简明电路分析基础_01b基本电路分析讲解
- 格式:ppt
- 大小:1.83 MB
- 文档页数:97
电路分析基础学习知识讲稿1第⼀章电路模型和电路定律⼀、教学基本要求电路理论主要研究电路中发⽣的电磁现象,⽤电流、电压和功率等物理量来描述其中的过程。
因为电路是由电路元件构成的,因⽽年整个电路的表现如何既要看元件的连接⽅式,⼜要看每个元件的特性,这就决定了电路中各电流、电压要受两种基本规律的约束,即:(1)电路元件性质的约束。
也称电路元件的伏安关系(VCR),它仅与元件性质有关,与元件在电路中连接⽅式⽆关。
(2)电路连接⽅式的约束。
也称拓补约束,它仅与元件在电路中连接⽅式有关,与元件性质⽆关。
基尔霍夫电流定律(KCL)、电压定律(KVL)是概括这种约束关系的基本定律。
本章学习的内容有:电路和电路模型,电流和电压的参考⽅向,电功率和能量,电路元件,电阻、电容、电感元件的数学模型及特性,电压源和电流源的概念及特点,受控源的概念及分类,结点、⽀路、回路的概念和基尔霍夫定律。
本章内容是所有章节的基础,学习时要深刻理解,熟练掌握。
预习知识:1)物理学中的电磁感应定律、楞次定律2)电容上的电压与电流、电荷与电场之间的关系内容重点:电流和电压的参考⽅向,电路元件特性和基尔霍夫定律是本章学习的重点。
难点:1)电压电流的实际⽅向和参考⽅向的联系和差别2)理想电路元件与实际电路器件的联系和差别3)独⽴电源与受控电源的联系和差别⼆、教学内容共10节:§1.1 电路和电路模型§1.2 电流和电压的参考⽅向§1.3 电功率和能量§1.4 电路元件§1.5 电阻元件§1.6 电容元件§1.7 电感元件§1.8 电压源和电流源§1.9 受控电源§1.10 基尔霍夫定律§1.1 电路和电路模型⼀、电路电路是电流的通路。
实际电路是由电阻器、电容器、线圈、变压器、⼆极管、晶体管、运算放⼤器、传输线、电池、发电机和信号发⽣器等电⽓器件和设备连接⽽成的电路。
单项选择题(共25题,共75分)1. 最大功率传输定理指出:A 使负载获得最大功率的条件是负载电阻R L小于单口网络的戴维南等效电阻R eq。
B 使负载获得最大功率的条件是负载电阻R L等于单口网络的戴维南等效电阻R eq 。
C 使负载获得最大功率的条件是负载电阻R L大于单口网络的戴维南等效电阻R eq 。
参考答案:B;考生答案:B;试题分数:3;考生得分:32. 频率特性曲线绘出A 输出量的幅值随频率变化的曲线图。
B 输出量的相位随频率变化的曲线图。
C 输出量的幅值及相位随频率变化的曲线图。
参考答案:C;考生答案:C;试题分数:3;考生得分:33. 三要素法计算方法,A 仅可用于计算一阶电路的过渡过程,但不适于计算二阶电路的过渡过程。
B 仅可用计算二阶电路的过渡过程,C 可以用计算一阶电路及二阶电路的过渡过程。
参考答案:A;考生答案:A;试题分数:3;考生得分:34. 在电路换路期间,A u c (0+)= u c (0-)B i L(0+)= i L (0-)C u c (0+)= u c (0-),i L(0+)= i L (0-)参考答案:C;考生答案:C;试题分数:3;考生得分:35. 电感线圈,其作用主要是A 主要是消耗磁场能量。
B 主要是产生磁场能量。
C 主要是存储磁场能量。
参考答案:C;考生答案:B;试题分数:3;考生得分:06. 对二阶电路的过渡过程计算中,解u c(t)= e- t(K1sin d t + K2cos d t)表示,A 过阻尼非振荡过程。
B 欠阻尼非振荡过程。
C 临界阻尼非振荡过程。
参考答案:A;考生答案:C;试题分数:3;考生得分:07. 若将电路中的各电压和电流表达为A 相量形式,电容和电感元件用瞬时值形式表示,则可得电路的相量模型。
B 瞬时值形式,电容和电感元件用阻抗形式表示,则可得电路的相量模型。
C 相量形式,电容和电感元件用阻抗形式表示,则可得电路的相量模型。
电路分析的根底知识讲解1. 电路的定义和分类电路是由电器元件〔如电源、电阻、电容、电感等〕连接而成的系统,用于控制电流和电压的流动和传递。
根据电流和电压的形式,电路可以分为直流电路和交流电路。
直流电路中电流和电压都是恒定的,而交流电路中电流和电压随时间变化。
2. 电路的根本元件2.1 电源电源是电路中的能量提供者,可以将其他形式的能量转化为电能,并提供稳定的电压或电流。
常见的电源有电池和电源适配器。
2.2 电阻电阻是电路中的消耗元件,它阻碍电流的流动。
电阻的单位是欧姆〔Ω〕。
通常用符号R表示。
在电路分析中,电阻可以用欧姆定律来描述,即电流等于电压除以电阻。
2.3 电容电容是电路中的储能元件,它能够储存电荷。
电容的单位是法拉〔F〕。
通常用符号C表示。
电容的充电和放电过程可以通过电压-电荷关系来描述。
2.4 电感电感是电路中的储能元件,它能够储存磁能。
电感的单位是亨利〔H〕。
通常用符号L表示。
电感可以通过电流和电压的变化率来描述。
3. 电路中的根本定律3.1 欧姆定律欧姆定律是电路分析中最根本的定律之一。
它描述了电流、电压和电阻之间的关系。
根据欧姆定律,电流等于电压除以电阻。
I = V / R其中,I表示电流,V表示电压,R表示电阻。
3.2 基尔霍夫定律基尔霍夫定律是电路分析中另一个重要的定律。
它分为基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律〔KCL〕描述了流入和流出节点的电流之和为零的关系。
即,一个节点的电流流入和流出的总和等于零。
基尔霍夫电压定律〔KVL〕描述了沿着闭合路径的电压之和等于零的关系。
即,一个闭合路径上的电压之和等于零。
3.3 配分定律配分定律是用来计算电路中的电流与电压分配的定律。
根据配分定律,电流在并联电路中分得越多,电压就分得越少;电压在串联电路中分得越多,电流就分得越少。
4. 电路分析方法4.1 置换律法置换律法是电路分析中常用的方法之一。
它根据电路中的对称性,将电路中的电阻、电容、电感互相替换,从而简化电路的分析过程。