TNV技术的特点分析及系统设计1
- 格式:doc
- 大小:140.50 KB
- 文档页数:6
低压配电TN-EMC系统低压配电TN-EMC系统的论文摘要:随着现代化技术的发展和城市化进程的加速,电力工程作为关键的基础设施,保障着城市的正常运转和生产生活的需要。
在这样的背景下,低压配电系统作为电力工程中的重要分支,其安全稳定性直接影响着城市的正常运行。
本文主要为大家介绍低压配电TN-EMC系统的设计及其关键技术。
关键词:低压配电、TN-EMC、系统设计、关键技术1. 引言现代化城市生活离不开电力的支撑,而低压配电系统作为电力工程中的重要分支,其贡献不可低估。
随着城市用电负荷的不断增加,在配电系统的设计和运行中,必须要考虑到电磁兼容和适应性的问题。
电磁兼容(Electromagnetic Compatibility,EMC)指的是不同电子设备之间不会因为电磁波的干扰而彼此干扰的能力。
低压配电TN-EMC系统是一种能有效保障配电设备正常运行的新型系统,其提高了低压配电设备的抗干扰能力和适应能力,在本文中将对其系统设计及关键技术进行详细阐述。
2. TN-EMC系统概述TN-EMC系统是一种新型的低压配电系统,其采用了TN型接地方式,并通过电磁屏蔽技术进行电磁干扰的抑制,从而能够更好地保障配电设备的正常稳定运行。
TN-EMC系统的一些关键技术包括:电压单相接续、电磁干扰抑制技术、熔断器保护技术、配电控制技术、多路分配技术等。
3. TN-EMC系统设计在TN-EMC系统的设计过程中,需要充分考虑到配电系统的可靠性、稳定性和安全性。
在进行设计时,还需要满足以下要求:(1)从配电变压器以及到负载的各个部分,必须采用阻抗匹配的方式进行设计,以避免电磁干扰的发生。
(2)采用熔断器保护技术,对过载、短路等电力故障进行自动保护,以保障低压配电设备的正常运行。
(3)配电系统中应用新型的开关器件和控制方式,增强其智能化、自适应性和电磁兼容性。
(4)通过对高频噪声和尖峰电流的监测和分析,确定其发生的原因,并采取相应的技术手段进行抑制。
TNV、TAR、RTO、TO、RCO到底有什么区别TNV、TAR、RTO、TO、RCO到底有什么区别TNV、TAR、RTO、TO、RCO到底有什么区别青豆网_专业有机废气(VOCs)处理技术网综合整理:上周六,小编参加了涂装VOC治理专题沙龙,会上各路大咖介绍了各种在涂装行业VOCs处理的高端应用和技术,当时听到与会的各位专家使用频率最高的几个词TNV、TAR、RTO、TO、RCO,小编也搞的一知半解,回来后只能恶补一下,到底这些高大上的东东相互之间有什么区别呢,以下是小编学习和整理的资料,供大家参考,欢迎各位专家在底部留言区纠正、补充!TNV回收式热力焚烧系统(TAR)回收式热力焚烧系统(德语Thermische Nachverbrennung 简称TNV)是利用燃气或燃油直接燃烧加热含有机溶剂的废气,在高温作用下,有机溶剂分子被氧化分解为CO2和水,产生的高温烟气通过配套的多级换热装置加热生产过程需要的空气或热水,充分回收利用氧化分解有机废气时产生的热能,降低整个系统的能耗。
因此,TNV系统是生产过程需要大量热量时,处理含有机溶剂废气高效、理想的处理方式,对于新建涂装生产线,一般采用TNV回收式热力焚烧系统。
TNV系统由三大部分组成:废气预热及焚烧系统、循环风供热系统、新风换热系统。
该系统中的废气焚烧集中供热装置(TAR)是TNV的核心部分,它由炉体、燃烧室、换热器、燃烧机及主烟道调节阀等组成。
其工作过程为:用一台高扬程风机将有机废气从烘干室内抽出,经过TAR内置的换热器预热后,到达燃烧室内,然后再通过燃烧机加热,并滞留0.7~ 1.0 s,在高温下(750℃左右)将有机废气进行氧化分解,分解后的有机废气变成CO2和水。
产生的高温烟气通过炉内的换热器和主烟气管道排出,排出的烟气作为烘干室循环风进行加热,为烘干室提供所需的热量。
在系统末端设置新风换热装置,将系统余热进行最后回收,将烘干室补充的新风用烟气加热后送入烘干室。
热回收式热力焚烧系统(TNV)及余热回收利用技术在涂装车间的应用作者:韦新明来源:《中国科技博览》2015年第26期[摘要]介绍涂装线烘干室热回收式热力焚烧系统(TNV)的工作原理、基本组成,通过实例说明热回收式热力焚烧系统(TNV)废气净化效果及余热回收效益。
[关键词]涂装线;烘干室;TNV;余热回收中图分类号:TG736 文献标识码:A 文章编号:1009-914X(2015)26-0193-02一、前言在整车生产环节中涂装线是耗能最大的生产单元,其能耗占整车生产企业能耗的50%以上,能耗的费用直接影响企业的生产成本。
国内生产涂装线的汽车生产企业由于没有废气焚烧系统及余热利用装置,烘干炉加温炉产生的高达250℃以上烟气全部排到大气中,其中的热量也随之排放掉,造成极大的能源浪费。
同时,烘干车身产生的废气没有得到处理直接排向大气,严重污染环境。
汽车涂装线全面应用废气焚烧系统及余热回收利用的节能技术,对促进汽车涂装线节能降耗,提高汽车涂装线的市场竞争力有重要的意义。
基于上述原因,我司在新基地涂装线烘干室建设中需投入废气处理及余热回收装置。
目前汽车整车生产线废气处理主要有热回收式热力焚烧系统(TNV)和蓄热式热力焚烧系统(RTO),而我司采用的是热回收式热力焚烧系统(TNV),选择理由如下:a、流程上:RTO系统是三个烘炉废气集中送至蓄热式RTO焚烧炉焚烧,直接排空,废气排空温度较高,蓄热式RTO焚烧炉占地面积大。
烘干室供热由四元体单独提供。
废气净化率达90%--95%;TNV系统是每个烘干室设一个焚烧炉,有机废气通过焚烧后,经过多个三元体换热后,最终排空废气温度较低,余热充分利用,节能,且占地面积小。
烘干室供热由三元体换热提供。
废气净化率达99%。
b、成本上:RTO通过多台四元体给烘干炉供热,TNV是通过多台三元体换热,其中四元体比三元体多一燃烧装置,成本高。
另外,TNV比RTO多两台焚烧炉,总体折算后,总价差不多。
110kV智能变电站电气设计的特点分析110kV智能变电站是电力系统中重要的设备之一,它的电气设计对于整个电力系统的安全稳定运行和高效运转起着关键的作用。
本文将就110kV智能变电站的电气设计特点进行分析,以便更好地理解其在电力系统中的作用和意义。
110kV智能变电站的电气设计特点主要包括以下几个方面:一是高可靠性;二是智能化;三是节能环保;四是便捷维护。
110kV智能变电站的电气设计具有很高的可靠性。
作为电力系统中的核心设备之一,变电站的可靠性直接关系到整个电力系统的安全稳定运行。
110kV智能变电站采用了先进的电气设备和技术,如GIS、数字化保护等,能够有效地提高设备的可靠性和运行稳定性。
智能变电站还采用了双电源供电、备用开关设备等措施,以确保设备在各种突发情况下能够及时、可靠地运行,保障电力系统的稳定供电。
110kV智能变电站具有智能化的特点。
随着信息技术的不断发展,智能化已成为各行各业的发展趋势,电力行业也不例外。
智能变电站通过引入先进的智能设备和自动化控制系统,能够实现远程监控、故障诊断、自动化运行等功能,提高了设备的智能化水平,减少了人为的操作和干预,提高了运行效率和安全性。
110kV智能变电站注重节能环保。
现代社会对于能源的节约和环境的保护要求越来越高,电力行业也在不断探索新的节能环保技术。
智能变电站在设计中充分考虑了设备的能效,采用了节能型设备和技术,如变压器的无功补偿、设备的低功耗设计等,既提高了设备的运行效率,又减少了能源的浪费,达到了节能环保的目的。
110kV智能变电站的电气设计具有便捷维护的特点。
设备的日常维护和检修对于设备的长期稳定运行至关重要。
智能变电站在设计之初就考虑了设备的可维护性,采用了模块化设计、远程诊断等技术,使得设备的维护更加便捷和高效,大大减少了维护的成本和时间。
110kV智能变电站的电气设计具有很高的可靠性、智能化、节能环保和便捷维护的特点,这些特点不仅提高了设备的运行可靠性和安全性,也符合了当今社会对于节能环保和自动化智能化的要求。
10KV箱式变电站设计方案及性能分析一、引言随着电力系统的发展和扩展,能源供应需求的不断增长,10千伏(KV)箱式变电站作为供电系统的重要组成部分,起着变压、配电和控制的重要作用。
本文将围绕10KV箱式变电站设计方案及其性能分析展开讨论。
二、设计方案1. 变电站布置设计箱式变电站由变电设备、控制设备和辅助设备组成。
在设计变电站布置时,应考虑到变电设备的类型、容量和数量,合理规划设备间的布置,确保设备之间的通风良好、维修便捷且符合安全要求。
2. 变电站容量设计根据供电系统的负荷需求和未来的扩展计划,确定箱式变电站的容量需求。
容量设计应兼顾系统安全稳定运行和经济性,合理利用设备容量,提高变电站运行效率。
3. 输电线路设计箱式变电站通过输电线路与主网连接,在设计线路时,应合理选择线路类型、导线截面和绝缘等级,确保线路传输能力满足负荷需求,并具备足够的安全裕度。
4. 变电设备选择根据变电站容量需求和输电线路负载特性,选择合适的变电设备。
常见的变电设备包括变压器、开关设备、保护设备等。
在选择过程中,应兼顾设备运行可靠性、能耗、维护保养成本等方面的考虑。
三、性能分析1. 运行可靠性分析对于10KV箱式变电站,运行可靠性是一个重要指标。
通过对变电设备的寿命分析、设备故障率、可靠性指标等进行评估,可以判断变电站的运行可靠性水平,并提出必要的改进措施。
2. 输电损耗分析输电损耗是指在输电过程中由于电线电缆材料、线路长度、导线截面等因素导致的能量损失。
通过对箱式变电站的输电线路进行损耗分析,可以评估电能传输的效率,并且优化线路设计以降低损耗。
3. 安全性分析安全是箱式变电站设计的首要考虑因素。
通过对变电设备和输电线路的安全性进行分析,可以识别潜在的安全风险,并提出相应的风险控制策略,以保障变电站的正常运行和操作人员的人身安全。
4. 维护保养成本分析箱式变电站的设备需要进行定期的维护和保养,这对于保障设备运行稳定性至关重要。
TNV技术的特点分析及系统设计作者:机械工业第九设计研究院徐丽斌TNV—热回收式热力焚烧系统是利用燃气或燃油直接燃烧加热含有机溶剂废气,在高温作用下,有机溶剂分子被氧化分解为CO2和水,高温烟气通过配套的换热装置加热生产过程需要的空气或热水,充分回收利用氧化分解有机废气时产生的热能,降低整个系统的能耗。
因此,TNV是生产过程需要大量热量时,处理高浓度有机废气和废液高效、理想的处理方式。
根据TNV技术的工作原理,我院开发设计了废气焚烧集中供热系统,用于汽车涂装车身表面烘干。
TNV系统组成TNV系统由三大部分组成:废气预热及焚烧系统——废气焚烧集中供热装置、抽废气风机以及废气管路;循环风供热系统——烟气换热装置、烟气管路及烟气管路上的电动调节阀;新风换热系统——新风换热装置、补新风风机、补新风管路及烟气排放管路,具体如图1所示。
1. 废气预热及焚烧系统该系统中的废气焚烧集中供热装置是TNV的核心部分,它由炉体、燃烧室、换热器、燃烧机及主烟道调节阀等组成(见图2)。
其工作过程为:用一台高压头风机将有机废气从烘干室内抽出,经过废气焚烧集中供热装置的内置换热器预热后,到达燃烧室内,然后再通过燃烧机加热,在高温下(750℃左右)将有机废气进行氧化分解,分解后的有机废气变成CO2和水。
产生的高温烟气通过炉内的换热器和主烟气管道排出,排出的烟气作为烘干室热源进行余热利用。
另外,在主烟气管道上还设置有电动调节阀,用于调节装置出口的烟气温度。
图2 废气焚烧集中供热装置该废气焚烧集中供热装置的特点包括:有机废气在燃烧室的逗留时间为1~2s;有机废气分解率大于99%;热回收率可达76%;燃烧器输出的调节比可达26∶1,最高可达40∶1。
2. 多级换热加热系统该系统包括几台烟气换热装置(见图3),它们被串联起来使用,利用烟气对烘干室的循环风进行加热,为烘干室提供所需的热量。
该装置采用插入式无涡壳耐热风机,顶部烟气管路自带电动调节阀,进入换热器的烟气量可以无极调节,控制灵活、运行可靠。
图3 烟气换热装置3. 新风换热系统新风换热系统的作用是用烟气加热后的新鲜风补充进烘干室内。
新风换热装置是新风换热系统中的核心部件,该装置一般放置在系统末端,其作用是将系统余热进行最后回收,将烘干室补充的新风加热后送入烘干室。
该装置的烟气出口设有电动调节阀,根据需要可以控制烟气的出口温度或新风换热后的温度。
TNV系统工作原理图4为TNV技术的原理图,其工作原理为:用风机将烘干室内的废气抽出,送入废气焚烧集中供热装置,在燃烧室内经约750℃的高温氧化燃烧,将废气完全分解,变成CO2和水,产生的高温烟气在为烘干室供热时被回收,经过多级换热后,最终排放的烟气温度可以控制在160℃左右。
图4 TNV供热系统原理TNV系统技术特点与常规供热方法相比,TNV技术具有以下特点:1. 废气处理量的选取原则与常规设计不同常规设计需要的废气处理量是按照溶剂爆炸极限计算的,虽然补充的新鲜空气量可以满足烘干室内溶剂不发生爆炸,但是室内残留的溶剂含量仍然会导致入口处空气遇冷结露滴油。
TNV系统选取的废气处理量,一般要按照烘干室所需热量来计算,这个量远大于按爆炸极限计算的废气处理量,因此相当于补入的新鲜空气量较大,这样既能满足废气处理,为烘干室提供热源,又能减少室内溶剂的浓度。
2. 多级换热常规设计废气经过废气焚烧集中供热装置焚烧处理后,仅用作1级利用,造成烟气中的热量不能被充分利用,导致排烟温度过高,不仅对设备的使用寿命造成影响,而且污染环境,浪费能源。
TNV系统使用多级换热,一般为3级或4级,废气焚烧集中供热装置本身还含有废气预热器,该预热器面积大,能将废气从烘干室内温度进一步预热,进而有效节省燃料。
3. 燃烧无需额外补充新鲜空气常规设计中,废气焚烧集中供热装置采用的燃烧机为新风助燃,加热新风需要消耗部分燃料,浪费能源。
TNV系统中废气焚烧集中供热装置燃烧机采用废气助燃方式,充分利用废气中的含氧量,不用额外再补充新鲜空气,进一步节省了燃料消耗和能源。
主要参数分析及计算下面以某汽车厂10万辆汽车涂装生产线面漆烘干室为例,分析TNV系统的主要参数选取及计算。
1. 主要参数及计算依据TNV系统中的主要参数有两个:一是烘干室所需热量(包括工作运行和冷炉升温);二是废气处理量。
根据它们,才能计算出最终烘干室需要的燃料消耗量。
图5 TNV供热模型首先需要建立一个TNV供热模型(见图5),根据供热模型可列出如下公式:Q1+Q5 =Q3+Q2+Q4 (公式1)式中,Q1是总的热量来源,即燃料实际消耗量(m3/h);Q2是最终排放掉的热量,受排放温度的影响,排放温度越低,排放掉的热量越少,即燃料利用率越高;Q3是烘干室实际需要的热量,分为工作时和冷炉升温时两种情况;Q4是补充入烘干内的热量;Q5是从烘干室内抽走的热量。
热量计算的基本公式为:Q=Vc(te-t0)(公式2)式中,V为废气处理量,c为烟气体积比热;te为烟气温度;t0为标准状况下气体温度,这里取0℃。
2. 烘干室热平衡计算分别计算出烘干室冷炉升温和工作运行时所需要的功率,即供热模型中的Q3,本面漆烘干室的计算依据及结果如表所示。
面漆烘干室的计算依据及结果从表中可以看出,Q3在工作时需要792kW,在冷炉升温时需要719kW。
这两个数据也可以作为确定该面漆烘干室需要的烟气换热装置的数量及供热能力(换热器面积大小)的依据。
3. 废气处理量的计算废气处理量的选择是TNV系统的核心环节,可根据以下三个原则来确定:保证燃料充分燃烧所需的新鲜空气量(其中含氧量)V1;保证烘干室内溶剂不爆炸所需补入的新鲜空气量,即废气处理量V2;保证烘干室的热量供给所必须要焚烧的废气处理量V3 。
(1)V1的计算,根据《工业炉设计手册》,可以查到天然气燃烧时单位理论空气消耗量,按下式计算:L0=0.264×Qd/1 000+0.02式中,Qd代表天然气热值,这里取35530。
计算结果L0=9.4Nm3/Nm3,即每燃烧1标准立方米的天然气需要消耗9.4标准立方米的新鲜空气。
V1=燃料消耗量×L0(2)V2的计算,对于连续生产的通过式烘干室,需要用下式计算:V2=2Gk/α(公式3)式中,G是进入烘干室的溶剂重量(g),此处按每小时消耗油漆量的18%取值,油漆消耗量为200kg/h;k为考虑溶剂挥发不均匀和温度有关的安全系数,当温度从90℃~200℃变化时,相应取2~5;α为溶剂蒸汽爆炸极限浓度(g/m3),此处按二甲苯的浓度取值40.32。
计算结果:V2=6 300Nm3/h(3)V3的计算,根据公式1和公式2计算:V3×c1×(750-400)+V3×c2×(150-0)= 792×860×4.18+V3×c1×(160-0)+(V3-1?000)×c2×(170-0)式中,c1为烟气体积比热,此处取1.424;c2为废气及新鲜空气体积比热,此处取1.29;750℃为废气氧化分解温度;400℃为废气预热后温度;160℃为烟气排放后温度;150℃为废气温度;170℃为新风加热后温度。
计算结果:V3=10 500 Nm3/h(4)经V2与V3的比较,选取V3作为燃料消耗量计算的参数:燃烧消耗量×35530=10500×1.424×(750-400),那么,这台面漆烘干室所需要的燃料消耗量应为150Nm3/h,因此,V1=150×9.4=1 410Nm3/h。
经过V1、V2及V3的对比,最终的废气处理量应该选取V3。
4. 新风补充量(V4)的计算V4 =10 500-1 000=9500m3/hTNV系统的设计根据上述的理论计算及烘干室所需的循环风量,该面漆烘干室TNV供热系统如图6所示。
从图6可以看出,该面漆烘干室的供热和废弃处理系统由1台废气预热及焚烧装置、3台烟气换热装置和1台新风换热装置组成。
图6 面漆烘干室供热系统原理另外,针对新涂装生产线因不达产而产生供热量过剩的情况,我们在设计中采取了在抽取废气和新风补充的管路系统上增加调节环节的措施,使此问题得以解决(见图7)。
通过设在废气管路及新风管路上的旁通调节阀,可以在不达产的情况下,减少废气处理量及新风补充量,避免因热量过剩导致排烟温度过高而造成的能源浪费。
图7 可调供热量废弃焚烧烟气供热系统原理TNV技术展望面对当前能源日趋紧张的现状,无论烘干室选用哪种新技术都要重点考虑节能、减排。
经多个项目检测,TNV技术在减排方面完全实现了达标排放,烟气排放均满足GB16297《大气污染综合排放标准》。
据了解,国内现阶段使用的涂装线应用TNV技术的烟气排放温度实际上大部分在200℃左右,烟气的热值较大。
如何降低烟气的排放温度,减少CO2的排放量,使烟气的余热得到充分利用,达到节能减排的目的是我们急需解决的问题。
为此,我们在设计上采用二次换热器回收烟气中的余热。
经过高效回收换热器,可将烟气温度降低至140℃以下,目标是达到120℃以下。
回收的热量可将生产中使用的部分热水从40℃提高到80℃以上,使烟气余热得到回收利用,实现节能减排。
另外,还可以采用热泵技术回收烟气中的余热等。
由此可见,通过进一步研究,TNV技术在处理净化有机溶剂废气的基础上,结合节能减排技术,可最大限度地利用烟气中的热量。
综上所述,对于溶剂型油漆烘干室,采用TNV技术来处理废气和为烘干室提供热源是目前最行之有效的办法之一。