2017届九年级数学上学期期末考试试题
- 格式:doc
- 大小:732.00 KB
- 文档页数:12
九年级上册数学期末试卷(附答案解析)2017九年级数学上册期末试卷(含答案)一.选择题(共12小题,每小题4分,满分48分)1.若x:y=6:5,则下列等式中不正确的是( )A. B. C. D.2.二次函数y=x2﹣2x﹣2与坐标轴的交点个数是( )A.0个B.1个C.2个D.3个3.如图,在平行四边形ABCD中,E为CD上一点,DE:CE=2:3,连结AE,BD交于点F,则S△DEF:S△ADF:S△ABF等于( )A.2:3:5B.4:9:25C.4:10:25D.2:5:254.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A. B. C. D.5.如图,一根5m长的绳子,一端拴在互相垂直的围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是( )A. πm2B. πm2C. πm2D. πm26.二次函数y=ax2﹣2x﹣3(a0;(4)(a+c)2其中不正确的有( )A.1个B.2个C.3个D.4个9.某块面积为4000m2的多边形草坪,在嘉兴市政建设规划设计图纸上的面积为250cm2,这块草坪某条边的长度是40m,则它在设计图纸上的长度是( )A.4cmB.5cmC.10cmD.40cm10.抛物线y=﹣(x﹣2)2+1经过平移后与抛物线y=﹣(x+1)2﹣2重合,那么平移的方法可以是( )A.向左平移3个单位再向下平移3个单位B.向左平移3个单位再向上平移3个单位C.向右平移3个单位再向下平移3个单位D.向右平移3个单位再向上平移3个单位11.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是( )A. B. C. D.12.如图,等腰Rt△ABC(∠ACB=90°)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )A. B. C. D.二.填空题(共6小题,每小题4分,满分24分)13.已知弦AB把圆周分成1:5的两部分,则弦AB所对的圆心角的度数为__________.14.如图,将弧AC沿弦AC折叠交直径AB于圆心O,则弧AC=__________度.15.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A.B.C.D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为__________.16.如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为__________.17.如图,A.D.E是⊙O上的三个点,且∠AOD=120°,B.C是弦AD上两点,BC= ,△BCE是等边三角形.若设AB=x,CD=y,则y与x的函数关系式是__________.18.如图,在Rt△ABC中,∠ABC=90°,BA=BC,点D是AB的中点,连结CD,过点B作BG⊥CD,分别交CD.CA于点E,F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:① ;②FG=FB;③AF= ;④S△ABC=5S△BDF,其中正确结论的序号是__________. 共10页:上一页xxxx下一页。
2017年初三数学上期末试卷加油!脚踏实地,心无旁骛,珍惜分分秒秒。
紧跟老师,夯实基础。
辛苦一月,收益一生,相信自己,你是最棒的。
祝你九年级数学期末考试取得好成绩,期待你的成功!小编整理了关于2017年初三数学上期末试卷,希望对大家有帮助!2017年初三数学上期末试题一、选择题(每小题3分,共21分)1.一元二次方程x(x﹣1)=0的解是( )A.x=0B.x=1C.x=0或x=﹣1D.x=0或x=12.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为( )A.30°B.45°C.90°D.135°3.如图,在半径为5的⊙O中,如果弦AB的长为8,那么它的弦心距OC等于( )A.2B.3C.4D.64.已知反比例函数y= ,下列结论不正确的是( )A.图象经过点(1,1)B.图象在第一、三象限C.当x>1时,0D.当x<0时,y随着x的增大而增大5.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是 .如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子( )A.8颗B.6颗C.4颗D.2颗6.如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD 于点F,则EF:FC等于( )A.3:2B.3:1C.1:1D.1:27.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x 的一元二次方程x2+bx﹣t=0(t为实数)在﹣1A.t≥﹣1B.﹣1≤t<3C.﹣1≤t<8D.3二、填空题(每小题3分,共24分)8.已知关于x的方程x2+mx﹣6=0的一个根为2,则m= ,另一个根是.9.张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为米.10.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是°.11.如图,已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2),当y随x的增大而增大时,x的取值范围是.12.如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E 所经过的路径长为cm.13.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为.14.从3,0,﹣1,﹣2,﹣3这五个数中,随机抽取一个数,作为函数y=(5﹣m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为.15.如图,点A,B的坐标分别为(1,4)和(4,4),抛物线y=a(x﹣m)2+n的顶点在线段AB上运动,与x轴交于C、D两点(C在D的左侧),点C的横坐标最小值为﹣3,则点D的横坐标最大值为.三、解答下列各题(共75分)16.解方程:(1)x2﹣4x+4=5(2)y2+3y+1=0.17.如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.(1)求证:PC是半⊙O的切线;(2)若∠CAB=30°,AB=10,求线段BF的长.18.在平面直角坐标系中,△ABC的顶点坐标是A(﹣7,1),B(1,1),C(1,7).线段DE的端点坐标是D(7,﹣1),E(﹣1,﹣7).(1)试说明如何平移线段AC,使其与线段ED重合;(2)将△ABC绕坐标原点O逆时针旋转,使AC的对应边为DE,请直接写出点B的对应点F的坐标;(3)画出(2)中的△DEF,并和△ABC同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.19.如图,在平面直角坐标系中,边长为2的正方形ABCD关于y 轴对称,边AD在x轴上,点B在第四象限,直线BD与反比例函数y= 的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.20.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树状图或列表法中的一种列举出这辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ABD≌△OBC;(2)若AB=2,BC= ,求AD的长.22.一个圆形喷水池的中心竖立一根高为2.25m顶端装有喷头的水管,喷头喷出的水柱呈抛物线形.当水柱与池中心的水平距离为1m时,水柱达到最高处,高度为3m.(1)求水柱落地处与池中心的距离;(2)如果要将水柱的最大高度再增加1m,水柱的最高处与池中心的水平距离以及落地处与池中心的距离仍保持不变,那么水管的高度应是多少?23.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1x2﹣1,求k的值.24.如图,二次函数y= x2+c的图象经过点D(﹣,),与x轴交于A,B两点.(1)求c的值;(2)如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;(3)设点P,Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P,Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由(图②供选用).。
温州市九年级(上)期末数学试卷一、选择题(本题共12个小题,每小题4分,共48分)1.必然事件的概率是()A.1 B.0 C.大于0且小于1 D.大于1 2.三角形的外心是两条()A.中线的交点B.高的交点C.角平分线的交点D.边的中垂线的交点3.Rt△ABC中,∠C=90°,AC=3,BC=4,则sinB等于()A.B.C.D.4.下列两个三角形不一定相似的是()A.两个等边三角形B.两个全等三角形C.两个等腰直角三角形D.有一个30°角的两个等腰三角形5.二次函数y=﹣x2﹣2x+3的图象大致是()A.B.C.D.6.下列说法正确的是()A.天气预报明天下雨的概率是99%,说明明天一定会下雨B.从正方形的四个顶点中,任取三个连成三角形,事件“这个三角形是等腰三角形”是随机事件C.某同学连续10次投掷质量均匀的硬币,3次正面向上,因此正面向上的概率是D.事件A发生的概率是,若在相同条件下重复试验,则做100次这种实验,事件A可能发生7次7.说明命题“平分弦的直径垂直于弦”是假命题的反例可以是()A.弦和直径平行B.弦和直径垂直C.两条不垂直的直径D.两条垂直的直径8.如图,AB是⊙O的直径,弦CD⊥AB于E,CD=16,EB=4,则AE=()A.20 B.18 C.16 D.149.如图,锐角△ABC内接于⊙O,AO=3,AC=4,则tanB=()A .B .C .D .10.AD 是△ABC 的中线,E 是AD 上一点,AE :ED=1:3,BE 的延长线交AC 于F ,AF :FC=( )A .1:3 B .1:4 C .1:5 D .1:611.三条线段a ,b ,c 中,b 是a ,c 的比例中项,则a ,b ,c ( ) A .一定能构成三角形 B .一定不能构成三角形C .不一定能构成三角形D .不能构成直角三角形12.如图,A ,B ,C 在⊙O 上,AB 是⊙O 内接正六边形一边,BC 是⊙O 内接正十边形的一边,若AC 是⊙O 内接正n 边形的一边,则n 等于( ) A .12 B .15 C .18 D .20二、填空题(每小题4分,共24分)13.若α是锐角,且tanα=,则α= 度.14.在同样的条件下对某种小麦进行发芽试验,统计发芽种子数,获得频数及频率如下表:由表估计该麦种的发芽概率是 .15.若点A (﹣3,y 1)、B (0,y 2)是二次函数y=﹣2(x ﹣1)2+3图象上的两点,那么y 1与y 2的大小关系是 (填y 1>y 2、y 1=y 2或y 1<y 2).16.如图,D ,E 分别在AB ,AC 上,DE ∥BC ,AD=3,BD=9,DE=2,则BC= .17.如图,△ABO中,点O是坐标原点,A(2,2),B(4,2),点C在x轴正半轴上,O,B,C三点所构成的三角形与△ABO相似,则点C的坐标是.18.如图,点P(1,2),⊙P经过原点O,交y轴正半轴于点A,点B在⊙P上,∠BAO=45°,则点B的坐标是.三、解答题(本大题共8小题,共78分)19.如图,一个转盘被分成3等分,每一份上各写有一个数字,随机转动转盘2次,第一次转到的数字数字为十位数字,第二次转到的数字为个位数字,2次转动后组成一个两位数(若指针停在等分线上则重新转一次)(1)用画树状图的方法求出转动后所有可能出现的两位数的个数.(2)甲、乙两人做游戏,约定得到的两位数是偶数时甲胜,否则乙胜,这个游戏公平吗?请说明理由.20.已知二次函数y=x2﹣2x2﹣3(1)求此函数图象与坐标轴的交点坐标.(2)函数图象向上平移n个单位后,与坐标轴恰有两个公共点,求n的值.21.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼五楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD=12米,求旗杆AB的高度.22.如图,在△ABC中,D、E分别是AB、AC上的点,AE=4,AB=6,AD:AC=2:3,△ABC的角平分线AF交DE于点G,交BC于点F.(1)请你直接写出图中所有的相似三角形;(2)求AG与GF的比.23.如图,AB是⊙O的直径,点D是的中点,CD与BA的延长线交于E,BD 与AC交于点F.(1)求证:DC2=DF•DB;(2)若AE=AO,CD=2,求ED的长.24.某家禽养殖场,用总长为80m的围栏靠墙(墙长为20m)围成如图所示的三块面积相等的矩形区域,设AD长为xm,矩形区域ABCD的面积为ym2.(1)请直接写出GH的长(用含x的代数式表示)(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?25.定义:如图1,D,E在△ABC的边BC上,若△ADE是等边三角形则称△ABC 可内嵌,△ADE叫做△ABC的内嵌三角形.(1)直角三角形可内嵌.(填写“一定”、“一定不”或“不一定”)(2)如图2,在△ABC中,∠BAC=120°,△ADE是△ABC的内嵌三角形,试说明AB2=BD•BC是否成立?如果成立,请给出证明;如果不一定成立,请举例说明.(3)在(2)的条件下,如果AB=1,AC=2,求△ABC的内嵌△ADE的边长26.如图1,抛物线y=﹣x2+bx+c与x轴交于点A(4,0)和点B(﹣1,0),与y轴交于点C(1)求抛物线的解析式.(2)若点E为抛物线在第一象限上的一点,过点E作EF⊥x轴于点F,交AC于点H,当线段EH=FH时,求点E的坐标.(3)如图2,若CE∥x轴交抛物线于点E,过点E作ER⊥x轴,垂足为点R,G 是线段OR上的动点,ES⊥CG,垂足为点S.①当△ESR是等腰三角形时,求OG的长.②若点B1与点B关于直线CG对称,当EB1的长最小时,直接写出OG的长.2016-2017学年浙江省宁波市慈溪市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题4分,共48分)1.必然事件的概率是()A.1 B.0 C.大于0且小于1 D.大于1【考点】概率的意义.【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可解答.【解答】解:∵必然事件就是一定发生的事件∴必然事件发生的概率是1.故选:A.2.三角形的外心是两条()A.中线的交点B.高的交点C.角平分线的交点 D.边的中垂线的交点【考点】三角形的外接圆与外心.【分析】根据三角形的外心的定义解答即可.【解答】解:∵三角形三边垂直平分线的交点叫三角形的外心,∴三角形的外心是三角形的两边垂直平分线的交点.故选:D.3.Rt△ABC中,∠C=90°,AC=3,BC=4,则sinB等于()A.B.C.D.【考点】锐角三角函数的定义;勾股定理.【分析】本题需先根据已知条件,得出AB的长,再根据锐角三角函数的定义即可求出本题的答案.【解答】解:∵Rt△ABC中,AC=3,BC=4,∴AB=5,∴sinB=,=.故选B.4.下列两个三角形不一定相似的是()A.两个等边三角形B.两个全等三角形C.两个等腰直角三角形D.有一个30°角的两个等腰三角形【考点】相似三角形的判定.【分析】依据有两组角对应相等的两个三角形相似进行判断即可.【解答】解:A、两个等边三角形三组角对应相等,所以它们一定相似;B、两个全等三角形的三组角对应相等,所以它们一定相似;C、两个等腰直角三角形三组角对应相等,所以它们一定相似;D、当一个三角形的三个角分为30°,30°,120°,另一个三角形的三个角为30°,75°,75°时,两个三角形不相似.故选:D.5.二次函数y=﹣x2﹣2x+3的图象大致是()A.B.C.D.【考点】二次函数的图象.【分析】利用二次函数的开口方向和顶点坐标,结合图象找出答案即可.【解答】解:二次函数y=﹣x2﹣2x+3=﹣(x+1)2+4中,a=﹣1<0,图象开口向下,顶点坐标为(﹣1,4),符合条件的图象是A.故选:A.6.下列说法正确的是()A.天气预报明天下雨的概率是99%,说明明天一定会下雨B.从正方形的四个顶点中,任取三个连成三角形,事件“这个三角形是等腰三角形”是随机事件C.某同学连续10次投掷质量均匀的硬币,3次正面向上,因此正面向上的概率是D.事件A发生的概率是,若在相同条件下重复试验,则做100次这种实验,事件A可能发生7次【考点】随机事件.【分析】根据事件的确定性和不确定性,以及随机事件的含义和特征,逐项判断即可.【解答】解:∵天气预报明天下雨的概率是99%,说明明天下雨的可能性大,但不是一定会下雨,∴选项A不正确;∵从正方形的四个顶点中,任取三个连成三角形,事件“这个三角形是等腰三角形”是必然事件,∴选项B不正确;∵某同学连续10次投掷质量均匀的硬币,3次正面向上,并不能说明正面向上的概率是,∴选项C不正确;∵事件A发生的概率是,若在相同条件下重复试验,则做100次这种实验,事件A可能发生7次,∴选项D正确.故选:D.7.说明命题“平分弦的直径垂直于弦”是假命题的反例可以是()A.弦和直径平行B.弦和直径垂直C.两条不垂直的直径D.两条垂直的直径【考点】命题与定理.【分析】根据垂径定理的推论解答即可.【解答】解:命题“平分弦的直径垂直于弦”是假命题的反例可以是两条不垂直的直径,故选:C.8.如图,AB是⊙O的直径,弦CD⊥AB于E,CD=16,EB=4,则AE=()A.20 B.18 C.16 D.14【考点】垂径定理;勾股定理.【分析】连结OC,设⊙O的半径为R,先根据垂径的定理得到CE=8,再根据勾股定理得到R2=(R﹣4)2+82,解得R=10,然后利用AE=2R﹣4进行计算.【解答】解:连结OC,如图,设⊙O的半径为R,∵AB⊥弦CD,∴CE=DE=CD=×16=8,在Rt△OCE中,OC=R,OE=R﹣4,∵OC2=OE2+CE2,∴R2=(R﹣4)2+82,解得R=10,∴AE=AB﹣EB=2×10﹣4=16.故选C.9.如图,锐角△ABC内接于⊙O,AO=3,AC=4,则tanB=()A.B.C.D.【考点】三角形的外接圆与外心;解直角三角形.【分析】延长AO交⊙O于D,连接CD,根据圆周角定理求出∠B=∠D,∠ACD=90°,根据勾股定理求出CD,解直角三角形求出即可.【解答】解:延长AO交⊙O于D,连接CD,由圆周角定理得:∠B=∠D,∠ACD=90°,∵AC=4,AO=3=OD,∴由勾股定理得:CD===2,∴tanB=tanD===,故选D.10.AD是△ABC的中线,E是AD上一点,AE:ED=1:3,BE的延长线交AC于F,AF:FC=()A.1:3 B.1:4 C.1:5 D.1:6【考点】平行线分线段成比例.【分析】作DH∥BF交AC于H,根据三角形中位线定理得到FH=HC,根据平行线分线段成比例定理得到==,计算得到答案.【解答】解:作DH∥BF交AC于H,∵AD是△ABC的中线,∴FH=HC,∵DH∥BF,∴==,∴AF:FC=1:6,故选:D.11.三条线段a,b,c中,b是a,c的比例中项,则a,b,c()A.一定能构成三角形B.一定不能构成三角形C.不一定能构成三角形D.不能构成直角三角形【考点】比例线段.【分析】根据比例的性质,可得b,根据三角形边的关系,可得答案.【解答】解:由题意,得b=,当a=2,c=4时,b=2,a+b=2+2>4,即b是a,c的比例中项,则a,b,c 能构成三角形;当a=3,c=12时,b=6,a+b=3+6=9<12,b是a,c的比例中项,则a,b,c不能构成三角形,故选:C.12.如图,A,B,C在⊙O上,AB是⊙O内接正六边形一边,BC是⊙O内接正十边形的一边,若AC是⊙O内接正n边形的一边,则n等于()A.12 B.15 C.18 D.20【考点】正多边形和圆.【分析】根据中心角的度数=360°÷边数,列式计算分别求出∠AOB,∠BOC的度数,则∠AOC=24°,则边数n=360°÷中心角.【解答】解:连接OC,AO,BO,∵AB是⊙O内接正六边形的一边,∴∠AOB=360°÷6=60°,∵BC是⊙O内接正十边形的一边,∴∠BOC=360°÷10=36°,∴∠AOC=∠AOB﹣∠BOC=60°﹣36°=24°,∴n=360°÷24°=15;故选:B.二、填空题(每小题4分,共24分)13.若α是锐角,且tanα=,则α= 60 度.【考点】特殊角的三角函数值.【分析】根据特殊角三角函数值,可得答案.【解答】解:α是锐角,且tanα=,则α=60°, 故答案为:60.14.在同样的条件下对某种小麦进行发芽试验,统计发芽种子数,获得频数及频率如下表:由表估计该麦种的发芽概率是 0.95 .【考点】利用频率估计概率.【分析】根据7批次种子粒数从1粒增加到3000粒时,种子发芽的频率趋近于0.95,所以估计种子发芽的概率为0.95.【解答】解:∵种子粒数3000粒时,种子发芽的频率趋近于0.95,∴估计种子发芽的概率为0.95.故答案为:0.95.15.若点A (﹣3,y 1)、B (0,y 2)是二次函数y=﹣2(x ﹣1)2+3图象上的两点,那么y 1与y 2的大小关系是 y 1<y 2 (填y 1>y 2、y 1=y 2或y 1<y 2).【考点】二次函数图象上点的坐标特征.【分析】分别计算自变量为﹣2、3时的函数值,然后比较函数值的大小即可.【解答】解:当x=﹣3时,y 1=﹣2(x ﹣1)2+3=﹣29;当x=0时,y 2=﹣2(x ﹣1)2+3=1;∵﹣29<1,∴y1<y2,故答案为:y1<y2.16.如图,D,E分别在AB,AC上,DE∥BC,AD=3,BD=9,DE=2,则BC=8.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,得到△ADE∽△ABC,根据相似三角形的性质得到比例式,代入计算即可.【解答】解:∵AD=3,BD=9,∴AB=AD+BD=12,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,解得,BC=8,故答案为:8.17.如图,△ABO中,点O是坐标原点,A(2,2),B(4,2),点C在x轴正半轴上,O,B,C三点所构成的三角形与△ABO相似,则点C的坐标是(2,0)或(10,0).【考点】相似三角形的判定;坐标与图形性质.【分析】分两种情形讨论即可①△BOC∽△OBA.②△BOC′∽△OBA分别计算即可.【解答】解:如图,∵A(2,2),B(4,2),∴AB∥x,AB=2,OB==2,①当BC∥OA时,∵∠AOB=∠CBO,∠ABO=∠BOC,∴△BOC∽△OBA,∵AB∥OC,BC∥OA,∴四边形OABC是平行四边形,∴OC=AB=2,∴C(2,0).②当△BOC′∽△OBA时,=,∴=,∴OC′=10,∴C′(10,0),故答案为(2,0)或(10,0).18.如图,点P(1,2),⊙P经过原点O,交y轴正半轴于点A,点B在⊙P上,∠BAO=45°,则点B的坐标是(3,1)或(﹣1,3).【考点】圆周角定理;坐标与图形性质.【分析】作辅助线,先利用勾股定理求圆P的半径为,根据已知中的∠BAO=45°可知,两个满足条件的点B的连线就是圆P的直径,由此证明△B1OG≌△B2OH,设B1(x,y),则OG=x,B1G=y,从而列方程组可求出x、y的值,写出符合条件的点B的坐标.【解答】解:连接OP,过P作PE⊥x轴于E,∵P(1,2),∴OE=1,PE=2,由勾股定理得:OP==,过A作MN⊥y轴,分别作∠MAO、∠NAO的平分线交⊙P于B1、B2,则∠B1AO=45°,∠B2AO=45°,∴∠B2AB1=90°,连接B1B2,则B1B2是⊙P的直径,即过点P,∴B1B2=2,∴∠B2OB1=90°,∵∠OB2B1=∠B1AO=45°,∴△B1B2O是等腰直角三角形,∴OB1=OB2==,过B1作B1G⊥x轴于G,过B2作B2H⊥y轴于H,∴∠OGB1=∠OHB2=90°,∵∠GOB1+∠AOB1=90°,∠B2OH+∠AOB1=90°,∴∠GOB1=∠B2OH,∴△B1OG≌△B2OH,∴B1G=B2H,OG=OH,设B1(x,y),则OG=x,B1G=y,∵∠B2AO=45°,∴△AB2H是等腰直角三角形,∴B2H=AH=B1G=y,∴AO=AH+OH=x+y=4,则,解得:,∵PB=,∴x=1,y=3不符合题意,舍去,∴B1(3,1),B2(﹣1,3),则点B的坐标为(3,1)或(﹣1,3),故答案为:(3,1)或(﹣1,3).三、解答题(本大题共8小题,共78分)19.如图,一个转盘被分成3等分,每一份上各写有一个数字,随机转动转盘2次,第一次转到的数字数字为十位数字,第二次转到的数字为个位数字,2次转动后组成一个两位数(若指针停在等分线上则重新转一次)(1)用画树状图的方法求出转动后所有可能出现的两位数的个数.(2)甲、乙两人做游戏,约定得到的两位数是偶数时甲胜,否则乙胜,这个游戏公平吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)直接利用已知画出树状图,进而得出所有的可能;(2)利用(1)中所求,进而求出甲、乙两人获胜的概率.【解答】解:(1)树状图如图所示:两位数有:11,12,13,21,23,22,31,32,33,一共有9个两位数;(2)两位数是偶数的有:3种,故P(甲胜)==,P(乙胜)==.则这个游戏不公平.20.已知二次函数y=x2﹣2x2﹣3(1)求此函数图象与坐标轴的交点坐标.(2)函数图象向上平移n个单位后,与坐标轴恰有两个公共点,求n的值.【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】(1)根据坐标轴上点的坐标特征,解一元二次方程即可;(2)分抛物线与坐标轴交于原点和x轴上一点、与x轴、y轴各有一个交点两种情况进行解答即可.【解答】解:(1)当y=0时,x2﹣2x2﹣3=0,解得,x1=﹣1,x2=3,∴抛物线与x轴交点(﹣1,0),(3,0),当x=0时,y=﹣3,∴抛物线与y轴交点(0,﹣3);(2)当函数图象向上平移3个单位后,得到函数解析式为:y=x2﹣2x2,与坐标轴交于(0,0)和(2,0)两点,y=x2﹣2x2﹣3=(x﹣1)2﹣4,函数图象向上平移4个单位后,y=(x﹣1)2,与x轴、y轴各有一个交点,故n=3或4.21.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60°,在教学楼五楼D处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD=12米,求旗杆AB的高度.【考点】解直角三角形的应用﹣仰角俯角问题.【分析】过D作DH⊥AB于H,设BH=xm,根据正切的定义求出DH、AC、AB,根据题意列出方程,解方程即可.【解答】解:过D作DH⊥AB于H,设BH=xm,在Rt△BDH中,tan∠BDH=,∴DH==x,∴AC=x,在Rt△ABC中,tan∠ACB=,∴AB=AC•tan60°=3x,∵AH=CD=12∴3x﹣x=12,解得,x=6,答:旗杆AB的高度为18m.22.如图,在△ABC中,D、E分别是AB、AC上的点,AE=4,AB=6,AD:AC=2:3,△ABC的角平分线AF交DE于点G,交BC于点F.(1)请你直接写出图中所有的相似三角形;(2)求AG与GF的比.【考点】相似三角形的判定.【分析】(1)可得到三组三角形相似;(2)先利用两组对应边的比相等且夹角对应相等的两个三角形相似证明△ADE ∽△ACB,则∠ADG=∠C,再利用有两组角对应相等的两个三角形相似证明△ADG∽△ACF,然后利用相似比和比例的性质求的值.【解答】解:(1)△ADG∽△ACF,△AGE∽△AFB,△ADE∽△ACB;(2)∵==,=,∴=,又∵∠DAE=∠CAB,∴△ADE∽△ACB,∴∠ADG=∠C,∵AF 为角平分线,∴∠DAG=∠FAE∴△ADG ∽△ACF ,∴==,∴=2.23.如图,AB 是⊙O 的直径,点D 是的中点,CD 与BA 的延长线交于E ,BD 与AC 交于点F .(1)求证:DC 2=DF•DB ;(2)若AE=AO ,CD=2,求ED 的长.【考点】相似三角形的判定与性质;圆心角、弧、弦的关系;圆周角定理.【分析】(1)由点D 是的中点,得到∠ABD=∠CBD ,等量代换得到∠ACD=∠CBD ,根据相似三角形的性质即可得到结论;(2)连结OD ,如图,根据等腰三角形的性质得到∠OBD=∠ODB ,等量代换得到∠ODB=∠CBD ,根据平行线的判定得到OD ∥BC ,于是得到结论.【解答】(1)证明:∵点D 是的中点,∴∠ABD=∠CBD ,而∠ABD=∠ACD ,∴∠ACD=∠CBD ,∵∠BDC=∠CDF ,∴△CDF ∽△BDC ,∴=, 即DC 2=DF•DB ;(2)解:连结OD,如图,∵OD=OB,∴∠OBD=∠ODB,而∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥BC,∴=,∵EA=AO=BO,∴=,∴ED=4.24.某家禽养殖场,用总长为80m的围栏靠墙(墙长为20m)围成如图所示的三块面积相等的矩形区域,设AD长为xm,矩形区域ABCD的面积为ym2.(1)请直接写出GH的长(用含x的代数式表示)(2)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?【考点】二次函数的应用.【分析】(1)根据矩形AEHG与矩形CDEF面积以及矩形BFHG面积相等,求得AD=2DE,进而得出GH的长;(2)根据题意表示出矩形的长与宽,进而得出答案;(3)把y=﹣x2+40x化为顶点式,根据二次函数的性质即可得到结论.【解答】解:(1))∵矩形AEHG与矩形CDEF面积以及矩形BFHG面积相等,∴矩形AEFB面积=矩形CDEF面积的2倍,∴AD=2DE,∵AD=x,∴GH=AE=2DE=x;(2)∵围栏总长为80m,故2x+x+2CD=80,则CD=40﹣x,故y=x(40﹣x)=﹣x2+40x,自变量x的取值范围为:15≤x<30;(2)由题意可得:∵y=﹣x2+40x=﹣(x2﹣30 x)=﹣(x﹣15)2+300,又∵15≤x<30,∴当x=15时,y有最大值,最大值为300平方米.25.定义:如图1,D,E在△ABC的边BC上,若△ADE是等边三角形则称△ABC 可内嵌,△ADE叫做△ABC的内嵌三角形.(1)直角三角形不一定可内嵌.(填写“一定”、“一定不”或“不一定”)(2)如图2,在△ABC中,∠BAC=120°,△ADE是△ABC的内嵌三角形,试说明AB2=BD•BC是否成立?如果成立,请给出证明;如果不一定成立,请举例说明.(3)在(2)的条件下,如果AB=1,AC=2,求△ABC的内嵌△ADE的边长【考点】相似形综合题.【分析】(1)当直角三角形是等腰直角三角形时可内嵌,所以直角三角形不一定可内嵌.(2)根据三角形相似的判定方法,判断出△BDA∽△BAC,即可推得AB2=BD•BC.(3)根据△BDA∽△BAC,△AEC∽△BAC,判断出△BDA∽△AEC,求出DE、CE 和x的关系,求出△ABC的内嵌△ADE的边长是多少即可.【解答】解:(1)当直角三角形是等腰直角三角形时可内嵌,∴直角三角形不一定可内嵌.(2)∵△ADE是△ABC的内嵌三角形,∴△ADE是正三角形,∴∠ADE=60°,在△ADB和△BAC中,∴△BDA∽△BAC,∴=,即AB2=BD•BC.(3)设BD=x,∵△BDA∽△BAC,△AEC∽△BAC,∴△BDA∽△AEC,∴=,∴=,即DE=2x,同理CE=4x,∴12=x﹒7x,∴7x2=1,解得x=,∴DE=,∴△ABC的内嵌△ADE的边长是.故答案为:不一定.26.如图1,抛物线y=﹣x2+bx+c与x轴交于点A(4,0)和点B(﹣1,0),与y轴交于点C(1)求抛物线的解析式.(2)若点E为抛物线在第一象限上的一点,过点E作EF⊥x轴于点F,交AC于点H,当线段EH=FH时,求点E的坐标.(3)如图2,若CE∥x轴交抛物线于点E,过点E作ER⊥x轴,垂足为点R,G 是线段OR上的动点,ES⊥CG,垂足为点S.①当△ESR是等腰三角形时,求OG的长.②若点B1与点B关于直线CG对称,当EB1的长最小时,直接写出OG的长.【考点】二次函数综合题.【分析】(1)根据待定系数法,可得函数解析式;(2)根据H是EF的中点,可得关于n的方程,根据解方程,可得答案;(3)①根据等腰三角形的定义,可得答案;②根据两边之差小于第三边,可得C,B1,E三点共线,根据线段的和差,可得答案.【解答】解:(1)把A(4,0),B(﹣1,0)代入y=﹣x2+bx+c得:,解得:,即:y=﹣x2+x+2;(2)求得AC的解析式为y=﹣x+2设H(n,﹣n+2),由EF⊥x轴,则E(n,﹣n2+n+2)∵EH=FH且点E为抛物线在第一象限上的点,∴EF=2FH,即﹣n2+n+2=2(n+2)得n2﹣5n+4=0,∴n=1或n=4(舍去)∴E(1,3);(3)①设OG=t,则CG=,∵△COG∽△ESC,∴=,∴=∴ES=,∵∠SER=∠SCE=∠CGO,∴cos∠SER=cos∠CGO=.i.如图1,当SE=SR时,过点S作SH⊥ER垂足为点H.∵EH=SE•cos∠SER,∴1=×,∴t=3,(t=3+舍去);ii.如图2,当SE=ER时,=2,∴t=(t=﹣舍去);iii.如图3,当ER=SR时,过点R作RH⊥SE垂足为点H.∵EH=ER•cos∠SER,∴×=2×,∴t=;综上,当△ESR是等腰三角形时OG=3﹣或或.②EB1取最小值时,OG=﹣1.理由如下:如图4,CB1=CB,EB1≥CE﹣CB1=3﹣,当点C,B1,E三点共线时,EB1取到最小值,此时四边形CBGB1是菱形,∴OG=BG﹣BO=﹣1.2017年3月14日。
2016—2017学年度(上)九年级期末质量监测数 学 试 卷(全卷共五个大题,满分:150分,考试时间:120分钟)一、选择题(本题有12小题,每小题4分,共48分)每小题只有一个答案是正确,请将正确答案的代号填入下面的表格里 题号 1234567891011 12 答案1。
一元二次方程240x -=的解为( ) A .12x =,22x =- B .2x =-C . 2x =D .12x =,20x =2。
抛物线1)3(22+-=x y 的顶点坐标是( )A.(3, 1)B.(3,—1) C 。
(—3, 1) D.(—3, -1) 3.点M (2,-3)关于原点对称的点N 的坐标是: ( )A.(-2,-3) B 。
(-2, 3) C 。
(2, 3) D 。
(—3, 2) 4。
已知圆的半径为3,一点到圆心的距离是5,则这点在( ) A .圆内 B .圆上 C .圆外 D .都有可能 5.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)6x -= B .2(2)2x +=C .2(2)2x -=-D .2(2)2x -=6。
下列平面图形中,既是轴对称图形,又是中心对称图形的是 ( )7。
抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 。
23(1)2y x =++ B 。
23(1)2y x =+- C. 23(1)2y x =-- D 。
23(1)2y x =-+8。
某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A . 173(1+x%)2=127 B .173(1-2x %)=127C . 127(1+x %)2=173D .173(1-x %)2=127 9.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球。
从布袋里任意摸出1个球,则摸出的球是白球的概率为( )A.21 B 。
2017年九年级上学期期末数学试卷两套汇编四附答案解析中学九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=22.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零3.已知x=1是关于x的方程(1﹣k)x2+k2x﹣1=0的根,则常数k的值为()A.0 B.1 C.0或1 D.0或﹣14.△ABC的三边长分别为、、2,△DEF的两边长分别为1和,如果△ABC∽△DEF,那么△DEF的第三边长为()A.B.2 C.D.25.某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146 B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146 D.50+50(1+x)+50(1+2x)=1466.如图,随机闭合开关S1、S2、S3中的两个,能让灯泡⊙发光的概率是()A.B.C.D.7.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB. C.3+πD.8﹣π8.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定9.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>510.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.11.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A .1B .2C .3D .412.如图,大正方形中有2个小正方形,如果它们的面积分别是S 1、S 2,那么S 1、S 2的大小关系是( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .S 1、S 2的大小关系不确定二、填空题(本大题共6小题,每小题3分,共18分)13.如果函数1)1(232++-=+-kx x k y k k 是二次函数,那么k 的值一定是 .14.圆内接正六边形的边心距为2cm ,则这个正六边形的面积为 cm 2. 15.如图,等腰直角三角形ABC 绕C 点按顺时针旋转到△A 1B 1C 1的位置(A 、C 、B 1在同一直线上),∠B=90°,如果AB=1,那么AC 运动到A 1C 1所经过的图形的面积是 .16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球 个. 17.如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高 米.18.如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是.三、解答题(本大题共7小题,共56分)19.(8分)如图,已知直线与双曲线(k>0)交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线(k>0)上一点C的纵坐标为8,求△AOC的面积.20.解方程:2x2﹣3x﹣1=0.(2)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.①求证:方程总有两个不相等的实数根.②当p=2时,求该方程的根.21.(8分)如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PDB时,求∠APB的度数.22.(8分)鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?23.(8分)如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC 的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.24.(8分)在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B 按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.25.(8分)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC 的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.方程x(x+2)=0的根是()A.x=2 B.x=0 C.x1=0,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】本题可根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:x(x+2)=0,⇒x=0或x+2=0,解得x1=0,x2=﹣2.故选C.【点评】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.2.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零【考点】随机事件.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,B,C选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有D,掷一枚骰子,向上一面的数字一定大于零,是必然事件,符合题意.故选D.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.已知x=1是关于x的方程(1﹣k)x2+k2x﹣1=0的根,则常数k的值为()A.0 B.1 C.0或1 D.0或﹣1【考点】一元二次方程的解.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将x=1代入原方程即可求得k的值.【解答】解:当k=1时,方程(1﹣k)x2+k2x﹣1=0为一元一次方程,解为x=1;k≠1时,方程(1﹣k)x2+k2x﹣1=0为一元二次方程,把x=1代入方程(1﹣k)x2+k2x﹣1=0可得:1﹣k+k2﹣1=0,即﹣k+k2=0,可得k(k﹣1)=0,即k=0或1(舍去);故选C.【点评】该题应注意方程与一元二次方程的区别,此题1﹣k可为0,同时此题也考查了因式分解.4.△ABC的三边长分别为、、2,△DEF的两边长分别为1和,如果△ABC∽△DEF,那么△DEF的第三边长为()A.B.2 C.D.2【考点】相似三角形的性质.【分析】由△ABC的三边长分别为、、2,△DEF的两边长分别为1和,如果△ABC∽△DEF,根据相似三角形的对应边成比例,即可求得答案.【解答】解:设△DEF的第三边长为x,∵△ABC的三边长分别为、、2,△DEF的两边长分别为1和,△ABC ∽△DEF,∴,解得:x=.即△DEF的第三边长为.故选C.【点评】此题考查了相似三角形的性质.此题比较简单,注意相似三角形的对应边成比例定理的应用.5.某机械厂七月份生产零件50万个,计划八、九月份共生产零件146万个,设八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=146 B.50+50(1+x)+50(1+x)2=146C.50(1+x)+50(1+x)2=146 D.50+50(1+x)+50(1+2x)=146【考点】由实际问题抽象出一元二次方程.【分析】根据八、九月份平均每月的增长率相同,分别表示出八、九月份生产零件的个数列出方程,即可作出判断.【解答】解:根据题意得:八月份生产零件为50(1+x)(万个);九月份生产零件为50(1+x)2(万个),则x满足的方程是50(1+x)+50(1+x)2=146,故选C【点评】此题考查了由实际问题抽象出一元二次方程,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.6.如图,随机闭合开关S1、S2、S3中的两个,能让灯泡⊙发光的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:随机闭合开关S1、S2、S3中的两个出现的情况列表得,所以概率为,故选B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.7.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.πB. C.3+πD.8﹣π【考点】扇形面积的计算;旋转的性质.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:D.【点评】本题考查的是扇形面积的计算、旋转的性质、全等三角形的性质,掌握扇形的面积公式S=和旋转的性质是解题的关键.8.已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【考点】点与圆的位置关系.【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=3<4,故点P与⊙O的位置关系是点在圆内.故选A.【点评】本题考查了点与圆的位置关系,注意掌握点和圆的位置关系与数量之间的等价关系是解决问题的关键.9.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5【考点】二次函数与不等式(组).【分析】利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出ax2+bx+c<0的解集.【解答】解:由图象得:对称轴是x=2,其中一个点的坐标为(5,0),∴图象与x轴的另一个交点坐标为(﹣1,0).利用图象可知:ax2+bx+c<0的解集即是y<0的解集,∴x<﹣1或x>5.故选:D.【点评】此题主要考查了二次函数利用图象解一元二次方程根的情况,很好地利用数形结合,题目非常典型.10.同一坐标系中,一次函数y=ax+1与二次函数y=x2+a的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据一次函数和二次函数的解析式可得一次函数与y轴的交点为(0,1),二次函数的开口向上,据此判断二次函数的图象.【解答】解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选C.【点评】此题主要考查了二次函数及一次函数的图象的性质,用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标.11.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.如图,大正方形中有2个小正方形,如果它们的面积分别是S1、S2,那么S1、S2的大小关系是()A.S1>S2B.S1=S2C.S1<S2D.S1、S2的大小关系不确定【考点】正方形的性质;勾股定理.【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【解答】解:如图,设大正方形的边长为x,根据等腰直角三角形的性质知,AC=BC,BC=CE=CD,∴AC=2CD,CD=,∴S2的边长为x,S2的面积为x2,S1的边长为,S1的面积为x2,∴S 1>S 2,故选:A .【点评】本题利用了正方形的性质和等腰直角三角形的性质求解.二、填空题(本大题共6小题,每小题3分,共18分)13.如果函数1)1(232++-=+-kx x k y k k 是二次函数,那么k 的值一定是 0 .【考点】二次函数的定义.【分析】根据二次函数的定义,列出方程与不等式求解即可.【解答】解:根据二次函数的定义,得:k 2﹣3k +2=2,解得k=0或k=3;又∵k ﹣3≠0,∴k ≠3.∴当k=0时,这个函数是二次函数.【点评】本题考查二次函数的定义.14.圆内接正六边形的边心距为2cm ,则这个正六边形的面积为 24 cm 2.【考点】正多边形和圆.【分析】根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.【解答】解:如图,连接OA 、OB ;过点O 作OG ⊥AB 于点G .在Rt△AOG中,OG=2,∠AOG=30°,∵OG=OA•cos 30°,∴OA===4cm,∴这个正六边形的面积为6××4×2=24cm2.故答案为:24.【点评】此题主要考查正多边形的计算问题,根据题意画出图形,再根据正多边形的性质及锐角三角函数的定义解答即可.15.如图,等腰直角三角形ABC绕C点按顺时针旋转到△A1B1C1的位置(A、C、B1在同一直线上),∠B=90°,如果AB=1,那么AC运动到A1C1所经过的图形的面积是.【考点】扇形面积的计算;旋转的性质.【分析】根据已知条件可得,AC的长度,∠ACA1的度数,从而根据扇形的面积公式得出答案.【解答】解:由AB=1,可得AC==,∠ACA1=135°S扇形ACA1===,故答案为.【点评】本题考查图形的旋转及扇形面积公式,解此题的关键是计算求出圆的半径和圆心角.16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.【考点】利用频率估计概率.【分析】根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得,摸到黑球和白球的频率之和为:1﹣0.4=0.6,∴总的球数为:(8+4)÷0.6=20,∴红球有:20﹣(8+4)=8(个),故答案为:8.【点评】本题考查利用频率估计概率,解题的关键是明确题意,找出所求问题需要的条件.17.如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高8米.【考点】相似三角形的应用.【分析】连接AB、CD,根据相似三角形的判定定理判断出△AOB∽△COD,再由相似三角形的对应边成比例即可得出CD的长.【解答】解:连接AB、CD,由题意可知,OA=OB=1米,OC=OD=16米,AB=0.5米,在△AOB与△COD中,∵=,∠AOB=∠COD,∴△AOB∽△COD,∴=,即=,解得CD=8米.故答案为:8.【点评】本题考查的是相似三角形的应用,根据题意判断出△AOB∽△COD,再根据相似三角形的对应边成比例即可解答.18.如图,在Rt△ABC中,∠ABC是直角,AB=3,BC=4,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是3≤x ≤4.【考点】直线与圆的位置关系;勾股定理;相似三角形的判定与性质.【分析】根据已知首先找出BP取最小值时QO⊥AC,进而求出△ABC∽△OQC,再求出x的最小值,进而求出PB的取值范围即可.【解答】解:过BP中点O,以BP为直径作圆,连接QO,当QO⊥AC时,QO最短,即BP最短,∵∠OQC=∠ABC=90°,∠C=∠C,∴△ABC∽△OQC,∴=,∵AB=3,BC=4,∴AC=5,∵BP=x,∴QO=x,CO=4﹣x,∴=,解得:x=3,当P与C重合时,BP=4,∴BP=x的取值范围是:3≤x≤4,故答案为:3≤x≤4.【点评】此题主要考查了直线与圆的位置关系以及三角形的相似的性质与判定和勾股定理等知识,找出当QO⊥AC时,QO最短即BP最短,进而利用相似求出是解决问题的关键.三、解答题(本大题共7小题,共56分)19.如图,已知直线与双曲线(k>0)交于A、B两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线(k>0)上一点C的纵坐标为8,求△AOC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据正比例函数先求出点A的坐标,从而求出了k值为8;=S△AOF,所以S梯形CEFA=S△COA=15.(2)根据k的几何意义可知S△COE【解答】解:(1)∵点A横坐标为4,∴当x=4时,y=2.∴点A的坐标为(4,2).∵点A是直线与双曲线(k>0)的交点,∴k=4×2=8.(2)如图,过点C、A分别作x轴的垂线,垂足为E、F,∵点C在双曲线上,当y=8时,x=1.∴点C的坐标为(1,8).∵点C、A都在双曲线上,∴S△COE=S△AOF=4.∴S△COE +S梯形CEFA=S△COA+S△AOF.∴S△COA=S梯形CEFA.(6分)∵S梯形CEFA=×(2+8)×3=15,∴S△COA=15.(8分)【点评】主要考查了待定系数法求反比例函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.20.(1)解方程:2x2﹣3x﹣1=0.(2)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.①求证:方程总有两个不相等的实数根.②当p=2时,求该方程的根.【考点】根的判别式;解一元二次方程-公式法.【分析】(1)应用公式法,求出方程2x2﹣3x﹣1=0的解是多少即可.(2)①判断出△>0,即可推得方程总有两个不相等的实数根.②当p=2时,应用公式法,求出该方程的根是多少即可.【解答】解:(1)2x2﹣3x﹣1=0,∵a=2,b=﹣3,c=﹣1,∴△=(﹣3)2﹣4×2×(﹣1)=9+8=17,∴x1=,x2=.(2)①方程可变形为x2﹣5x+6﹣p2=0,∴△=(﹣5)2﹣4×1×(6﹣p2)=1+4p2,∵4p2≥0,∴△>0,∴这个方程总有两个不相等的实数根.②当p=2时,方程变形为x2﹣5x+2=0,∵△=(﹣5)2﹣4×1×2=25﹣8=17,∴x1=,x2=.【点评】此题主要考查了用公式法解一元二次方程,以及根的判别式,要熟练掌握.21.如图,点C、D在线段AB上,△PCD是等边三角形.(1)当AC、CD、DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PDB时,求∠APB的度数.【考点】等边三角形的性质;相似三角形的判定与性质.【分析】(1)利用△ACP∽△PDB的对应边成比例和等边三角形的性质可以找到AC、CD、DB的关系;(2)利用相似三角形的性质对应角相等和等边三角形的性质可以求出∠APB的度数.【解答】解:(1)当CD2=AC•DB时,△ACP∽△PDB,∵△PCD是等边三角形,∴∠PCD=∠PDC=60°,∴∠ACP=∠PDB=120°,若CD2=AC•DB,由PC=PD=CD可得:PC•PD=AC•DB,即=,则根据相似三角形的判定定理得△ACP∽△PDB(2)当△ACP∽△PDB时,∠APC=∠PBD∵∠PDB=120°∴∠DPB+∠DBP=60°∴∠APC+∠BPD=60°∴∠APB=∠CPD+∠APC+∠BPD=120°即可得∠APB的度数为120°.【点评】此题是开放性试题,要熟练运用相似三角形的性质和等边三角形的性质.22.鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【考点】二次函数的应用.【分析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.【点评】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.23.如图,AB是⊙O的直径,C是弧AB的中点,⊙O的切线BD交AC的延长线于点D,E是OB的中点,CE的延长线交切线DB于点F,AF交⊙O于点H,连接BH.(1)求证:AC=CD;(2)若OB=2,求BH的长.【考点】切线的性质.【分析】(1)连接OC,只要证明OC∥BD即可.(2)在Rt△ABF中,根据BH=计算即可.【解答】证明(1)连接OC.∵C是中点,AB是○O的直径∴OC⊥AB,∵BD是○O切线,∴BD⊥AB.∴OC∥BD.∵AO=BO,∴AC=CD(2)∵E是OB中点,∴OE=BE在△COE与△FBE中,∠CEO=∠FEBOE=BE∠COE=∠FBE△COE≌△FBE(ASA)∴BF=CO∵OB=2,∴BF=2∴AF===2,∵AB是直径∴BH⊥AF∴AB•BF=AF•BH∴BH===.【点评】本题考查圆的有关知识,切线的性质全等三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,学会条件常用辅助线,属于中考常考题型.24.在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B 按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.【考点】相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.【分析】(1)由由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,又由等腰三角形的性质,即可求得∠CC1A1的度数;(2)由△ABC≌△A1BC1,易证得△ABA1∽△CBC1,然后利用相似三角形的面积比等于相似比的平方,即可求得△CBC1的面积;(3)由①当P在AC上运动至垂足点D,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,即可求得线段EP1长度的最大值与最小值.【解答】解:(1)由旋转的性质可得:∠A1C1B=∠ACB=45°,BC=BC1,∴∠CC1B=∠C1CB=45°,∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°.(2)∵△ABC≌△A1BC1,∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,∴∠ABA1=∠CBC1,∴△ABA1∽△CBC1.∴,=4,∵S△ABA1=;∴S△CBC1(3)①如图1,过点B作BD⊥AC,D为垂足,∵△ABC为锐角三角形,∴点D在线段AC上,在Rt△BCD中,BD=BC×sin45°=,当P在AC上运动,BP与AC垂直的时候,△ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1﹣BE=BD﹣BE=﹣2;②当P在AC上运动至点C,△ABC绕点B旋转,使点P的对应点P1在线段AB 的延长线上时,EP1最大,最大值为:EP1=BC+BE=2+5=7.【点评】此题考查了旋转的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的应用.此题难度较大,注意数形结合思想的应用,注意旋转前后的对应关系.25.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?【考点】二次函数综合题.【分析】(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO 中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式;(2)分两种情况进行讨论:①当∠PQC=∠DAE=90°时,△ADE∽△QPC,②当∠QPC=∠DAE=90°时,△ADE∽△PQC,分别根据相似三角形的性质,得出关于t的方程,求得t的值.【解答】解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由折叠的性质得,△BDC≌△EDC,∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4.设AD=x,则BD=CD=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3.∴AD=3.∴点D(﹣3,10)∵抛物线y=ax2+bx+c过点O(0,0),∴c=0.∵抛物线y=ax2+bx+c过点D(﹣3,10),C(﹣8,0),∴,解得.∴抛物线的解析式为:y=﹣x2﹣x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得,AD=3,AE=4,DE=5,∵CQ=t,EP=2t,∴PC=10﹣2t,①当∠PQC=∠DAE=90°时,△ADE∽△QPC,∴=,即=,解得t=;②当∠QPC=∠DAE=90°时,△ADE ∽△PQC ,∴=,即=, 解得t=,综上所述,当t=或时,以P 、Q 、C 为顶点的三角形与△ADE 相似.【点评】本题主要考查了相似三角形的判定与性质、矩形的性质及二次函数的综合应用,解题时注意:折叠的性质叠种对称变换,属于对称,折叠前后图形的形和小不变,位变化,对边和对应角相等.解题时注意分类思想的运用.2017学年初三数学第一学期期末试卷(试卷满分130分,考试时间120分)一.选择题.(本大题共10小题,每小题3分,共30分)1.下列点中,一定在二次函数21y x =-图象上的是A .(0,0)B .(1,1)C .(1,0)D .(0,1)2.如图,△ABC 中,∠B=90°,AB=1,BC=2,则sinA=A. B. 12 C. D.3.函数2(1)(3)y x x =+-的对称轴是直线 ( )A .x=1B .x= —1C .x=—3D .x=34.一个扇形的圆心角是120°,面积3πcm 2,那么这个扇形的半径是 ( )A .1cmB .3cmC .6cmD .9cm5.如图,已知AB 是圆O 的直径,∠CAB=30°,则cosD 的值为( )A . 12B C D 6.已知二次函数2y x =的图像上有一点P (1,1).若将该抛物线平移后所得的二次函数表达式221y x x =--,则点P 经过该次平移后的坐标为( )A. (2,1)B. (2,-1)C. (1,-2)D. (0,5)7.某市2015年国内生产总值(GDP )比2014年增长了12%,预计2016年比2015年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是 ( )A .12%+7%=x %B . (1+12%)(1+7%)=2(1+x %)C . 12%+7%=2x %D .(1+12%)(1+7%)=(1+x %)28.在△ABC 中,∠C=90°,a 、b 分别是∠A 、∠B 的对边,220a ab b --=,则tanA=( )A. B. C. D.1 9. 如图,在平面直角坐标系xOy 中,⊙P 的圆心是(2,)a (0a >),半径是2,与y 轴相切于点C ,直线y x =被⊙P 截得的弦AB 的长为a 的值是( )A .B .2+C .D .2+第9题图 第10题图10. 如图,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于点(1,0)A -, 顶点坐标为(1,)n ,点与轴的交点在(0,2)-和(0,1)-之间(不包括端点).有下列结论:①当3x >时,0y <;②n c a =-;③30a b +>;④2-1-3a <<.其中正确的结论有 ( )A . 1 个B .2 个C .3 个D .4 个。
2017届九年级数学上期末试卷(含答案和解释) :篇一:2017届九年级上学期期末考试数学试题带答案(人教版)2016—2017学年上学期九年级数学期末检测试卷(全卷三个大题,共23个小题,共4页;满分120分,考试用时120分钟)注意事项:本卷为试题卷。
考生必须在答题卡上解题作答。
答案应写在答题卡的相应位置,在试卷上、草稿纸上作答无效。
一、填空题(本大题共6个小题,每小题3分,共18分) 1. 二次函数y=2(x﹣3)2+5的最小值为. 2. 如图,⊙O的直径AB经过弦CD的中点E,若∠C=25°, 则∠D= .3.若反比例函数的图象经过(-2,3),则其函数表达式为________________ .4. 若两个相似六边形的周长的比是3﹕2,其中较大一个六边形的面积为81,则较小一个六边形的面积为_____________ .2x,x是方程3x?2x?2?05.若1211??_________. x1x26. 一个圆锥的侧面展开图是半径为8cm、圆心角为120°的扇形,则此圆锥底面圆的半径为 cm.二、选择题(本大题共8个小题,每小题4分,共32分) 7. 下列既是轴对称图形又是中心对称图形的是()A.B.C. D.38. 反比例函数y??的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则xx1与x2的大小关系是()A. x1<x2B.x1=x2C.x1>x2D.不确定9. 事情“父亲的年龄比儿子的年龄大”属于()A.不可能事件B.可能事件C.不确定事件D.必然事件 10.直角三角形的两直角边长分别为3cm、4cm以直角顶点为圆心,2.4cm长为半径的圆与斜边的位置关系是() A.相交 B.相切 C.相离 D.无法确定11. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A.3B.-3C.1D.-112. 将抛物线y=x2向右平移2个单位,再向上平移3个单位后,平移后的抛物线的解析式为( )A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2-3D.y=(x-2)2-3 13. 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB 缩1小为原来的CD,则端点C的坐标为2( )A.(3,3)B.(4,3)C.(3,1)D.(4,1) 14. 如图,AD是正五边形ABCDE 的一条对角线,则∠BAD=().A.36°B.30°C.72°D.60°三、解答题(本大题共9个小题,共70分) 15.解方程(共2个小题,共10分)2x?27?12x (2)3x2?2x?4?0 (1)16. (8分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当AD?1,AC=3时,求BF的长. BD17. (7分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC向右平移5个单位,向上平移1个单位得△A1B1C1,再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求点A1运动到点A2的路径总长.18.(8分,第(1)题5分,第(2)题3分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求:(1)该种药品平均每次降价的百分率.(2)若按(1)中的百分率再降一次,则每瓶的售价将为多少元?19. (7分)小亮与小明学习概率初步知识后设计了如下游戏,小亮手中有三张分别标有数字-1,-2,-3的卡片,小明手中有三张分别标有数字1,2,3的卡片,均背面朝上,卡片形状、大小、质地等完全相同,现随机从小亮手中任取一张卡片,卡片的数用m表示;从小明手中任取一张卡片,卡片的数用n表示并记为点(m,n)(1)请你用树状图或列表法列出所有可能的结果;(2)求点(m,n)在函数y=-x的图象上的概率.20. (6分)如图,在平面直角坐标系xOy中,双曲线y?线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点的坐标.21. (8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA =CB.(1)求证:直线AB是⊙O的切线;(2)若∠A=30°,AC=6,求⊙O 的周长.m与直 xB22、(7分)如图,已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D. (1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O直线AB的距离为6,求AC的长.到23.(9分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)篇二:上海市2017届九年级上期末考试数学试卷含答案2016-2017学年第一学期教学质量调研测试卷一. 选择题a2a?,那么的值为() b3a?b1233A. ; B. ; C. ; D. ; 35542. 已知Rt△ABC中,?C?90?,BC?3,AB?5,那么sinB的值是() 1. 已知A. 3344;B. ;C. ;D. ; 54533. 将抛物线y?x2先向右平移2个单位,再向下平移3个单位,所得抛物线的函数解析式是()A. y?(x?2)2?3;B. y?(x?2)2?3;C. y?(x?2)2?3;D. y?(x?2)2?3;4. 如图,在△ABC中,点D、E分别在AB、AC上,?AED??B,那么下列各式中一定正确的是()A. AE?AC?AD?AB;B. CE?CA?BD?AB;C. AC?AD?AE?AB;D. AE?EC?AD?DB;5. 已知两圆的半径分别是3和5,圆心距是1,那么这两圆的位置关系是()A. 内切;B. 外切;C. 相交;D. 内含;6. 如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A. 第4张;B. 第5张;C. 第6张;D. 第7张;二. 填空题????7. 化简:2(a?2b)?3(a?b)?8. 如果在比例1:1000000的地图上,A、B两地的图上距离为2.4厘米,那么A、B两地的实际距离为千米;9. 抛物线y?(a?2)x2?3x?a的开口向下,那么a的取值范围是;10. 一斜面的坡度i?1:0.75,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了11. 如果一个正多边形的一个外角是36°,那么该正多边形的边数为12. 已知AB是○O的直径,弦CD⊥AB于点E,如果AB?8,CD?6,那么OE?; 13. 如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子为线段AD,甲的影子为线段AC,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距米;14. 如图,点A(3,t)在第一象限,OA与x轴正半轴所夹的锐角为?,如果tan??3,那么t的值 2为;15. 如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD 交于点F,CD?2DE,如果△DEF的面积为1,那么平行四边形ABCD的面积为;16. 如图,在矩形ABCD中,AB?3,BC?5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC的中点,联结FB,那么tan?FBC的值为;17. 新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”,如图所示,△ABC中,AF、BE是中线,且AF?BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果?ABE?30?,AB?4,那么此时AC的长为;18. 如图,等边△ABC中,D是边BC上的一点,且BD:DC?1:3,把△ABC折叠,使点A落在边BC上的点D处,那么三. 解答题19. 计算:AM的值为; ANcot45??tan60??cot30?; 2(sin60??cos60?)20. 已知,平行四边形ABCD中,点E在DC边上,且DE?3EC,AC与BE交于点F;????????????????(1)如果AB?a,AD?b,那么请用a、b来表示AF;????????????(2)在原图中求作向量AF在AB、AD方向上的分向量;(不要求写作法,但要指出所作图中表示结论的向量)21. 如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C 和点D、E、F, DE2?,AC?14; EF5(1)求AB、BC的长;(2)如果AD?7,CF?14,求BE的长;22. 目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知 ?CAN?45?,?CBN?60?,BC?200米,此车超速了吗?请说明理由;?1.41?1.73)23. 如图1,△ABC中,?ACB?90?,CD?AB,垂足为D;(1)求证:△ACD∽△CBD;(2)如图2,延长DC至点G,联结BG,过点A作AF?BG,垂足为F,AF交CD于点E,求证:CD2?DE?DG;24. 如图,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上,OC?4OA;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上一个动点,过点P作PM∥BC 交射线AC于点M,联结CP,若△CPM的面积为2,则请求出点P的坐标;25. 如图,已知矩形ABCD中,AB?6,BC?8,E是BC边上一点(不与B、C重合),过点E作EF?AE交AC、CD于点M、F,过点B作BG?AC,垂足为G,BG交AE于点H;(1)求证:△ABH∽△ECM;EH?y,求y关于x的函数解析式,并写出定义域; EM(3)当△BHE为等腰三角形时,求BE的长;(2)设BE?x,中考数学一模卷一、选择题(本大题共6题,每题4分,满分24分)1.B2.C3.D4.A5.D6.B二、填空题(本大题共12题,每题4分,满分48分)??7.?a?7b8.24 9.a<-210.1611.1013.1 14.17. 18.91 15.1216.235 7三、解答题(本大题共7题,满分78分)19.(本题满分10分)【解】原式? (5)分? …………………………………………………………………1分?2 (3)分 ?2……………………………………………………………………………1分20.(本题满分10分,第1小题5分,第2小题5分)【解】(1)∵四边形ABCD是平行四边形∴AD∥BC且AD=BC,CD∥AB且CD=AB ??????????????∴BC?AD?b 又∵AB?a ?????????????? ∴AC?AB?BC?a?b ……………………………………………………2分∵DE=3EC ∴DC=4EC又∵AB=CD∴AB=4EC篇三:最新2017年九年级上期末数学试卷含答案解析九年级(上)期末数学试卷一、选择题(2015秋江北区期末)若3x=2y,则x:y的值为() A.2:3 B.3:2 C.3:5 D.2:52.如果∠A是锐角,且sinA=cosA,那么∠A=()A.30° B.45° C.60° D.90°3.圆锥的母线长为4,侧面积为12π,则底面半径为()A.6 B.5 C.4 D.34.6只黄球,5只白球,一个袋子中有7只黑球,一次性取出12只球,其中出现黑球是()A.不可能事件 B.必然事件C.随机事件 D.以上说法均不对5.下列函数中有最小值的是()C.y=2x2+3xA.y=2x﹣1 B.y=﹣ D.y=﹣x2+16.如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是()A. B. C. D.7.⊙O内有一点P,过点P的所有弦中,最长的为10,最短的为8,则OP的长为()A.6 B.5 C.4 D.38.下列m的取值中,能使抛物线y=x2+(2m﹣4)x+m﹣1顶点在第三象限的是()A.4 B.3 C.2 D.19.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、K B.C C.K D.L、K、C 10.如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对 B.3对 C.4对 D.5对11.如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙0于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是()A.①②④ B.①②③ C.②③④ D.①③④ 12.如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2,则a的值为()A.4 B.2+ C. D.二、填空题。
九年级数学上册期末试卷2017九年级数学上册期末试卷九年级是初中升入高中的关键时期,要认真对待每一次的考试。
下面YJBYS小编为大家整理了2017九年级数学上册期末试卷,希望能帮到大家!2017九年级数学上册期末试卷一、选择题 (每小题3分,共24分)1.方程x2﹣4 = 0的解是【】A.x = ±2B.x = ±4C.x = 2D. x =﹣22.下列图形中,不是中心对称图形的是【】A. B. C. D.3.下列说法中正确的是【】A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“任意画出一个平行四边形,它是中心对称图形”是必然事件C.“概率为0.0001的事件” ”是不可能事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次4.已知关于x的一元二次方程(a﹣1)x2﹣2x+1= 0有两个不相等的实数根,则a的取值范围是【】A.a>2B.a <2C. a <2且a ≠ lD.a <﹣25.三角板ABC中,∠ACB=90°,∠B=30°,AC=2 ,三角板绕直角顶点C逆时针旋转,当点A的对应点A′ 落在AB边的起始位置上时即停止转动,则B点转过的路径长为【】A.2πB.C.D.3π6.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是【】A. 1B.C.D.7.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为【】A.50°B.55°C.60°D.65°8.如图,在边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接CE,将线段CE绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是【】A.6B.3C.2D.1.5二、填空题( 每小题3分,共21分)9.抛物线y = x2+2x+3的顶点坐标是.10.m是方程2x2+3x﹣1= 0的根,则式子4m2+6m+2016的值为.11.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为直线.12.在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于90°,则r与R之间的关系是r = .13.在一个不透明的盒子中装有n个规格相同的乒乓球,其中有2个黄色球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到黄色球的频率稳定于0.2,那么可以推算出n大约是.14.矩形ABCD中,AD = 8,半径为5的⊙O与BC相切,且经过A、D两点,则AB = .15.如图,在△ABC中,∠ACB=90°,AC=2,BC=4,E为边AB的中点,点D是BC边上的动点,把△ACD沿AD翻折,点C落在C′处,若△AC′E是直角三角形,则CD的长为.三、解答题:(本大题共8个小题,满分75分)16.(8分)先化简,再求值:17.(9分)已知关于x的方程x2+ax+a﹣2=0.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.18.(9分)如图所示,A B是⊙O的直径,∠B=30°,弦BC=6,∠ACB的平分线交⊙O于点D,连接AD.(1)求直径AB的长;(2)求图中阴影部分的面积.(结果保留π)19.(9分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.20.(9分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O 是AB上一点,以O为圆心,OA为半径的⊙O经过点D.(1)求证:BC是⊙O的切线;(2)若BD=5,DC=3,求AC的长.21.(10分)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化需上调第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x元,填写表格:时间第一个月第二个月销售定价(元)销售量(套)(2)若商店预计要在第二个月的销售中获利2000元,则第二个月销售定价每套多少元?(3)若要使第二个月利润达到最大,应定价为多少元?此时第二个月的最大利润是多少?22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B、C重合).以AD为边做正方形ADEF,连接CF.(1)如图①,当点D在线段BC上时,求证:CF+CD=BC;(2)如图②,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF、BC、CD三条线段之间的.关系;(3)如图③,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其他条件不变;①请直接写出CF、BC、CD三条线段之间的关系;②若正方形ADEF的边长为,对角线AE、DF相交于点O,连接OC.求OC的长度.23.(11分)如图①,抛物线与x轴交于点A( ,0),B(3,0),与y 轴交于点C,连接BC.(1)求抛物线的表达式;(2)抛物线上是否存在点M,使得△MBC的面积与△OBC的面积相等,若存在,请直接写出点M的坐标;若不存在,请说明理由;(3)点D(2,m)在第一象限的抛物线上,连接BD.在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P 的坐标;如果不存在,请说明理由.2017九年级数学上册期末试卷参考答案及评分标准一、选择题(每题3分共24分)题号 1 2 3 4 5 6 7 8答案 A C B C A B D D二、填空题9.(- 1,2) 10.2018 11.x =2 12. R 13.10 14.2或8 15.2或三、解答题16.解:原式= ……………………3分== ……………………5分∵ ,∴ ……………………7分∴原式= . ……………………8分17.解:(1)把x=1代入方程x2+ax+a﹣2=0,解得:a= ,…… ………………2分∴原方程即是,解此方程得:,∴a= ,方程的另一根为; ……………………5分(2)证明:∵ ,不论a取何实数,≥0,∴ ,即 >0,∴不论a取何实数,该方程都有两个不相等的实数根. ……………………9分18.解:(1)∵AB是⊙O的直径,∴∠ACB=90°,∵∠B=30°,∴AB=2AC,设AC的长为x,则AB=2x,在Rt△ACB中,,∴解得x= ,∴AB= . ……………………5分(2)连接OD.∵CD平分∠ACB,∴∠ACD=45°,∴∠AOD=90°,AO= AB= ,∴S△AOD =S 扇AOD =∴S阴影= ……………………9分19.解:(1)根据题意得:随机转动转盘一次,停止后,指针指向1的概率为; ……………………3分(2)列表得:1 2 31 (1,1) (2,1) (3,1)2 (1,2) (2,2) (3,2)3 (1,3) (2,3) (3,3)所有等可能的情况有9种,其中两数之积为偶数的情况有5种,之积为奇数的情况有4种,……………………7分∴P(小明获胜)= ,P(小华获胜)= ,∵ > ,∴该游戏不公平. ……………………9分20.(1)证明:连接OD;∵AD是∠BAC的平分线,∴∠1=∠3.∵OA=OD,∴∠1=∠2.∴∠2=∠3.∴OD∥AC.∴∠ODB=∠ACB=90°.∴OD⊥BC.∴BC是⊙O切线. ……………………4分(2)解:过点D作DE⊥AB,∵AD是∠BAC的平分线,∴CD=DE=3.在Rt△BDE中,∠BED=90°,由勾股定理得:,在Rt△AED和Rt△ACD中,,∴Rt△AED ≌ Rt△ACD∴AC=AE,设AC=x,则AE=x,AB=x+4,在Rt△ABC中,即,解得x=6,∴AC=6. ……………………9分21.解:(1)若设第二个月的销售定价每套增加x元,由题意可得,时间第一个月第二个月销售定价(元) 52 52+x销售量(套) 180 180﹣10x………… …………4分(2)若设第二个月的销售定价每套增加x元,根据题意得:(52+x﹣40)(180﹣10x)=2000,解得:x1=﹣2(舍去),x2=8,当x=8时,52+x=52+8=60.答:第二个月销售定价每套应为60元. ……………………7分(3)设第二个月利润为y元.由题意得到:y=(52+x﹣40)(180﹣10x)=﹣10x2+60x+2160=﹣10(x﹣3)2+2250∴当x=3时,y取得最大值,此时y=2250,∴52+x=52+3=55,即要使第二个月利润达到最大,应定价为55元,此时第二个月的最大利润是2250元. ……………………10分22.证明:(1)∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°-∠DAC,∠CAF=90°-∠DAC,∴∠BAD=∠CAF,则在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),∴BD=CF,∵BD+CD=BC,∴CF+CD=BC;…………………… 4分(2)CF CD=BC …………………… 5分(3)①CD CF =BC. …………………… 6分②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=A F,∠DAF=90°,∵∠BAD=90°-∠BAF,∠CAF=90°-∠BAF,∴∠BAD=∠CAF,则在△BAD和△CAF中,∴△BAD ≌ △CAF(SAS),∴∠ABD=∠ACF,∵∠ABC=45°,∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=90°,∴△FCD是直角三角形.∵正方形ADEF的边长为且对角线AE、DF相交于点O,∴DF= AD=4,O为DF中点.∴OC= DF=2. ……………………10分23.解:(1)∵抛物线与x轴交于点A( ,0),B(3,0),,解得,∴抛物线的表达式为.……………………3分(2)存在.M1 ( , ),M2( , )……………………5分(3)存在.如图,设BP交轴y于点G.∵点D(2,m)在第一象限的抛物线上,∴当x=2时,m= .∴点D的坐标为(2,3).把x=0代入,得y=3.∴点C的坐标为(0,3).∴CD∥x轴,CD = 2.∵点B(3,0),∴OB = OC = 3∴∠OBC=∠OCB=45°.∴∠DCB=∠OBC=∠OCB=45°,又∵∠PBC=∠ DBC,BC=BC,∴△CGB ≌ △CDB(ASA),∴CG=CD=2.∴OG=OC CG=1,∴点G的坐标为(0,1).设直线BP的解析式为y=kx+1,将B(3,0)代入,得3k+1=0,解得k= .∴直线BP的解析式为y= x+1. ……………………9分令 x+1= .解得, .∵点P是抛物线对称轴x= =1左侧的一点,即x<1,∴x= .把x= 代入抛物线中,解得y=∴当点P的坐标为( ,)时,满足∠PBC=∠DBC (11)分。
2016-2017学年度上学期期末考试九年级数学试题2017.01注意事项:1.答题前,请先将自己的姓名、考场、考号在卷首的相应位置填写清楚;2.选择题答案涂在答题卡上,非选择题用蓝色、黑色钢笔或圆珠笔直接写在试卷上.第Ⅰ卷(选择题共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.方程xx22=的根是A.2 B.0 C.2或0 D.无解2.若反比例函数的图象过点(2,1),则这个函数的图象一定过点A.(-2,-1) B.(1,-2) C.(-2,1) D.(2,-1)3. 如图,点A为α∠边上任意一点,作BCAC⊥于点C,ABCD⊥于点D,下列用线段比表示αsin的值,错误..的是A.BCCDB.ABACC.ACADD.ACCD4. 如图,AD∥BE∥CF,直线a,b与这三条平行线分别交于点A,B,C和点D,E,F,若AB=2,AC=6,DE=1.5,则DF的长为A.7.5 B.6 C.4.5 D.35.如图,四边形A BCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是A.88°B.92°C.106°D.136°6. 在Rt△ABC中,∠C=90°,34tan=A,若AC=6cm,则BC的长度为A.8cm B.7cm C.6cm D.5cm7. 已知二次函数)0()3(2≠-+=abxay有最大值1,则该函数图象的顶点坐标为A.)1,3(-- B.)(1,3- C.)1,3( D.)1,3(-8. 从n个苹果和4个雪梨中,任选1个,若选中苹果的概率是53,则n的值是(第3题图)(第4题图)(第5题图)A .8B .6C .4D .29. 已知反比例函数xy 5-=,则下列结论不正确...的是 A .图象必经过点)5,1(-, B .图象的两个分支分布在第二、四象限 C .y 随x 的增大而增大 D .若x >1,则5-<y <010. 直角三角形纸片的两直角边长分别为6,8,现将△ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则cos ∠CBE 的值是A .724B .37C .247 D .252411. 如图,已知一块圆心角为270°的扇形铁皮,用它作一个圆锥形 的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这 块扇形铁皮的半径是 A .40cm B .50cm C .60cm D .80cm12.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,AE =6,则tan∠BDE 的值是 A .34 B .43 C .21D .1:2 13.如图,△ABC 中,AD 是中线,BC =4,∠B =∠DAC ,则线段AC 的长为 A .22B .2C .3D .3214. 如图所示,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (2-,0)、B (1,0),直线x =21-与此抛物线交于点C ,与x 轴交于点M ,在直线上取点D ,使MD =MC ,连接AC ,BC ,(第13题图) (第14题图)(第10题图) (第11题图)(第12题图)AD ,BD ,某同学根据图象写出下列结论:①0=-b a ; ②当x <21-时,y 随x 增大而增大;③四边形ACBD 是菱形;④cba +-39>0.你认为其中正确的是 A .②③④B .①②③C .①③④D .①②③④第II 卷 非选择题(共78分)二、填空题(本题共5小题,每小题3分,共15分)15.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是 . 16. 若n (其中0≠n )是关于x 的方程022=++n mx x 的根,则m +n 的值为 . 17.如图,大圆半径为6,小圆半径为3,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A 中”记作事件W ,请估计事件W 的概率P (W )的值 .18. 如图,在△ABC 中,AD 平分∠BAC ,与BC 边的交点为D ,且DC =31BC ,DE ∥AC ,与AB 边的交点为E ,若DE =4,则BE 的长为 .19. 如图,在直角坐标系中,直线221-=x y 与坐标轴交于A ,B 两点,与双曲线)0(2>=x xky 交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA =AD ,则以下结论:①当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小;②4=k ;③当0<x <2时,y 1<y 2;④如图,当x=4时,EF =5.其中结论正确的有____________.(填序号)三、解答题(本大题共7小题,共63分) 20.(本题满分5分) 计算:2cos30sin 45tan 601cos60︒+︒--︒o .题号 二 三Ⅱ卷总分20 21 22 23 24 25 26 得分得分 评卷人(第19题图)(第17题图) (第18题图)21.(本题满分8分)解方程:(1))1(212+=-x x ; (2)05422=--x x .22. (本题满分8分)如图,一楼房AB 后有一假山,山坡斜面CD 与水平面夹角为30°,坡面上点E 处有一亭子,测得假山坡脚C 与楼房水平距离BC =10米,与亭子距离CE =20米,小丽从楼房顶测得点E 的俯角为45°.求楼房AB 的高(结果保留根号).得分 评卷人得分 评卷人(第22题图)30°23. (本题满分9分)如图,AB 是⊙O 的直径,CD 与⊙O相切于点C ,与AB 的延长线交于点D ,DE ⊥AD 且与AC 的延长线交于点E .(1)求证:DC =DE ;(2)若tan ∠CAB =21,AB =3,求BD 的长.(第23题图)24. (本题满分10分)如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于第二、四象限内的A,B两点,与x轴交于点C,与y轴交于点D,点B的坐标是(m,﹣4),连接AO,AO=5,sin∠AOC=35.(1)求反比例函数的解析式;(2)连接OB,求△AOB的面积.得分评卷人(第24题图)25.(本题满分11分)如图,已知抛物线c bx x y ++=2经过A (1-,0)、B (3,0)两点,点C 是抛物线与y 轴的交点.(1)求抛物线的解析式和顶点坐标;(2)当0<x <3时,求y 的取值范围;(3)在抛物线的对称轴上是否存在点M ,使△BCM 是等腰三角形,若存在请直接写出点M 坐标,若不存在请说明理由.得分 评卷人(第25题图)26.(本题满分12分)如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1)操作发现如图2,固定△ABC ,使△DE C 绕点C 旋转,当点D 恰好落在AB 边上时,填空:①线段DE 与AC 的位置..关系是_________; ②设△BDC 的面积为1S ,△AEC 的面积为2S ,则1S 与2S 的数量关系是____________.(2)猜想论证当△DEC 绕点C 旋转到图3所示的位置时,小明猜想(1)中S 1与S 2的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中BC 、CE 边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC =60°,点D 是其角平分线上一点,BD =CD =4,DE //AB 交BC 于点E (如图4).若在射线BA 上存在点F ,使BDE DCF S S ∆∆=,请直接写出相应的BF 的长.得分 评卷人A (D )B (E )C 图1 ACBDE图22016-2017学年度上学期期末考试 九年级数学参考答案 2017-1注意:解答题只给出一种解法,考生若有其他正确解法应参照本标准给分. 一、选择题(每小题3分,共42分)1-~5 CADCD 6~10BABCD 11~14 ACAB 二、填空题(每小题3分共15分) 15.2:1 16. 2- 17.4118. 8 19.①②③④ 三、解答题(本大题共7小题,共63分)20. 解:原式=21(1)()222÷-+2分124分 =12……5分 21. (8分)解:(1)将原方程变形为:0)1(2)1)(1(=+--+x x x ……………….1分∴0)21)(1(=--+x x ∴x +1=0或x ﹣3=0,……………………….3分 ∴x 1=﹣1,x 2=3;……………………………………………………….4分 (2)∵2x 2﹣4x ﹣5=0, ∴a =2,b =﹣4,c =﹣5,∴b 2﹣4ac =16+40=56,∴4564242±=-±-=a ac b b x ,…………………….3分∴2141,214121-=+=x x .…………………………………..4分 22.(8分)解:过点E 作EF ⊥BC 于点F .在Rt △CEF 中,CE =20,∠ECF =30° ∴EF =10 …………2分 CF =3 EF =103(米) ………4分 过点E 作EH ⊥AB 于点H .则HE =BF ,BH=EF .在Rt△AHE 中,∠HAE =45°,∴AH =HE ,又∵BC =10米,∴HE =(10+103)米, ………6分∴AB =AH +BH =10+103+10=20+103(米) ………………………7分 答:楼房AB 的高为(20+103) 米. ………………………8分23. (9分)(1)证明:如图,连接OC .…………………1分∵CD 与⊙O 相切于点C , ∴∠OCD =90°. ………………………2分 ∴∠1+∠2=90°.∵ED ⊥AD ,∴∠EDA =90°,∴∠A +∠E =90°. …………………3分 ∵OC =OA ,∴∠A =∠2.(2)解:设BD =x ,则AD =AB +BD =3+x ,OD =OB +BD =1.5+x . ………5分在Rt △AED 中,∵tan ∠CAB =21=AD DE ,∴DE =21AD =21(3+x ). ………6分 由(1)得DC =DE =21(3+x ). ……………7分 在Rt △OCD 中,222OD CD OC =+,∴222)5.1()3(215.1x x +=⎥⎦⎤⎢⎣⎡++. …………8分解得11=x ,32-=x (不合题意,舍去). ∴BD =1. ……………9分24.(10分)解:(1)过点A 作AE ⊥x 轴于点E ,如图所示.∵AE ⊥x 轴,∴∠AEO =90°.在Rt △AEO 中,AO =5,sin∠AOC =35,∴AE =AO •sin∠AOC =3,OE =22AO AE -=4,………2分∴点A 的坐标为(﹣4,3). ……………………3分设反比例函数解析式为k y x =.∵点A (﹣4,3)在反比例函数ky x=的图象上, ∴3=4k -,解得k =﹣12. ∴反比例函数解析式为y =﹣12x. …………………5分(2)∵点B (m ,﹣4)在反比例函数y =﹣12x的图象上,∴﹣4=﹣12m,解得m =3,∴点B 的坐标为(3,﹣4).…………………………6分设直线AB 的解析式为y =ax +b ,将点A (﹣4,3)、点B (3,﹣4)代入y =ax +b 中, 得34,43,a b a b =-+⎧⎨-=+⎩ 解得1,1.a b =-⎧⎨=-⎩ ∴一次函数解析式为y =﹣x ﹣1.…………8分 令一次函数y =﹣x ﹣1中y =0,则0=﹣x ﹣1,解得x =﹣1,即点C 的坐标为(﹣1,0). S △AOB =12OC •(y A ﹣y B )=12×1×[3﹣(﹣4)]=72. ……………10分 25.(10分)解:(1)把A (﹣1,0)、B (3,0)分别代入y =x 2+bx +c 中,得:⎩⎨⎧=++=+-03901c b c b ,解得:⎩⎨⎧-=-=32c b ,∴抛物线的解析式为y =x 2﹣2x ﹣3.……………3分∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴顶点坐标为(1,﹣4).…………………4分(2)由图可得当0<x <3时,﹣4≤y <0;…………….5分(3)存在……………….6分①当BC BM =时,141=m ,142-=m ;②当CM =CB 时,1733+-=m , 1734--=m ;③当BM =CM 时,(1,1-).所以点M 的坐标为(1,14)或(1,14-)或(1,173+-)或(1,173--)或(1,1-).………………….11分26.(12分)解:(1)①DE ∥AC ;………………2分 ②S 1=S 2;………………4分(2)如图,∵△DEC 是由△ABC 绕点C 旋转得到,∴BC =CE ,AC =CD ,∵∠ACN +∠BCN =90°, ∠DCM +∠BCN =180°-90°=90°,∴∠ACN =∠DCM ,在△AC N 和△DCM 中,⎪⎩⎪⎨⎧=︒=∠=∠∠=∠CD AC N CMD DCN ACN 90∴△ACN ≌△DCM (AAS),…………………6分∴AN =DM ,∴△BD C 的面积和△AEC 的面积相等(等底等高的三角形的面积相等), 即S 1=S 2;…………………7分如图,过点D 作1DF ∥BE ,易求四边形1BEDF 是菱形,所以BE =1DF ,且BE 、1DF 上的高相等,此时 BDE DCF S S ∆∆=1…………………8分过点D 作BD DF ⊥2,∵∠ABC =60°,1DF ∥BE ,∴︒=∠6021F DF ,︒=∠=∠=∠30211ABC DBE DB F ,∴︒=∠6021DF F , ∴21F DF ∆是等边三角形,∴1DF =2DF ,∵BD =CD ,∠ABC =60°,点D 是角平分线上一点,∴∠CDF 1=180°-30°=150°,∠CDF 2=360°-150°-60°=150°,∴∠CDF 1=∠CDF 2,在△CDF 1和△CDF 2中,⎪⎩⎪⎨⎧=∠=∠=CD CD CDF CDF DF DF 2121,∴△CDF 1≌△CDF 2(SAS), ∴点F 2也是所求的点,……………10分∵∠ABC =60°,点D 是角平分线上一点,DE ∥AB ,DF 1∥BE ,易证1BEDF 是菱形, 连接EF 1, 则BD EF ⊥1, 垂足为O ,在1BOF Rt ∆中,BO =21BD =2,︒=∠301BO F , ∴︒=30cos 1BF BO , ∴33423230cos 1==︒=BO BF ………………11分. 在Rt BD F 2中,︒=30cos 2BF BD ,∴33823430cos 2==︒=BD BF , 故BF 的长为334或338.…………………12分。
2017学年第一学期期末考试九(上)(数学)试卷考生须知:1. 本卷共三大题,24小题. 全卷满分为150分,考试时间为120分钟.2. 答题前,请用蓝、黑墨水的钢笔或圆珠笔将学校、姓名、学号 分别填在密封线内相应的位置上,不要遗漏.3. 请仔细审题,细心答题,相信你一定会有出色的表现!参考公式:二次函y=ax 2+bx+c(a≠0)数图象的顶点坐标是(-b 2a ,4ac-b 24a)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.若2a =3b ,则a ∶b 等于( )A. 3∶2B. 2∶3C. -2∶3D. -3∶2 2.抛物线y=(x-2)2+3的对称轴是( )A.直线x=2B.直线x=-2C.直线x=3D.直线x=-33.己知扇形的圆心角为1200,半径为6,则扇形的弧长是( ) A. 3π B. 4π C .5π D .6π4.抛物线y=23x 先向左平移1个单位,再向上平移2个单位,所得的解析式为( ) A.y=()2132+-xB. y=()2132--xC. y=()2132++x D.y=()2132-+x5.在直线运动中,当路程s (千米)一定时,速度v(千米/小时)关于时间t (小时)的函数关系的大)A.B. 6.二次函数)0(2≠++=a c bx ax y 的图象如图所示则下列说法不正确的是( )A .0a >B .0c >C .02ba-< D .240b ac ->7.已知点A 的坐标是(2, 1),以坐标原点O 为位似中心,像与原图形的位似比为2,则像A’的坐标为( )……………………学校 班级 姓名: 考号: ……………………………………………………………装………………………………订………………………………线………………………………A.(21,1) B.(4, 2) C .(1,21)或(-1,21-) D.(4, 2)或(-4,-2) 8.如图:这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,若灯 泡距离桌面为2米,桌面距离地面1米,则地面上阴影部分的面积 为( )A.π09.0平方米B. π81.0平方米C. π2平方米D. π24.3平方米 9. 下表是满足二次函数c bx ax y ++=2的五组数据,1x 是方程02=++c bx ax 的 一个解,则下列选项正确的是( )A.1.6<x 1<1.8B.1.8<x 1<2.0C. 2.0<x 1<2.2D. 2.2<x 1<2.4 10.如图,四边形 OBCA 为正方形,图1是以AB 为直径画半圆,阴影部分面积记为S 1,图2是以O 为圆心, OA 长为半径画弧,阴影部分面积记为S 2 ,则S 1, S 2 的 大小关系为( )A. S 1 < S 2B. S 1 = S 2C. S 1 > S 2 D .无法判断 二、填空题(本题有6小题,每小题5分,共30分)11.如图,在⊙O 中,圆心角∠BOC=800, 则圆周角∠A= 。
CBBB2016—2017学年上学期期末考试九年级数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.扬州1月某日的最高气温是8C ︒,最低气温是1C ︒,这天气温的极差是 A .7C -︒ B. 7C ︒ C. 9C -︒ D. 9C ︒ 2.若2x =是方程260x mx --=的一个解,则m 的值为A.1-B. 1C.3-D. 23.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外都相同,现从这个盒子中随机摸出一个球,摸到红球的概率为A.815 B. 13 C. 215 D. 1154.如图,⊙O 是ABC ∆的外接圆,42OBC ∠=︒,则A ∠的度数是 A .42︒ B .48︒ C .52︒ D .58︒5.如图,ABC ∆中,78A ∠=︒,4AB =,6AC =.将ABC ∆沿图示中的 虚线剪开,剪下的阴影三角形与原三角形不一定相似.....的是A. B .. 6.在正方形网格中,BAC ∠如图放置,则cos BAC ∠等于A .3B .13C7.如图,直线l 与以线段AB 6AB =,3AC =,点P 是直线l 上一个动点.当APB ∠的度数最大时,线段BP 的长度为A .6B .C .9D .(第7题)(第4题)B3 BA8.二次函数2(4)4(0)y a x a =--≠,当23x <<时对应的函数图像位于x 轴的下方,当 67x <<时对应的函数图像位于x 轴的上方,则a 的值为A.1B.1-C. 2D.2-二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.若一元二次方程2560x x --=的两根分别是1x 、2x ,则12x x += ▲ . 10.将抛物线2y x =向右平移2个单位,再向上平移3个单位,所得抛物线的表达式为 ▲ .11.在Rt ABC ∆中,90C ∠=︒,5sin 13A =,则tan B 的值为 ▲ . 12.用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径为 ▲ .13.如图,AB 、CD 是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为 ▲ .14.如果关于x 的一元二次方程240x x m --=没有实数根,那么m 的取值范围是 ▲ .15.如图,在平面直角坐标系中,已知点(3,6)A -、(9,3)B --,以原点O 为位似中心,相似比为13,把ABO ∆缩小,则点A 的对应点A '的坐标是 ▲ .16.如图,一段抛物线:22(02)y x x x =-+≤≤记为1C ,它与x 轴交于两点O ,1A ;将1C 绕1A 旋转180︒得到2C ,交x 轴于2A ;将2C 绕2A 旋转180︒得到3C ,交x 轴于3A ;…如此进行下去,直至得到6C ,若点(11,)P m 在第6段抛物线6C 上,则m = ▲ .(第13题)(第15题)OAB17.如图,矩形OABC 中,OA 在x 轴上,OC 在y 轴上,且2OA =,4AB =,把ABC ∆沿着AC 对折得到'AB C ∆,'AB 交y 轴于点D ,则'B 点的坐标为 ▲ .18.二次函数2(0)y ax bx c a =++≠的部分图像如图所示,图像过点(1,0)-,对称轴为直线2x =,下列结论:(1)40a b +=;(2)93a c b +>;(3)若点1(3,)A y -、点21(,)2B y -、点37(,)2C y 在该函数图像上,则132y y y <<;(4)若方程(1)(5)3a x x +-=-的两根为1x 和2x ,且12x x <,则1215x x <-<<.其中正确结论的序号是 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)解下列方程(1)2(3)3x x -=-; (2)2214x x +=.20.(本题满分8分)已知:如图,在ABC ∆中,D 是AC 上一点,32CB CA CD CB ==,BCD ∆ 的周长是24cm. (1)求ABC ∆的周长;(2)求BCD ∆与ABD ∆的面积比.(第16题)(第17题) (第18题)1-21.(本题满分8分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下(单位:分):A 班:88,91,92,93,93,93,94,98,98,100B 班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:(1)求表中a 、b 、c 的值;(2)依据数据分析表,有人说:“最高分在A 班,A 班的成绩比B 班好”,但也有人说B 班的成绩要好,请给出两条支持B 班成绩好的理由;22. (本题满分8分)某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为14. (1)该批产品有正品 ▲ 件;(2)如果从中任意取出2件,利用列表或树状图求取出2件都是正品的概率.23.(本题满分10分)如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(1,3)-、(4,1)-、(2,1)-,先将ABC ∆沿一确定方向平移得到111A B C ∆,点B 的对应点1B 的坐标是(1,2),再将111A B C ∆绕原点O 顺时针旋转90︒得到222A B C ∆,点1A 的对应点为点2A .(1)画出111A B C ∆和222A B C ∆;(2)求出在这两次变换过程中,点A 经过点1A 到达2A 的路径总长; (3)求线段11B C 旋转到22B C 所扫过的图形的面积.24.(本题满分10分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查发现:在一段时间内,当销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.若商场要获得10000元销售利润,该玩具销售单价应定为多少元?售出玩具多少件?25.(本题满分10分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,过点O 作OP ⊥AD ,交AB 的延长线于点P .点C 在OP 上,且BC PC =. (1)求证:直线BC 是⊙O 的切线; (2)若3OA =,2AB =,求BP 的长.26.(本题满分10分)若二次函数2111y a x b x c +=+的图像记为1C ,其顶点为A ,二次函数2222y a x b x c +=+的图像记为2C ,其顶点为B ,且满足点A 在2C 上,点B 在1C 上,则称这两个二次函数互为“伴侣二次函数”. (1)写出二次函数2y x =的一个“伴侣二次函数”;(2)设二次函数223y x x =-+与y 轴的交点为P ,求以点P 为顶点的二次函数223y x x =-+的“伴侣二次函数”; (3)若二次函数221y x =-与其“伴侣二次函数”的顶点不重合,试求该“伴侣二次函数”的二次项系数.27.(本题满分12分)如图,⊙A 的圆心A 在反比例函数3(0)y x x=>的图像上,且与x 轴、y 轴相切于点B 、C ,一次函数y b =+的图像经过点C ,且与x 轴交于点D ,与⊙A 的另一个交点为点E . (1)求b 的值及点D 的坐标; (2)求CE 长及CBE ∠的大小;(3)若将⊙A 沿y 轴上下平移,使其与y 轴及直线y b =+均相切,求平移的方向及平移的距离.28.(本题满分12分)如图,二次函数2y ax bx c =++的图像与x 轴交于点(1,0)A -、(3,0)B ,与y 轴交于点(0,3)C . (1)求二次函数的表达式;(2)设上述抛物线的对称轴l 与x 轴交于点D ,过点C 作CE ⊥l 于E ,P 为线段DE 上一点,(,0)Q m 为x 轴负半轴上一点,以P 、Q 、D 为顶点的三角形与CPE ∆相似; ①当满足条件的P 点有且只有一个时,求m 的取值范围; ②若满足条件的P参考答案一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分) 9.5 10.2(2)3y x =-+ 11.125 12.3 13.1414.4m <- 15.(1,2)-或(1,2)- 16.1- 17.(1.2,2.4) 18.(1)(4) 三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.解:(1)原方程即 (3)(2)0x x --= (2)分30x -=或20x -=13x =,22x = …………………………………………4分(2)原方程即 22410x x -+=224(4)4218b ac -=--⨯⨯= (6)分x ==1x =,2x = …………………………………………8分20.解:(1) ∵CB CACD CB =,C C ∠=∠ ∴BCD ∆∽ACB ∆ ∴23BCD ACB C C ∆∆=∵BCD ∆的周长是24cm∴ABC ∆的周长是36cm (4)分(2) ∵BCD ∆∽ACB ∆∴49BCD ACB S S ∆∆= ∴45BCD ACD S S ∆∆= ………………8分21.解:(1)1(88+91+92+939393949898100)9410a =⨯++++++= 95.5b =22222222221[(6)(3)(2)(1)(1)(1)0446]=1210c =-+-+-+-+-+-++++ …6分(2) ①B 班平均分高于A 班;②B 班的成绩集中在中上游,故支持B 班成绩好 (8)分其他答案有理由即可。
22.解:(1)3; (2)分(2)将4件电子产品记为正品1、正品2、正品3、次品,列表分析如下:……6分结果共有12种情况,且各种情况都是等可能的,其中两次取出的都是正品共6种……8分23.解:(1)如图………………4分(2)1OA=点A经过点A1到达A2的路径总长为………………7分(3)2Sπ==……10分24.解:设该玩具的销售单价应定为x元根据题意,得 (30)[60010(40)]10000x x ---= (5)分解得1250,80x x == (8)分当50x =时,60010(40)500x --=件,当80x =时,60010(40)200x --=件. 答:该玩具的销售单价定为50元时,售出500件;或售价定为80元时售出200件. ………………10分25.解(1)证明:连接OB .∵OA OB =, ∴A OBA ∠=∠. 又∵BC PC =, ∴P CBP ∠=∠∵OP AD ⊥, ∴90A P ∠+∠=︒ ∴90OBA CBP ∠+∠=︒, ∴180()90OBC OBA CBP ∠=︒-∠+∠=︒.∵点B 在⊙O 上, ∴直线BC 是⊙O 的切线. ……5分 (2)连接DB . ∵AD 是⊙O 的直径, ∴90ABD ∠=︒, ∴Rt ABD ∆∽Rt AOP ∆. ∴AB AD AO AP =,即263AP=,9AP =, ∴927BP AP AB =-=-=. ......10分 26.解:(1)2y x =-(答案不唯一); (2)分(2)令0x =,得3y =.故二次函数223y x x =-+与y 轴的交点为P (0,3). 设二次函数223y x x =-+的伴侣二次函数为23y ax =+ 将(1,2)代入,得1a =-故二次函数223y x x =-+的伴侣二次函数为23y x =-+ ……6分(3)设二次函数221y x =-的伴侣二次函数为2()y a x h k =-+根据“伴侣二次函数”定义可得221(0)21a h kk h ⎧-=-+⎪⎨=-⎪⎩, ∴2a =-. (10)分27. 解:(1)连接AC AB 、,易得四边形OBAC 是正方形,故设(,)A a a ,将(,)A a a 代入3(0)y x x=>中,得a =所以C将C代入到y x b +中,得b = 当0y =时,3x =- 故(3,0)D - ……4分(2) 连接AE ,∵AC ∥x 轴,∴30ACE ∠=︒ ∴120CAE ∠=︒∴3CE =,60CBE ∠=︒ ……8分(3)①当向上平移至点1A 处时,⊙A 与y 轴及直线y b +均相切,此时平移的距离为3; ②当向下平移至点2A 处时,⊙A 与y 轴及直线y b +均相切,此时平移的距离为1. ……12分28.解:(1)将(1,0)A -、(3,0)B 、(0,3)C 代入2y ax bx c =++中,得00933a b c a b c c =-+⎧⎪=++⎨⎪=⎩ 解得123a b c =-⎧⎪=⎨⎪=⎩∴二次函数的表达式为223y x x =-++ ………………3分(2)①设PD x =(03)x <<,则3PE x =-.若CPE ∆∽QPD ∆,则CE PE QD PD =,即131x m x-=-, 故13x m x-=-得(2)33m x m -=- 33303022m m x m m-<∴==-≠-- 是方程的根; 若CPE ∆∽PQD ∆,则CE PE PD QD =,即131x x m -=-, 即2310x x m -+-=由题意,得0∆<,即2(3)41(1)0m --⨯⨯-<,解得54m <- 故Q 点的横坐标m 的取值范围为54m <- ………………8分②m 的值为1-或54-.………………12分。