第五章光电探测方式与探测系统介绍
- 格式:ppt
- 大小:5.84 MB
- 文档页数:46
信息光学中的光电探测原理及应用信息光学是一门研究光与信息之间相互转换的学科,其中光电探测是信息光学中的重要研究方向之一。
光电探测技术通过将光信号转换为电信号,实现了光与电相互转换的过程,广泛应用于光通信、光信息处理、光传感等领域。
本文将探讨信息光学中的光电探测原理及其应用。
一、光电探测原理光电探测器是信息光学中实现光与电相互转换的重要器件。
其工作原理主要基于光电效应和半导体器件的特性。
光电效应是指光辐射到材料表面时,激发材料的电子跃迁,并产生电荷。
常见的光电效应包括光电发射效应和光电吸收效应。
光电探测器一般由光电转换器件和信号电路组成。
光电转换器件包括光电二极管、光电三极管、光电倍增管、光电子材料等。
其工作原理可以简单描述如下:当光照射到光电转换器件上时,光子的能量被转化为电子的能量,从而突破器件的能带,激发载流子形成电流或电压。
信号电路则负责对光电转换器件的输出信号进行放大、处理和传输。
二、光电探测器的应用1. 光通信光通信是利用光信号来传输信息的一种通信方式,光电探测技术是其中的关键技术之一。
光电探测器可以将接收到的光信号转换为相应的电信号,并通过信号处理电路进行放大和调节,从而实现光信号的检测和传输。
在光纤通信系统中,光电探测器广泛应用于光接收机中,起到接收和解码光信号的作用。
2. 光信息处理光信息处理是利用光学方法对信息进行处理和转换的技术。
光电探测器在光信息处理中扮演着重要角色。
例如,光电探测器可以将光信号转换为电信号后,经过光电转换器件和信号电路的处理,实现光信号的放大、滤波、调制等操作,从而完成对光信息的处理和转换。
3. 光传感光传感是利用光学原理,通过对光信号的检测和分析,实现对目标物理量的测量和监测。
光电探测器通过对接收到的光信号的电流或电压进行测量和分析,可以实现对光强、光频、光相位等物理量的测量。
光电探测器在光传感领域中广泛应用于温度传感、压力传感、湿度传感等各种传感器中。
光电探测的原理光电探测是一种利用光电效应来探测光信号的技术。
它是一种高灵敏度、高速度的光学探测技术,被广泛应用于生命科学、材料科学、光学通信等领域。
下面,我们将从光电探测的原理入手,介绍它的基本步骤。
一、光电效应光电效应是指光子与物质相互作用时,光子激发物质中的电子,从而使其脱离原子而成为自由电子的过程。
这是光电探测的基础。
二、光电二极管的结构和工作原理光电二极管是一种能够将光信号转化为电信号的器件。
它的基本结构是 p-n 接面,并在 p 型半导体端加上一个铝金属电极,作为阳极,而 n 型半导体端作为阴极。
当光照射在光电二极管 PN 结的正向偏压区域时,光子与半导体物质相互作用,激发物质中的电子,并使形成的电子-空穴对被隔离。
形成的电子就会在正向电压下流向阳极,从而产生电流,这个电流就是光子转化成电信号的过程。
三、光电二极管的响应特性光电二极管的响应特性是指光照射在它上面时,输出电流与光照强度之间的关系。
它的响应特性受其 PN 结的结构、光源的光谱分布、入射角度以及散射角度等因素的影响。
通常,光电二极管的响应特性可以用量子效率来描述。
量子效率定义为在光照射下,光子转化成电信号的效率,通常用百分比来表示。
四、光电探测系统的组成光电探测系统通常由光源、光学系统、光电转换器、信号处理和显示器等组成。
其中,光电转换器通常采用光电二极管或光敏电阻。
信号处理通常采用放大和滤波等方式,将信号转换为可读的数字信号,并显示在显示器上。
总之,光电探测技术是一种重要的光学探测技术,它的原理基于光电效应,利用光电二极管将光信号转换为电信号,并通过信号处理和显示器等设备得到最终结果。
随着科技的不断发展,它被广泛应用于各个领域,为人类带来了极大的便利。
第五章光电测量仪器在光谱测量过程中,获得光谱线的准确波长值是非常重要的环节,通过波长的测量可以获得原子和分子微观能级结构的信息,进而深入了解物质的结构。
此外,对光谱谱线的线形和线宽的测量可以给出原子分子间的微观相互作用机制和弛豫过程。
光谱仪和干涉仪就是可以测量谱线波长或波长间隔的仪器,本章将介绍它们在这方面的应用以及它们的核心器件,如光栅、棱镜和干涉仪。
在实验中只有正确使用和选择这类仪器和器件,合理地设计实验方案,才能获得正确的结果。
5.1 光谱仪光谱仪(spectrometer)是指利用折射或衍射产生色散的一类光谱测量仪器,例如棱镜光谱仪和用光栅制成的摄谱仪(spectrograph)和单色仪(monochromator)。
它们都是将入射到光谱仪输入狭缝上的光波,经过棱镜或光栅色散后,成像在输出狭缝附近的焦平面上,不同的波长在焦平面上对应于不同的位置。
图5.1为棱镜光谱仪和光栅光谱仪的示意图,在焦平面B处用感光板或光电探测器即可记录光谱。
光谱仪通常具有以下四个主要指标;(1)分辨本领(spectral resolving power):指光谱仪能分开两条波长(波长差值为Δλ)相近的光谱线的能力,用λ/Δλ来表示,它与棱镜或光栅的色散性能以及成像的距离长短有关。
(2)光谱测量范围(spectral range):需要区分两种光谱测量范围,一种是指光谱仪能工作的全部波长范围;另一种是指能单值地确定波长的范围,称为自由光谱区(free spectral range,简称为FRS)。
(3)集光率(light gathering power):指光谱仪接收被测光源辐射通量的能力,它由光谱仪的最大收集角决定,相当于图5.1(a)棱镜光谱仪中的准直透镜L l的直径a和焦距f 的比值a/f,或图5.1(b)光栅光谱仪中M1准直反射镜的直径和焦距之比。
集光率也常被认为是光谱仪的“速率”。
(4)光谱透射率(spectral transmittance)T(λ):反映了光谱仪对入射光信号的损耗程度,是入射光波长的函数,与光谱仪中各光学元件的性能,例如透镜或棱镜的透射率、反射镜和光栅的反射率以及光路有关。
光电检测技术第一章:信息技术主要包括:1.电子信息技术、2.光学信息技术、3.光电信息技术。
图1-2光电系统框图图1-2中,光源产生的光是信息传递的媒介。
某光源与照明用光学系统一起获得测量所需的光载波,如点照明、平行光照明等。
某光学变换:光载波与被测对象相互作用而将被测量载荷到光载波上。
某光学变换是用各种调制方法来实现的。
某光信息:光学变换后的光载波上载荷的各种被测信息。
某光电转换:光信息经光电器件实现由光向电的信息转换。
某电信息处理:解调、滤波、整形、判向、细分,或计算机处理等。
光学变换与光电转换是光电测量的核心部分。
某光学变换通常是用各种光学元件和光学系统来实现的,如平面镜、光狭缝、光楔、透镜、角锥棱镜、偏振器、波片、码盘、光栅、调制器、光成像系统、光干涉系统等,实现将被测量转换为光参量(振幅、频率、相位、偏振态、传播方向变化等)。
某光电转换是用各种光电变换器件来完成的,如光电检测器件、光电摄像器件、光电热敏器件等。
第二章:2.人眼对光的视觉效能也称为视见函数。
人眼的视网膜上布满了大量的感官细胞:杆状细胞和锥状细胞。
某杆状细胞灵敏度高,能感受微弱光刺激。
某锥状细胞感光灵敏度低,但能很好地区别颜色和辨别被视物的细节。
3.光度学中,为了表示人眼对不同波长辐射的敏感度差别,定义了一个函数V(λ),称为“视见函数”(“光谱光视效能”)。
在明视情况,即光亮度大于3cd/m2时,人眼的敏感波长λ=555nm 的视见函数(光谱光视效率)规定为1,即V(555)=1。
4..照度(EV):照度是投射到单位面积上的光通量,或者说接受光的面元上单位面积被辐射的光通量。
若辐射光通量为dΦV,接收面元的面积是dA,那么照度EV=dΦV/dA,单位为勒克斯l某=lm·m-2。
5.光通量Φv:光通量又称为光功率,单位:流明[lm]。
光通量是按人眼视觉强度来度量的辐射量。
与电磁辐射的辐射通量Φe相对应。
光通量与辐射通量之间的关系可以用下式表示:0.78VKme()V()dV(λ)是视见函数;0.38Km是光功当量,它表示人眼在明视条件下,在波长为555nm时,光辐射所产生的光感觉效能,按照国际温标IPTS-68理论计算值Km=680(lm/W)。