随机信号分析-估计理论
- 格式:ppt
- 大小:1.67 MB
- 文档页数:88
第二章随机信号分析随机信号分析确定性信号分析的不同与联系:随机信号分析、确定性信号分析的不同与联系:随机信号分析的主要内容:随机过程的一般表述平稳随机过程高斯过程窄带随机过程正弦波加窄带高斯过程稳随机过过线性系平稳随机过程通过线性系统2010-9-271引言信号:一般是时间的函数确定信号:可以用确定的时间函数表示的信号 周期信号和非周期信号能量信号和功率信号基带信号和频带信号模拟信号和数字信号随机信号:具有随机性,可用统计规律来描述 通信过程中要发送的信号是不可预知的,因此具有随机性,是随机信号,但信号的统计特性具有规律性。
噪声和干扰是随机的信号噪声和干扰是随机的信号;无线信道特性(可理解为系统传递函数)也是随机变2010-9-272化的。
随机过程:与时间有关的函数,但任一时刻的取值不确定(随机变量)随机过程可以看成对应不同随机试验的时间过程的集合。
如n(或无数)台性能完全的接收机输出的噪声波形,每个波形都是一个确定函数,为一个样本函数,各波形又各不相同。
也可看成一个接收机,不同实验输出不同的样本函数。
随机过程是所有样本函数的集合。
2010-9-2731随机过程的一般表述1 随机过程的般表述(1)样本函数:随机过程的具体实现样本空间所有实现构成的全体~()i x t )()t 样本空间:所有实现构成的全体所有样本函数及其统计特性构成了随机过程{}1~(),,),i S x x t =……~()t ξ2010-9-274随机过程是随机变量概念的延伸,即随机变量引入时间变量,成为随机过程。
每一个时刻,对应每个样本函数的取值{i(),,,,}{x(t),i=1,2,…,n}是一个随机变量。
固定时刻t1的随机变量计为ξ(t1)。
随机过程看作是在时间进程中处于不同时刻的随机变量的集合。
2010-9-27511随机过程的n维分布函数或概率密度函数往往不容易或不需要得到,常常用数字特征部分地表述随机过程的主要特征。
实验一 随机序列的产生及数字特征估计实验目的1. 学习和掌握随机数的产生方法。
2. 实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。
实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:Ny x N ky y y nn n n ===-) (mod ,110 (1.1)序列{}n x 为产生的(0,1)均匀分布随机数。
下面给出了(1.1)式的3组常用参数:① 1010=N ,7=k ,周期7105⨯≈;②(IBM 随机数发生器)312=N ,3216+=k ,周期8105⨯≈; ③(ran0)1231-=N ,57=k ,周期9102⨯≈;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。
定理1.1 若随机变量X 具有连续分布函数)(x F X ,而R 为(0,1)均匀分布随机变量,则有)(1R F X X -= (1.2)由这一定理可知,分布函数为)(x F X 的随机数可以由(0,1)均匀分布随机数按(1.2)式进行变换得到。
2.MATLAB 中产生随机序列的函数 (1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列 函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。