何单元格后面已经打勾,说明文件已经关联。
5.浏览几何模型
双击Geometry单元格,打开几何体。
在弹出的长度单位对话框内,选择米(Meter)的单位。
然后按下工具栏中的Generate按钮如下图
则主窗口中模型如下图
可见,长方形的变长是2m,这与题目中给定的大小是一致的。
然后退出DesignModeler,则又重新回到WorkBench界面中。
6.定义材料属性
双击Engineering Data,则默认材料是钢材。
这里直接修改该钢材的属性即可。
只有线弹性材料属性:弹性模量36E6和泊松比0.3
然后在工具栏中选择“Return To Project”以返回到WorkBench界面中。
7.创建接触
在主窗口中分别选择目标面,接触面如下
然后对该接触的细节面板设置如下
其中,
(1)说明接触类型是带摩擦的接触,摩擦系数是0.2,是非对称接触
(2)指明法向接触面的刚度因子是0.1.
8.划分网格
双击Model单元格进入到Mechanical中。
在mesh下面插入一个method,并设置该方法为Sweep method.在其细节视图中选择Geometry为两个物体。
则ANSYS会对这两个物体按照扫描方式划分网格。
在Mesh下面再插入一个尺寸控制,用于控制钢销的两个直角边为3等分。
在Mesh下面再插入另外一个尺寸控制,用于控制钢销的1个圆弧边为4等分。
按下Generate 后,则生成的有限元模型如下图。
9.设置边界条件
设置四个面为对称边界条件
然后还要固定钢块的一个面
此时模型树的结构如下图
10.进行求解设置
进行分析设置
其中,(1)意味着只有一个载荷步,该载荷步也只有一个载荷子步,关闭了自动时间步长,该载荷步结束的时间是100.
(2)的意思是打开大变形开关。
11.求解
在右键菜单中选择Solve进行计算。
12.后处理
查看总体的米塞斯应力如下图
可见,最大的应力是0.46Mpa左右,而在经典界面中得到的最大米塞斯应力是
0.29Mpa。
这主要应该是由于两边的网格划分不一致所导致的。
查看接触处的状态(只考察接触面)
下面是接触处的渗透图
可见,最大渗透量是4.78mm,这与经典界面中的同样有区别。
下图是接触压力
大致为0.26Mpa,同样比经典界面要大。
可见,这里给出的各个应力都要比经典界面大,但是都在一个量级上,一般来说,这应该是网格划分不相同的结果。
如果进一步细分网格,无论经典界面还是Workbench均应该收敛到同一个值。