第13章超高温材料超高温材料汇总讲解
- 格式:ppt
- 大小:16.84 MB
- 文档页数:91
超高温陶瓷标准
超高温陶瓷(Ultra-High Temperature Ceramics,简称UHTCs)是一类具有出色耐高温性能的陶瓷材料。
通常,超高温陶瓷的使用温
度范围可以达到2000℃以上。
超高温陶瓷具有以下特点和性能:
1. 高温稳定性:超高温陶瓷在极高温度下具有良好的热稳定性
和化学稳定性,不易熔化、氧化或发生化学反应。
2. 强度和硬度:超高温陶瓷通常具有极高的强度和硬度,能够
耐受高温下的机械应力和磨损。
3. 低热膨胀:超高温陶瓷的热膨胀系数较低,使其能够在高温
环境下保持结构的稳定性。
4. 导热性:超高温陶瓷通常是优良的导热体,能够有效地将热
量传导到外部环境。
超高温陶瓷尚未有统一的国际标准,但各个国家和国际组织都有
自己的测试和评估标准。
例如,美国国家航空航天局(NASA)制定了
一系列用于评估超高温陶瓷性能的测试标准,包括高温抗氧化性能测试、热膨胀系数测定等。
此外,欧洲陶瓷学会(European Ceramic Society)也提供了一些测试方法和标准来评估超高温陶瓷的性能。
虽然还没有统一的标准,但超高温陶瓷的性能评估一般包括以下
方面:高温稳定性、热膨胀系数、机械性能、导热性、抗氧化性能等。
通过评估这些性能指标,可以确定超高温陶瓷在特定高温应用中的适
用性和可靠性。
高温超高温如何区分高温和超高温是两个常见的热学概念,在工业生产、材料研究和科学实验中扮演着重要的角色。
区分高温和超高温是为了更好地理解和控制热力学过程,确保材料和设备在适当的温度工作范围内。
首先,我们需要了解高温是指多大的温度范围。
高温通常指的是在300℃至1000℃之间的温度范围。
在这个温度范围内,许多常见的金属和合金都能够承受并保持稳定的性能。
高温下,材料的强度和刚度会下降,而热膨胀和热导率则会增加。
那么,什么是超高温呢?超高温通常是指1000℃以上的温度范围。
在这个温度范围内,大多数常见金属和合金都无法保持稳定的性能。
在超高温下,材料往往会经历严重的热腐蚀、软化和脆化等问题。
因此,对于超高温环境,需要采用特殊的高温材料,如陶瓷、碳纤维复合材料和耐热合金。
区分高温和超高温的关键在于材料的稳定性和性能。
高温下,大多数金属和合金都能够保持相对稳定的性能,而超高温下则需要采用特殊的高温材料。
此外,高温和超高温还可以通过相关的热物理性质进行区分。
热导率是一个重要的热物理性质,它可以用来区分高温和超高温。
热导率是材料导热能力的指标,通常用热导率系数来表示。
在高温下,材料的热导率会随温度的升高而增加,这是由于热运动的增加导致更快的能量传递。
而在超高温下,由于材料的结构和性质发生了变化,热导率会发生剧烈的变化。
因此,通过测量材料的热导率,可以判断其所处的温度范围。
此外,热膨胀系数也是区分高温和超高温的重要指标之一。
热膨胀系数反映了材料在温度变化下的体积变化程度。
在高温下,材料的热膨胀系数往往较小,这是因为高温下原子运动加剧,材料更容易膨胀。
而在超高温下,由于材料的结构和性质发生了变化,热膨胀系数会发生显著的变化。
因此,通过测量材料的热膨胀系数,也可以判断其所处的温度范围。
除了热导率和热膨胀系数,还有其他一些热物理性质可以用于区分高温和超高温。
例如,材料的比热容、热稳定性和热疲劳性等都影响着其在不同温度范围下的稳定性和性能。
超高温陶瓷材料Si(B)CN高性能陶瓷是新材料的一个组成部分, 它在国民经济中的能源、电子、航空航天、机械、汽车、冶金、石油化工和生物等各方面都有广阔的应用前景, 成为各工业技术特别是尖端技术中不可缺少的关键材料, 在国防现代化建设中, 武器装备的发展也离不开特种陶瓷材料。
随着我国国民经济的高速发展, 工业技术水平的不断提高, 人民生活的不断改善以及国防现代化的需要, 迫切地需要大量的特种陶瓷产品, 市场前景十分广阔。
石油化工行业需要大量的耐磨耐腐蚀的陶瓷部件, 如球阀、缸套等。
纺织行业需要大量的耐磨陶瓷件, 如陶瓷剪刀、导丝轮等。
国防工业需要的具有特殊性能的陶瓷材料, 如防弹装甲陶瓷, 耐射照高温轻质隔热材料等。
在此我们一起了解一下高温陶瓷材料,一般高温陶瓷材料的预期使用温度在1400 ~1500, 而超高温材料是指能在1800以上使用的材料, 主要包括过渡金属( T i、Zr、T a 等) 的硼化物、碳化物以及近年出现的Si( B) CN超高温陶瓷材料等, 还包括碳( 石墨) 和氮化硼等。
这类材料的主要特点是超高温熔点、超高温稳定、超高温耐腐蚀性, 应用于国防、航天、超高温电极、超高温耐腐蚀容器或保护器( 与熔融金属接触) , 超高温涂层等。
近年来, 对Si( B) CN超高温陶瓷材料的研究发展很快, 制备工艺主要是采用有机前驱体法, 对超高温稳定化机理的研究主要集中在硼的作用上。
SiC、Si3N4这一类硅基陶瓷材料具有较高的抗氧化性、高温强度、化学稳定性、抗蠕变等性能, 作为高温结构陶瓷材料倍受人们的青睐。
但Si3N4在1400℃发生热分解SiC在1600℃氧化时性能也发生退化。
因此研究新型高温材料以及对材料进行改性成为迫切需求。
研究人员在这方面做了许多有益的工作, 取得了一些成就, 如: 性能良好的SiC 及Si3N4纤维的研究和开发, 使纤维增强复合材料的性能不断改善。
纳米SiC/Si3N4复合材料的室温强度和韧性比单组分材料提高2~5 倍, 且高温性能也获得较大的改进。
超高温热力学材料在航空航天领域中的应用一、简介超高温热力学材料是指在高温和高压环境下能够保持稳定性、延展性和强度的材料。
这些材料是航空航天领域中不可缺少的重要组成部分,其中许多材料已经证实可以在特定条件下承受高达3000°C的高温。
超高温热力学材料可以由各种材料制成,如陶瓷、纳米材料和金属复合材料等。
这篇文章将探讨超高温热力学材料的种类以及在航空航天领域中的应用。
二、超高温热力学材料的种类1.陶瓷材料陶瓷材料是一种由非金属材料制成的材料,具有高硬度、高抗磨损性和高温稳定性等特性。
陶瓷材料可分为无机非金属陶瓷和有机非金属陶瓷两种类型。
无机非金属陶瓷采用高温烧结技术,可以在高到2000°C甚至3000°C的温度下维持其稳定性。
在航空航天领域中,陶瓷材料通常用于制造发动机部件,如燃烧室。
它们具有优异的高温性能和抗腐蚀性能,尤其是具有良好的氧化抗性,可以承受高温下的氧化作用。
此外,陶瓷材料还可以制造复合材料,以及在太空环境中承受辐射的防护层。
2.金属复合材料金属复合材料是由两种或多种不同金属或金属和非金属的材料组合而成,具有高强度、高变形率和高裂纹韧性等特质。
金属复合材料通常采用粉末冶金或表面涂层技术生产,可以在高温环境下维持良好的稳定性。
在航空航天领域中,金属复合材料通常用于制造发动机叶片、导向叶片和喷管等部件。
它们具有高强度和高温稳定性,并且可以有效减轻飞机结构的整体重量。
此外,金属复合材料还可以制造高效热交换器和散热器,以有效控制航空器的温度。
3.纳米材料纳米材料是一种由非金属材料制成的材料,在尺寸方面小于100纳米,具有特殊的物理和化学特性。
纳米材料通常采用溶胶凝胶、磁控溅射和铸造等方法生产,可以在高温度下保持其稳定性。
在航空航天领域中,纳米材料通常用于制造轻质结构材料和复合材料。
例如,与其他高温复合材料相比,铝基纳米复合材料可以承受更高的温度和压力,同时具有较低的密度。
超高温陶瓷材料的研究与应用近年来,随着人类科学技术的不断发展,超高温陶瓷材料的研究与应用已经越来越受到重视。
超高温陶瓷材料具有很高的耐高温、耐磨损、耐腐蚀性能,以及较好的机械性能等优点,因此在航空航天、国防军工、能源环保等领域具有广泛的应用前景。
一、超高温陶瓷材料的特性超高温陶瓷材料主要是指抗氧化化学和机械性能优异的陶瓷材料,其最高使用温度可达2000℃以上,比其他传统材料如钢、合金等更具有优越的性质。
其主要特性有:1、优异的耐高温性能:超高温陶瓷材料的熔点通常高于2000℃,可以承受几乎所有实验室制备条件下的高温。
2、高硬度、高韧性:它们具有非常高的硬度和韧性,可以耐受极高的压力和重负荷的应力。
3、良好的耐磨损性:超高温陶瓷材料具有非常高的耐磨性,适用于高速、高温和高压环境。
4、强化的耐腐蚀性能:这些材料具有抗腐蚀、抗氧化的特性,可以耐受许多强腐蚀性环境的侵袭。
二、超高温陶瓷材料的结构和分类超高温陶瓷材料的晶体结构通常是二氧化硅(SiO2)的变体,其晶格结构决定了它们的物理和机械性质。
超高温陶瓷材料可根据其组成和结构分为氮化硅陶瓷、碳化硅陶瓷、氧化锆陶瓷等。
其中,氮化硅陶瓷和碳化硅陶瓷是比较典型的两种超高温陶瓷材料。
氮化硅陶瓷是由氮化硅(Si3N4)、氧化铝(Al2O3)等复合材料组成的。
它具有较高的强度、硬度、高温强度和热震稳定性。
并且,氮化硅陶瓷还具有热导率高、抗腐蚀性能强等特点。
碳化硅陶瓷是由碳化硅(SiC)和氧化铝(Al2O3)等复合材料组成的。
它具有较高的硬度、抗磨损性、耐高温性、抗氧化性、热震稳定性和良好的机械性能等特点。
并且,碳化硅陶瓷还具有较好的热导率、化学稳定性和抗辐射性。
三、超高温陶瓷材料的应用前景超高温陶瓷材料具有优异的特性和多种优良性能的综合应用,因此在航空航天、国防军工、能源环保等领域中存在广泛的应用前景。
1、航空航天领域:超高温陶瓷材料可以应用于机身壁板、发动机燃烧室、导弹底部热结构件等领域,以提高飞行器的使用温度和耐力。
耐热材料的等级
耐热材料按照其温度承受能力和应用领域的不同,可以分为不同的等级。
一般来说,耐热材料可以分为低温耐热材料、中温耐热材料、高温耐热材料和超高温耐热材料四个等级。
低温耐热材料一般指耐温在-60℃~500℃之间的材料,如氟橡胶、硅橡胶等。
这类材料在航空、航天、化工等领域中得到了广泛应用。
中温耐热材料指耐温在500℃~800℃之间的材料,如高铝水泥、玻璃纤维等。
这类材料在炉窑、热处理、汽轮机等领域中得到了广泛应用。
高温耐热材料指耐温在800℃~1200℃之间的材料,如硅酸铝纤维、钼、钨等。
这类材料在航空、航天、核工业等高温环境中得到了广泛应用。
超高温耐热材料指耐温在1200℃以上的材料,如碳化硅、氮化硅等。
这类材料在高速飞行器、航天器、核聚变等领域中得到了广泛应用。
不同等级的耐热材料在应用中有着各自的特点和优势,选择合适等级的耐热材料是保障设备稳定运行和延长使用寿命的重要措施。
- 1 -。
超高温材料的制备及其应用随着科技的发展,越来越多的领域需要使用超高温材料。
超高温材料指的是在1500℃以上依然可以保持其强度和稳定性的材料。
下面,我们将从超高温材料的制备和应用两个方面进行详细介绍。
1. 超高温材料的制备超高温材料的制备主要有两种方法:一是结晶生长法,二是粉末冶金法。
结晶生长法:这种方法是通过高温下控制晶体的生长方向来制备出超高温材料。
首先需要制备出一种带有基准晶面的晶体,然后在高温下将其暴露在高于其熔点的蒸汽中,通过基准晶面来控制晶体的生长方向。
然后利用多次晶体生长和特定的加工手段,得到超高温材料。
粉末冶金法:这种方法是将所需元素制备成粉末,通过压制、烧结、热处理等工艺,最终得到超高温材料。
其中,压制是为了将粉末之间的缝隙降低到较小的程度,使它们更加接近密实。
烧结则是将这些粉末加热至一定的温度,使其在颗粒之间结合成块。
热处理是可以通过影响晶体的尺寸、形态和能量状态等方面来改变材料的性质。
2. 超高温材料的应用超高温材料在领域广泛,尤其是在航空航天、环保、能源等领域。
下面分别介绍:航空航天:目前,航空航天领域中,超高温材料的应用已经成为了技术创新的关键因素。
比如,超合金材料、碳纤维等材料都是用于制造航空飞行器的重要材料。
它们具有极高的强度和耐高温性,能够在高空、低温、高温等恶劣条件下保持长时间的稳定性。
环保:超高温材料在环境领域的应用主要为废气处理和污水处理。
通过将超高温材料导入催化器进行催化反应,可以将有害气体完全转化为无害气体,以达到净化空气的目的。
在污水处理方面,常用的方法是将超高温材料加入到污水中进行反应,以达到钝化有害物质的目的。
能源:超高温材料在能源领域的应用主要是用于太阳能热利用和火箭发动机的制造。
超高温材料的高温稳定性和抗腐蚀性,使得其在太阳能集热器的材料制造中占据着重要地位。
而在火箭发动机制造中,超高温材料则可以用于制造发动机部件,提高发动机的燃烧效率和推力。
总之,随着科技的不断进步,超高温材料必将在更多的领域发挥重要作用。
耐超高温的材料耐超高温的材料超高温环境下,常规材料会失效,因此需要开发出能够耐受极端条件的特殊材料。
耐超高温的材料具有高温稳定性、氧化抗性和机械性能等多重特性,广泛应用于航空航天、能源、汽车等领域。
本文将介绍几种常见的耐超高温材料及其应用。
1. 碳化硅(SiC)碳化硅是最具代表性的耐超高温材料之一。
它具有高熔点、高硬度和高强度,能够在高于2000℃的温度下保持稳定性。
碳化硅材料具有良好的导热性能,低热膨胀系数,以及良好的抗氧化和抗冲击性能。
碳化硅的应用非常广泛。
在航空航天领域,碳化硅常用于制造高温结构件,如发动机喷嘴、导热板等。
在能源行业,碳化硅可用于制造燃烧器喷嘴、辐射炉管等高温部件。
2. 氧化锆(ZrO2)氧化锆是一种常见的耐高温材料,它具有高熔点、低热膨胀系数和优异的耐热性。
氧化锆还具有良好的化学稳定性和机械性能,抗氧化性能优于大多数金属材料。
氧化锆通常用于制造耐火陶瓷制品、高温加热元件、防火涂层等。
在航空航天领域,氧化锆用于制造燃烧室涂层、航天器热防护材料等。
3. 钨铼合金(W-Re)钨铼合金是一种耐高温合金,具有优异的耐热性和机械性能。
它的高熔点和良好的延展性使其能够在高温环境下保持稳定性。
钨铼合金在航空航天领域广泛应用,如用于制造发动机喷嘴、涡轮叶片等。
此外,钨铼合金还用于高温实验设备、高温电炉等领域。
4. 铂族金属铂族金属,如铂、钯、铑等,是一类具有优异的耐高温性能的材料。
这些金属具有高熔点、强烈的抗氧化性能和优异的抗热膨胀性能。
铂族金属广泛应用于航空航天领域,制造发动机零件、火箭喷管等。
在能源行业,铂族金属用于催化剂和高温反应器。
5. 高温陶瓷复合材料高温陶瓷复合材料是一种结合了耐温性、高强度和低密度的先进材料。
它由陶瓷基体和增强材料组成,具有优异的机械性能和耐热性能。
高温陶瓷复合材料具有广泛的应用前景。
在航空航天领域,它可用于制造复合热防护材料、航天器外壳等。
在能源行业,它可用于制造储能设备、高温炉炉衬等。
高熵uh超高温陶瓷基复合材料高熵超高温陶瓷基复合材料是一种新型材料,具有许多独特的特性和潜在的应用价值。
首先,我们来看一下高熵材料的概念。
高熵材料是指由五种或更多种元素组成的材料,这些元素的摩尔分数相对均匀,这使得材料具有高熵的特性,即具有高度混乱的原子结构。
这种混乱的结构使得高熵材料具有优异的力学性能和耐热性能,适用于高温环境。
超高温陶瓷基复合材料是在传统陶瓷基硬质材料的基础上引入其他元素或化合物,以提高其力学性能、耐磨性、耐腐蚀性等特性。
这种复合材料通常具有高强度、高硬度和耐高温的特点,适用于一些极端环境下的应用,比如航空航天领域、能源领域等。
结合高熵材料和超高温陶瓷基复合材料的特性,可以想象到高熵超高温陶瓷基复合材料可能具有更加优异的性能。
例如,由于高熵材料的混乱原子结构,可以增加材料的塑性变形能力,提高其抗拉伸性能和韧性;而超高温陶瓷基复合材料的耐磨性和耐腐蚀性能可以为高熵材料提供更好的保护。
因此,高熵超高温陶瓷基复合材料可能在高温高压、高速运动等恶劣条件下发挥出色的性能。
除此之外,高熵超高温陶瓷基复合材料还可能具有较低的密度和良好的导热性能,这些特性使得它们在航空航天推进系统、高速飞行器表面材料等领域有着广阔的应用前景。
总的来说,高熵超高温陶瓷基复合材料是一种具有巨大潜力的新型材料,具有优异的力学性能、耐高温性能和耐磨耗性能,适用于各种极端环境下的应用。
然而,目前该类材料的研究和开发仍处于起步阶段,还需要进一步的实验和理论研究来解决其制备工艺、性能稳定性等方面的挑战。
希望未来能够看到更多关于高熵超高温陶瓷基复合材料的突破和应用。
高温合金材料力学性能分析随着现代工业的不断发展,高温合金在航空、航天、能源、化工等行业中得到了广泛应用。
高温合金材料是指在高温下工作的钢铁、不锈钢、镍基合金等材料,对于这些材料的力学性能的分析是十分重要的。
一、高温合金材料的种类高温合金材料通常是由一种或几种种类的合金元素构成,主要以镍基合金、钨、钼、铬、铝、钛等多元合金为主。
1. 镍基合金镍是一种富有弹性和抗腐蚀的金属,而且很耐高温。
镍基合金的主体是镍,掺杂少量的铬、钛、铝等强化元素,可以使其具有更高的耐热能力、更优良的机械性能和更好的耐腐蚀性能。
2. 钨、钼合金这两种材料因为其高的熔点、高强度、高硬度,以及低的热膨胀系数和优秀的化学稳定性,被广泛应用于高温环境下的部件制造,如径向涡轮、涡轮叶片、气涡轮维护工具等。
3. 铬合金铬是一种非常耐腐蚀的金属,在高温下依然保持其抗氧化和耐腐蚀的性能。
所以铬合金适用于反应炉管壁、核反应堆管道、高温炉内的焊口等需要在高温和气体中工作的零件。
4. 铝、钛合金铝、钛合金是高温合金中应用最广泛的材料之一。
铝合金可以适用于超高温环境,钛合金则可以在超低和中高温条件下使用。
这种合金适用于飞机发动机喷气板、轴承等高温部件的制造。
二、高温合金材料的力学性能高温合金材料的力学性能主要包括抗拉强度、屈服强度、延伸率和断裂韧度。
其中,抗拉强度是指材料在拉伸时会承受多大的力,屈服强度是指在材料进入塑性区之前能承受的最大应力,延伸率是指拉伸时材料的变形量与原长度之比,断裂韧度则是指材料在撕裂破坏时的能量释放。
1. 抗拉强度高温合金材料的抗拉强度通常是由多种因素共同影响的,如组织结构、热处理过程、强化机制等。
其中镍基合金、钨钼合金和铬合金因其独特的结构和成分具有相对较高的抗拉强度。
2. 屈服强度屈服强度是指材料在一定温度下能够承受的最大拉应力。
高温合金材料的屈服强度往往受到一些因素的影响,如热处理工艺、化学成分、微观组织结构等。
在室温下,钨钼合金的屈服强度是非常高的,而镍基合金则是在那些需要高强度条件下使用的最常见的材料。
超高温材料超高温材料是指能够在极端高温条件下保持结构稳定性和良好性能的材料。
这些材料通常用于航空航天、能源和其他高温工艺领域。
超高温材料具有以下几个主要特点:1. 高熔点:超高温材料具有较高的熔点,能够在高温环境下保持结构完整。
其中,一些金属材料如钨、钼和铂具有极高的熔点,适合用于超高温应用。
2. 耐腐蚀性:超高温环境中通常存在着高浓度的酸、碱和氧化剂等腐蚀介质,因此超高温材料需要具备良好的耐腐蚀性能,以保持其表面的完整性和性能。
3. 热稳定性:超高温材料需要在高温环境下保持结构稳定性和性能不受影响。
这要求材料具有良好的热稳定性,能够在高温下长时间使用而不发生析出、热膨胀或热疲劳等问题。
4. 低热传导性:超高温材料通常需要具有较低的热传导性,以防止热损失和热扩散。
这可以减少能量的消耗,并提高材料的效率。
5. 机械强度:超高温材料需要具有足够的机械强度,以抵抗高温环境下的负载和应力。
这要求材料具有良好的耐热震性、抗拉伸性和抗蠕变性。
目前,有几种超高温材料已经得到广泛应用:1. 碳化硅:具有良好的高温稳定性和耐腐蚀性能,广泛应用于航空航天、能源和高温工艺等领域。
2. 氧化锆:具有较高的熔点和良好的热稳定性,被用作高温涂料、耐火材料和陶瓷制品等。
3. 高温合金:由镍、钴、钨等金属合金组成,具有良好的高温强度和耐腐蚀性,广泛应用于航空发动机、燃气涡轮和核反应堆等领域。
4. 纳米材料:纳米材料具有较高的比表面积和特殊的物理化学性质,被广泛研究和应用于超高温材料的领域,如纳米陶瓷和纳米涂层等。
超高温材料的研究和应用对于推动科学技术的发展和创新具有重要意义。
随着人类对高温工艺和能源的需求不断增加,超高温材料的研究和应用将会发挥越来越重要的作用,为人类社会的可持续发展做出贡献。
超高温超导材料的设计与制备超高温超导材料的设计与制备一直是材料科学领域的重要研究方向之一。
超高温超导材料具有许多独特的物理性质和广泛的应用前景,尤其是在能源传输和储存、电动汽车、高性能计算和磁共振成像等领域。
在超高温超导材料的设计和制备方面,有几个重要的考虑因素。
首先,超高温超导材料需要具备较高的临界温度,即超导转变温度。
临界温度越高,材料在超导状态下的电流传输能力越强,能够应对更高的温度环境。
其次,材料还需要具备良好的超导电性能,包括零电阻和完全内部磁场排斥。
最后,超高温超导材料的制备方法需要是可行的、可扩展的,并且材料结构应该是稳定的和可控的。
目前,科学家们已经成功合成了一些具有较高临界温度的超高温超导材料,如钇系铜氧化物(YBCO)和铁基超导体等。
这些材料的设计和制备通常是通过粉末冶金方法,包括固相反应、热压和退火等步骤。
这些方法在材料研究领域已经有很长的历史,能够提供相对简单、可控的制备途径。
然而,这些材料的超导性能仍然存在一些限制,如临界温度较低、载流能力不够强和化学稳定性较差等。
为了克服这些限制,近年来,科学家们提出了许多新的超高温超导材料的设计思路和制备方法。
其中一种方法是基于金属氧化物界面的设计和制备。
通过精确控制金属氧化物界面的结构和化学组成,可以调节材料的电子结构和超导性能。
这种方法可以使材料具备更高的临界温度和更好的超导电性能,并且可以通过调节不同金属氧化物界面来实现不同温度范围内的超导转变。
然而,这种方法的制备工艺相对复杂,需要高度纯净的材料和精确的界面控制技术。
另一种方法是基于高压合成的设计和制备。
通过在高压下合成材料,可以调节材料的晶体结构和晶格参数,从而影响材料的电子结构和超导性能。
高压合成方法具有很高的制备温度和压力的要求,但可以获得非常复杂和优异的结构。
例如,通过高压合成的碳化硼(BC3)材料,提供了极高的临界温度和出色的超导电性能。
然而,高压合成的制备条件要求极高,制备过程相对较为困难。