特种陶瓷整理版
- 格式:doc
- 大小:30.50 KB
- 文档页数:3
特种陶瓷,又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大类。
在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能,如:电、磁、光、热、声、化学、生物等功能;以及耦合功能,如压电、热电、电光、声光、磁光等功能。
目录分类1.氧化物陶瓷2.氮化物陶瓷3.碳化物陶瓷4.硼化物陶瓷5.硅化物陶瓷6.氟化物陶瓷7.硫化物陶瓷8.其他制作工艺1.成形方法与结合剂的选择2.陶瓷注射成形和成形用结合剂3.陶瓷挤压成形和成形用结合剂发展新动向1.重要地位2.技术新发展3.应用新发展4.研究开发重点发展前景分类1.氧化物陶瓷2.氮化物陶瓷3.碳化物陶瓷4.硼化物陶瓷5.硅化物陶瓷6.氟化物陶瓷7.硫化物陶瓷8.其他制作工艺1.成形方法与结合剂的选择2.陶瓷注射成形和成形用结合剂3.陶瓷挤压成形和成形用结合剂发展新动向1.重要地位2.技术新发展3.应用新发展4.研究开发重点发展前景展开分类特种陶瓷特种陶瓷是二十世纪发展起来的,在现代化生产和科学技术的推动和培育下,它们"繁殖"得非常快,尤其在近二、三十年,新品种层出不穷,令人眼花缭乱。
按照化学组成划分有:氧化物陶瓷氧化物陶瓷:氧化铝、氧化锆、氧化镁、氧化钙、氧化铍、氧化锌、氧化钇、二氧化钛、二氧化钍、三氧化铀等。
氮化物陶瓷氮化物陶瓷:氮化硅、氮化铝、氮化硼、氮化铀等。
碳化物陶瓷碳化物陶瓷:碳化硅、碳化硼、碳化铀等。
硼化物陶瓷硼化物陶瓷:硼化锆、硼化镧等。
硅化物陶瓷硅化物陶瓷:二硅化钼等。
氟化物陶瓷氟化物陶瓷:氟化镁、氟化钙、三氟化镧等。
硫化物陶瓷硫化物陶瓷:硫化锌、硫化铈等。
其他还有砷化物陶瓷,硒化物陶瓷,碲化物陶瓷等。
除了主要由一种化合物构成的单相陶瓷外,还有由两种或两种以上的化合物构成的复合陶瓷。
例如,由氧化铝和氧化镁结合而成的镁铝尖晶石陶瓷,由氮化硅和氧化铝结合而成的氧氮化硅铝陶瓷,由氧化铬、氧化镧和氧化钙结合而成的铬酸镧钙陶瓷,由氧化锆、氧化钛、氧化铅、氧化镧结合而成的锆钛酸铅镧(PLZT)陶瓷等等。
特种陶瓷整理版第一篇:特种陶瓷整理版绪论1名词解释特种陶瓷:采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造技术加工的,便于进行结构设计,具有优异特性的陶瓷。
结构陶瓷:具有高硬、高强、耐磨、耐蚀、耐高温、润滑性好等性能,可用作机械结构零部件的陶瓷材料。
功能陶瓷:具有声、光、电、热、磁特性和化学、生物功能的陶瓷材料。
2简述特种陶瓷和传统陶瓷的区别①原材料不同。
传统陶瓷以天然矿物,如粘土、石英和长石等不加处理直接使用;而现代陶瓷则使用经人工合成的高质量粉体作起始材料,突破了传统陶瓷以粘土为主要原料的界线,代之以“高度精选的原料”。
②结构不同。
传统陶瓷的组成由粘土的组成决定,不同产地的陶瓷有不同的质地,所以由于原料的不同导致传统陶瓷材料中化学和相组成的复杂多样、杂质成分和杂质相较多而不易控制,显微结构粗劣而不够均匀,多气孔;先进陶瓷的化学和相组成较简单明晰,纯度高,即使是复相材料,也是人为调控设计添加的,所以先进陶瓷材料的显微结构一般均匀而细密。
③制备工艺不同。
传统陶瓷用的矿物经混合可直接用于湿法成型,如泥料的塑性成型和浆料的注浆成型,材料的烧结温度较低,一般为900℃-1400℃,烧成后一般不需加工;而先进陶瓷一般用高纯度粉体添加有机添加剂才能适合于干法或湿法成型,材料的烧结温度较高,根据材料不同从1200℃到2200℃,烧成后一般尚需加工。
在制备工艺上突破了传统陶瓷以炉窑为主要生产手段的界限,广泛采用诸如真空烧结、保护气氛烧结、热压、热等静压等先进手段。
④性能不同。
由于以上各点的不同,导致传统陶瓷和先进陶瓷材料性能的极大差异,不仅后者在性能上远优于前者,而且特种陶瓷材料还发掘出传统陶瓷材料所没有的性能和用途。
传统陶瓷材料一般限于日用和建筑使用,而特种陶瓷具有优良的物理力学性能,高强、高硬、耐磨、耐腐蚀、耐高温、抗热震,而且在热、光、声、电、磁、化学、生物等方面具有卓越的功能,某些性能远远超过现代优质合金和高分子材料。
特种陶瓷的相关介绍特种陶瓷是指在传统陶瓷基础上,通过改变原始的成分配比、成形工艺、烧成工艺等,制成性能优异、用途广泛、具有特殊需求的陶瓷材料。
下面将对特种陶瓷的种类、应用领域和制造工艺等进行介绍。
特种陶瓷的种类1.电子陶瓷:以氧化铝、氧化铝质玻璃、石英等为原料,制成用于半导体器件包装、介质等的电子陶瓷。
2.结构陶瓷:以氧化锆、氧化铝、碳化硅等为原料,经过加压模压、注射成型后,高温烧制而成的具有高强度、抗磨损性、耐腐蚀性等性能的结构陶瓷。
3.生物陶瓷:以氧化锆、氧化铝、磷酸三钙等为原料,经过特殊制造工艺后,制成用于人工关节、牙科医疗和植入式医疗等领域的生物陶瓷。
4.热媒体陶瓷:以氧化铝、氧化锆等为原料,经过特殊工艺处理,制成用于高温传热的热媒体陶瓷。
5.摩擦材料陶瓷:以氧化铝、氮化硅、氧化锆等为原料,经过特殊烧制工艺,制成用于汽车、飞机、铁路等领域摩擦材料的陶瓷。
特种陶瓷的应用领域1.电子领域:用于电容器、介质、射频器件、振荡器、陶瓷滤波器、压电陶瓷、声波陶瓷等领域。
2.医疗领域:用于人工关节、人牙种植体、口腔修复等领域的生物陶瓷。
3.环保领域:用于重金属和有害气体的吸附、污水处理、空气净化等领域的陶瓷。
4.新能源领域:用于氢能源技术、太阳能电池等领域的氧化锆陶瓷。
5.机械领域:用于轴承、密封、磨损件等机械领域的结构陶瓷。
特种陶瓷的制造工艺特种陶瓷的制造过程包括原料选取、配料、成型、烧结等多个工艺环节。
原料选取是关键环节,不同种类的特种陶瓷要选取不同的原料。
例如,生物陶瓷需要选用生物相容性好、生物安全性高的原料,并采用特殊的工艺进行处理,保证最终陶瓷的生物可接受性。
配料是根据要求的化学组成比配制粉末混合物的重要环节,粉末混合方法有湿法和干法两种。
成型是将混合后的陶瓷粉末通过模具成型的环节,通常包括压制、注射成型、挤出成型和印制等多种成型方式。
烧结是将成型后的陶瓷样品放入特殊的烧结设备中加热处理的环节,经过高温烧结,使得陶瓷颗粒结合更紧密、密度更高,从而得到更高的强度和硬度。
专业无机非金属材料学号43080207姓名邱海龙氧化铝陶瓷1、氧化铝陶瓷概述氧化铝陶瓷是以Al2O3为主要原料,以刚玉(α-Al2O3)为主要矿物质组成的,是一种相当重要的陶瓷材料。
1.1陶瓷的类型和性能Al2O3陶瓷通常以配料或基体中Al2O3的含量来分类。
习惯上把Al2O3含量在99%左右的陶瓷称为“99瓷”,把含量在95%和90%左右的依次称为“95瓷”和“90瓷”。
含量在85%以上的陶瓷通常称为高铝瓷,含量99%以上的称为刚玉瓷或纯刚玉瓷。
Al2O3陶瓷,特别是高铝瓷的机械强度极高,导热性能良好,绝缘强度、电阻率高,介质损耗低,介电常数一般在8~10之间,电性能随温度和频率的变化比较稳定,特别是纯度(Al2O3含量)达99.5%的刚玉瓷,直到频率高达1010Hz以上时,tgδ(介质损耗)≤1*10-4。
图1.1、图1.2和图1.3为高铝瓷的介电性能随温度和频率的变化情况,图1.4为高铝瓷的热导率随温度的变化。
为了进行对比同时显示出BeO陶瓷性能随温度和频率的变化情况。
图1.1 高铝瓷及BeO瓷的介电常数随频率的变化图1.2 高铝瓷及BeO瓷的tgδ随频率的变化图1.3 高铝瓷及BeO瓷在106和1010Hz下的tgδ随频率的变化(1)95 Al2O3 (f=106);(2) 90.5 Al2O3 (f=106) ;(3) 95 Al2O3 (f=1010) ;(4) 99 BeO(f=1010) ;(5) 99.5 Al2O3(f=1010)图1.4 高铝瓷及BeO瓷的热导率随频率的变化从图1.4可以看出,与导热性能最好的BeO陶瓷相比,高铝瓷的热导率要低得多,但是,高铝瓷的热导率还是比较高,以95瓷而论,其室温下热导率21W /(m·K)就比滑石瓷的热导率2.1W/(m·K)高一个数量级。
高铝瓷的烧结温度较高,为了降低烧结温度,降低成本,国内外都研制并生产了Al2O3含量在75%~85%之间的陶瓷。
1名词解释特种陶瓷:采用高度精选的原料,具有能精确控制的化学组成,按照便于控制的制造技术加工的,便于进行结构设计,具有优异特性的陶瓷。
粉体颗粒:指在物质的本质结构不发生改变的情况下,分散或细化而得到的固态基本颗粒。
团聚体:由一次颗粒通过表面力吸引或化学键键合形成的颗粒,它是很多一次颗粒的集合体。
胶粒:即胶体颗粒。
胶粒尺寸小于100nm,并可在液相中形成稳定胶体而无沉降现象。
6什么是固相法、气相法、液相法,简述工艺流程固相法就是以固态物质为出发原料,通过一定的物理与化学过程来制备陶瓷粉体的方法。
固相原料——配料——混合——合成——粉碎——粉体气相法是直接利用气体或者通过各种手段将物质变成气体,使之在气体状态下发生物理变化或化学反应,最后在冷却过程中凝聚长大形成粉体的方法。
蒸发-凝聚法(PVD):原料——高温气化——急冷——粉体蒸发-凝聚法是将原料加热至高温(用电弧或等离子流等加热),使之气化,接着在电弧焰和等离子焰与冷却环境造成的较大温度梯度条件下急冷,凝聚成微粒状物料的方法。
气相化学反应法(CVD):金属化合物蒸气——化学反应——粉体气相化学反应法是挥发性金属化合物的蒸气通过化学反应合成所需物质的方法。
液相合成法也称湿化学法或溶液法。
溶液法从均相的溶液出发,将相关组分的溶液按所需的比例进行充分的混合,再通过各种途径将溶质与溶剂分离,得到所需要组分的前驱体,然后将前驱体经过一定的分解合成处理,获得特种陶瓷粉体,可以细分为脱溶剂法、沉淀法、溶胶-凝胶法、水热法等。
溶液制备——溶液混合——脱水——前驱体——分解合成——粉体7常用的气相法有哪些,各有何特点(3个)一种是系统中不发生化学反应的蒸发-凝聚法(PVD),另一种是气相化学反应法(CVD)。
第三章特种陶瓷成型工艺1.简述烧结过程烧结前,陶瓷粉料在外部压力作用下,形成一定形状的、具有一定机械强度的多孔坯体。
在烧结前期,陶瓷生坯中一般含有百分之几十的气孔,颗粒之间只有点接触。
在表面能减少的推动力下,物质通过不同的扩散途径向颗粒间的颈部和气孔部位填充,使颈部渐渐长大,并逐步减少气孔所占的体积,细小的颗粒之间开始逐渐形成晶界,并不断扩大晶界的面积,使坯体变得致密化。
在这个相当长的过程中,连通气孔不断缩小;两个颗粒之间的晶界与相邻晶界相遇,形成晶界网络;晶界移动,晶粒逐步长大。
其结果是气孔缩小,致密化程度提高,直至气孔相互不再连通,形成孤立的气孔分布于几个晶粒相交的位置。
这时坯体的密度达到理论密度的90%以上。
接着进入烧结后期阶段,孤立的气孔扩散填充,使致密化继续进行,同时晶粒继续均匀长大,一般气孔随晶界一起移动,直至致密化,得到致密的陶瓷材料。
2.常用的烧结方法,各有何特点1、低温烧结这种方法可以降低能耗,使产品价格降低。
2、热压烧结如果加热粉体的同时进行加压,那么烧结主要取决于塑性流动,而不是扩散。
对于同一材料而言,压力烧结与常压烧结相比,烧结温度低得多,而且烧结体中气孔率也低。
另外,由于在较低的温度下烧结,就抑制了晶粒成长,所得的烧结体致密,且具有较高的强度(晶粒细小的陶瓷,强度较高)。
3、气氛烧结对于空气中很难烧结的制品(如透光体或非氧化物),为防止其氧化等可采用气氛烧结。
4、其他烧结方法(1)电场烧结(可获得有压电性的陶瓷样品(2) 超高压烧结其特点是,不仅能够使材料迅速达到高密度,具有细晶粒(小于1μm),而且使晶体结构甚至原子、电子状态发生变化,从而赋予材料在通常烧结或热压烧结工艺下所达不到的性能。
而且可以合成新型的人造矿物。
此工艺比较复杂,对模具材料、真空密封技术以及原料的细度和纯度均要求较高。
(3) 活化烧结它具有降低烧结温度,缩短烧结时间、改善烧结效果等优点。
(4) 活化热压烧结是一种高效率的热压技术。
3.烧结过程易出现的主要问题应力集中,裂纹,收缩,塌陷,气孔,结石4.试述烧结过程中的物质传递机理在高温过程中,由于表面曲率不同,必然在系统的不同部位有不同的蒸气压,于是通过气相有一种传质趋势,这种传质过程仅仅在高温下蒸气压较大的系统内进行,如氧化铅、氧化铍和氧化铁的烧结。
物质将从蒸气压高的凸形颗粒表面蒸发,通过气相传递而凝聚到蒸气压低的凹形颈部,从而使颈部逐渐被填充。
蒸发-凝聚传质的特点是烧结时颈部区域扩大,球的形状改变为椭圆,气孔形状改变,但球与球之间的中心距不变,也就是在这种传质过程中坯体不发生收缩。
气孔形状的变化对坯体一些宏观性质有可观的影响,但不影响坯体密度。
气相传质过程要求把物质加热到可以产生足够蒸气压的温度。
对于几微米的粉末体,要求蒸气压最低为10~1Pa,才能看出传质的效果。
而烧结氧化物材料往往达不到这样高的蒸气压,如A1203在1200℃时蒸气压只有10-41Pa,因而一般硅酸盐材料的烧结中这种传质方式并不多见。
在高温下挥发性小的陶瓷原料,其物质主要通过表面扩散和体积扩散进行传递,烧结是通过扩散来实现的。
目前主要的扩散机理:(1)直接交换。
相邻同种离子交换位置。
由于这种扩散的活化能大,一般情况下很难发生。
(2)空穴迁移。
靠近空穴的离子,移动到空穴位置,相当于空穴沿相反方向移动。
(3)间隙迁移。
在间隙位置的离子,通过空的间隙位置进行移动。
(4)准间隙迁移。
间隙离子把正常位置的离子推到其它的间隙位置,占据正常的晶格位置。
(5)循环移动。
离子作为一个集团同时移动,由于引起点阵畸变小,扩散活化能也小。
在扩散传质中要达到颗粒中心距离缩短必须有物质向气孔迁移,气孔作为空位源,空位进行反向迁移。
颗粒点接触处的应力促使扩散传质中物质的定向迁移。
颗粒不同部位空位浓度不同,颈表面张应力区空位浓度大于晶粒内部,受压应力的颗粒接触中心空位浓度最低。
空位浓度差是自颈到颗粒接触点大于颈至颗粒内部。
系统内不同部位空位浓度的差异对扩散时空位的漂移方向是十分重要的。
扩散首先从空位浓度最大部位(颈表面)向空位浓度最低的部位(颗粒接触点)进行。
其次是颈部向颗粒内部扩散。
空位扩散即原子或离子的反向扩散。
因此,扩散传质时,原子或离子由颗粒接触点向颈部迁移,达到气孔充填的结果。
扩散可以沿颗粒表面进行,也可以沿着两颗粒之间的界面进行或在晶粒内部进行,我们分别称为表面扩散、界面扩散和体积扩散。
不论扩散途径如何,扩散的终点是颈部。
当晶格内结构基元(原子或离子)移至颈部,原来结构基元所占位置成为新的空位,晶格内其它结构基元补充新出现的空位,就这样以“接力”方式物质向内部传递而空位向外部转移。
空位在扩散传质中可以在以下三个部位消失:自由表面、内界面(晶界)和位错。
随着烧结进行,晶界上的原子(或离子)活动频繁,排列很不规则,因此晶格内空位一旦移动到晶界上,结构基元的排列只需稍加调整空位就易消失。
随着颈部填充和颗粒接触点处结构基元的迁移出现了气孔的缩小和颗粒中心距逼近。
表现在宏观上则气孔率下降和坯体的收缩。
液相烧结的基本原理与固相烧结有类似之处,推动力仍然是表面能。
不同的是烧结过程与液相量、液相性质、固相在液相中的溶解度、润湿行为有密切关系。
因此,液相烧结动力学的研究比固相烧结更为复杂。
(1)粘性流动在液相含量很高时,液相具有牛顿型液体的流动性质,这种粉体的烧结比较容易通过粘性流动而达到平衡。
除有液相存在的烧结出现粘性流动外,弗仑克认为,在高温下晶体颗粒也具有流动性质,它与非晶体在高温下的粘性流动机理是相同的。
在高温下物质的粘性流动可分为两个阶段:第一阶段,物质在高温下形成粘性流体,相邻颗粒中心互相逼近,增加接触面积,接着发生颗粒间的粘合作用和形成一些封闭气孔;第二阶段,封闭气孔的粘性压紧,即小气孔在玻璃相包围压力作用下,由于粘性流动而密实化。
而决定烧结致密化速率主要有三个参数:颗粒起始粒径、粘度、表面张力。
原料的起始粒度与液相粘度这两项主要参数是相互配合的,它们不是孤立地起作用,而是相互影响的。
为了使液相和固相颗粒结合更好,液相粘度不能太高,若太高,可用加入添加剂降低粘度及改善固-液相之间的润湿能力。
但粘度也不能太低,以免颗粒直径较大时,重力过大而产生重力流动变形。
也就是说,颗粒应限制在某一适当范围内,使表面张力的作用大于重力的作用,所在液相烧结中,必须采用细颗粒原料且原料粒度必须合理分布。
(2)塑性流动在高温下坯体中液相含量降低,而固相含量增加,这时烧结传质不能看成是牛顿型流体,而是属于塑性流动的流体,过程的推动力仍然是表面能。
为了尽可能达到致密烧结,应选择尽可能小的颗粒、粘度及较大的表面能。
在固-液两相系统中,液相量占多数且液相粘度较低时,烧结传质以粘性流动为主,而当固相量占多数或粘度较高时则以塑性流动为主。
实际上,烧结时除有不同固相、液相外,还有气孔存在,因此实际情况要复杂得多。
塑性流动传质过程中纯固相烧结中同样也存在,可以认为晶体在高温、高压作用下产生流动是由于晶体晶面的滑移,即晶格间产生位错,而这种滑移只有超过某一应力值才开始。
在烧结时固、液两相之间发生如下传质过程:细小颗粒(其溶解度较高)以及一般颗粒的表面凸起部分溶解进入液相,并通过液相转移到粗颗粒表面(这里溶解度较低)而沉淀下来。
这种传质过程发生于具有下列条件的物系中:有足量的液相生成;液相能润湿固相;固相在液相中有适当的溶解度。
而传质过程是以下列方式进行的:首先,随着烧结温度提高,出现足够量液相。
固相颗粒分散在液相中,在液相毛细管的作用下,颗粒相对移动,发生重新排列,得到一个更紧密的堆积,结果提高了坯体的密度。
这一阶段的收缩量与总收缩的比取决于液相的数量。
当液相数量大于35%(体积)时,这一阶段是完成坯体收缩的主要阶段,其收缩率相当于总收缩率的60%左右。
第二,被薄的液膜分开的颗粒之间搭桥,在接触部位有高的局部应力导致塑性变形和蠕变。
这样促进颗粒进一步重排。
第三,是通过液相的重结晶过程。
这一阶段特点是细小颗粒和固体颗粒表面凸起部分的溶解,通过液相转移并在粗颗粒表面上析出。
在颗粒生长和形状改变的同时,使坯体进一步致密化。
颗粒之间有液相存在时颗粒互相压紧,颗粒间有压力作用下又提高了固体物质在液相中的溶解度。
如:Si3N4是高度共价键结合的化合物,共价键程度约占70%,体扩散系数(bulk diffu-sion coefficient)不到10-7cm2/s,因此纯Si3N4很难进行固相烧结,而必须加入添加剂,如MgO,Y2O3,Al2O3等,这样在高温时它们和α-Si3N4颗粒表面的SiO2形成硅酸盐液相,并能润湿和溶解α-Si3N4,在烧结温度下,析出β- Si3N4。
外加剂(添加剂)对烧结有何影响外加剂与烧结主体形成固溶体、成液相、化合物、外加剂阻止多晶转变、外加剂起到扩大烧结范围的作用。