北师大数学八年级上教案第二章实数(一)
- 格式:doc
- 大小:684.69 KB
- 文档页数:21
第二章实数第一节认识无理数教案一、教学目标1. 理解无理数的概念,掌握实数的概念及其性质。
2. 能够正确地进行无理数的运算,掌握实数大小的比较方法。
3. 培养学生对数学的兴趣和探究精神,提高逻辑思维能力。
二、教学重点和难点教学重点:1. 无理数的概念和实数的性质。
2. 无理数的运算和大小比较。
教学难点:1. 如何理解无理数的概念。
2. 如何正确进行无理数的运算。
三、教学过程1. 引入新知:通过问题导入,引导学生思考有理数无法表示的数,进而引出无理数的概念。
2. 概念讲解:详细讲解无理数的概念和实数的性质,让学生理解无理数的含义和特点。
3. 例题讲解:选取具有代表性的例题,引导学生进行无理数的运算和大小比较,掌握无理数的运算法则和实数大小的比较方法。
4. 练习与检测:让学生进行课堂练习和自我检测,加深对无理数的理解和掌握。
5. 巩固知识:通过提问、小组讨论等方式,让学生回顾所学知识,巩固记忆。
6. 拓展延伸:介绍无理数在其他数学领域的应用,引导学生了解数学的实际应用价值。
四、教学方法和手段1. 讲解与演示:教师通过讲解和演示,让学生理解无理数的概念和性质。
2. 练习与讨论:学生进行课堂练习和小组讨论,加深对无理数的理解和掌握。
3. 多媒体辅助:使用多媒体设备展示无理数和实数的图形关系,帮助学生更好地理解概念。
五、课堂练习、作业与评价方式1. 课堂练习:选取适当的练习题,让学生在课堂上进行无理数的运算和大小比较,检验学习效果。
2. 课后作业:布置适量的作业题,让学生在家中继续巩固无理数的知识和技能。
3. 互动评价:学生之间互相评价课堂练习和作业,互相学习和帮助,共同提高。
六、辅助教学资源与工具1. PPT讲解:提供详细的PPT讲解,帮助学生更好地理解无理数的概念和性质。
2. 数学软件:使用数学软件展示无理数和实数的图形关系,帮助学生更好地理解概念。
3. 参考资料:提供相关的数学参考资料,供学生自主学习和研究。
八年级数学上册教案新版北师大版:2.4估算教学目标1.能估算一个无理数的大致取值范围;(重点)2.能通过估算比较两个数的大小;(难点)3.掌握估算的方法,形成估算的意识.教学过程第一环节:情境引入内容:由修建环保公园的实际问题情境引出本节课的学习内容――公园有多宽.某市开辟了一块长方形的荒地用来建一个以环保为主题的公园.已知这块地的长是宽的两倍,它的面积为400000平方米.此时公园的宽是多少?长是多少?给出这个问题情境,先让学生凭感觉说出公园的长和宽分别是多少.给出引导问题:公园的宽有1000米吗?(没有)那么怎么计算出公园的长和宽.解:设公园的宽为x米,则它的长为2x米,由题意得:x·2x =400000,2x2=400000,x.目的:从现实情境引入,一方面让学生初步建立数感,另一方面让学生体会生活中的数学从而激发学习的积极性.效果:学生通过与生活紧密联系的问题情境初步感受到估算的实用价值.第二环节:活动探究内容:1.探究一个无理数估算结果的合理性.2.学会估算一个无理数的大致范围.例1 下列结果正确吗?你是怎样判断的?与同伴交流.解答:这些结果都不正确.怎样估算一个无理数的范围?例2 你能估算它们的大小吗?说出你的方法.(①②误差小于0.1;③误差小于10;④误差小于1.)解答:说明:误差小于10就是估算出的值与准确值之间的差的绝对值小于10,的估算值在误差小于10的前提下可以是310,也可以是320,还可以是310到320之间的任何数.教材使用误差小于10,而不用精确到哪一位,目的在于降低要求。
目的:同伴间进行交流,教师适时引导.在解决问题的同时引导学生对解决方法进行总结,和学生一起归纳出估算的方法.让学生从被动学习到主动探究,激发学生的学习热情,培养学生自主学习数学的能力.效果:通过简单无理数大致范围的估计,初步积累一些解决问题的经验,为接下来的实际应用做好准备.第三环节:深入探究内容:用估算来解决数学的实际问题.例1你能比较512与12的大小吗?你是怎样想的?512与12>2>1512>12.解:∵5>4)2>22,2,>1,即512>12.例2 解决引入时“公园有多宽?”的问题情境中提出的问题.=?(1)如果要求误差小于10米,它的宽大约是?(大约440米或450米)说明:只要是440与450之间的数都可以.(2)该公园中心有一个圆形花圃,它的面积是800平方米,你能估计它的半径吗(误差小于1米)?(15米或16米)说明:只要是15与16之间的数都可以.例3 给出新的问题情境——画能挂上去吗?生活表明,靠墙摆放梯子时,若梯子底端离墙距离为梯子长度的三分之一,则梯子比较稳定.现有一长度为6米的梯子,当梯子稳定摆放时,(1)他的顶端最多能到达多高(保留到0.1)?(2)现在如果请一个同学利用这个梯子在墙高5.9米的地方张贴一副宣传画,他能办到吗?解:设梯子稳定摆放时的高度为x 米,此时梯子底端离墙恰好为梯子长度的13,根据勾股定理:2x +(13×6)2=62, 2x +4=36,2x =32,x因为3236.316.52<=因为3249.327.52>=所以画不能挂上去目的:学生通过独立思考与小组讨论相结合的方式解决新的实际问题,让学生初步体会数学知识的实际应用价值.效果:在解决实际问题中再次体会估算的方法,从而体验到学习数学的乐趣.第四环节:反馈练习内容:反馈练习1 估算下列数的大小.(10.1);(21).解答:(1)∵3.6 3.7,或3.7(只要是3.6与3.7之间的数都可以).(2)∵910,或10(只要是9与10之间的数都可以).反馈练习2通过估算,比较下面各数的大小.(1312与12;(2 3.85.解答:(12,<1, 即312<12. (2)∵3.852=14.8225,3.85.反馈练习3给出与生活密切联系的实际问题情境一个人一生平均要饮用的液体总量大约为40立方米,如果用一圆柱形的容器(底面直径等于高)来装这些液体,这个容器大约有多高(误差小于1米)?目的:教学引导学生解决问题,学生通过独立思考和与同伴合作交流的方式解决提出的问题,让学生再次体会估算的方法和估算的实际应用,调动探究的积极性.效果:进一步激发学生对利用估算的方法解决问题的兴趣,调动学生学习数学的热情.第五环节:反思归纳内容:1.用自己的语言表达学习这节内容的感想(1)通过这节课的学习,你掌握了哪些知识?(2)通过学习这些知识,对你有怎样的启发?(3)对于这节课的学习,你还有哪些疑问?2.浏览给出的知识点归纳.目的:引导学生归纳本节的基本内容,让学生及时小结,教师展示知识脉络图并反思本节课教学设计的不足,及时做出后面教学的调整.效果:部分学生能大胆地提出疑问.第六环节:作业巩固内容:习题2.6 1,2,3,6目的:给出作业内容,学生浏览给出的作业.效果:让学生在练习中及时巩固所学知识.教学设计反思(一)突出重点、突破难点的策略“公园有多宽”这节内容是让学生掌握估算的方法,训练他们的估算能力,而学生在生活中接触用估算解决实际问题的情况比较少,所以比较陌生,进而学习起来难度就比较大。
八年级数学第二章《实数》教案(1)北师大版教学过程一、创设情境,导入新课师:用课件出示下列内容:你能独立完成吗?1. _________和_________统称为有理数,如__________________,_________等都是有理数。
2.无理数是_________的小数,如_________,_________,_________等都是无理数。
3.把下列各数分别填入相应的集合内:,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)生:独立思考并完成。
二、师生互动探究互动一、在实数概念基础上对实数进行不同分类师:上面的一系列数,它们都可以填进这两个圆中,你认为我们学过的数字,有没有不属于上面两种类型的呢?生:没有。
师:那么这节课的课题是实数,那么我们就把这两种类型就叫实数。
即有理数和无理数统称为实数。
生:也就是说实数可分为有理数和无理数。
师:对!你说的太对啦!实数从定义可分为有理数和无理数。
无理数和有理数一样,也有正负之分,那么按正负分实数还可以怎样分类?生:实数按正负分还可以分为正实数和负实数。
师:正数和负数能构成实数吗?还有别的数吗?生:还有0.师:所以实数还可以怎么分?生:实数可以分为正实数、0、负实数。
师:很好,在这里要特别提示大家分类可以有不同的方法,但要按同一标准不重不漏。
互动二、了解实数范围内相反数、倒数、绝对值的意义:师:-2的相反数是什么?生:(齐声)2师:的相反数是什么?生: 是-师:实数a的相反数是什么?生:思考并讨论后回答是-a。
师:同学们回答的非常好,-2的倒数是什么?生:是-。
师:的倒数是什么?生:思考回答。
师:实数a的倒数是什么?生:是。
师:-2的绝对值是什么?生:是2师:的绝对值是什么?生:是师:实数a的绝对值是什么?生:思考、交流,然后回答。
是|a|师:通过以上问题我们可以得哪些结论?生:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
第二章 实 数7 二次根式第1课时 二次根式及其化简教学目标1.会区分二次根式与最简二次根式;2.能运用算术平方根的性质,进行二次根式的化简;3.经历二次根式的基本性质,运算法则的探究过程,培养学生从具体到抽象、从特殊到一般的概括能力,体验归纳、猜想的思想方法.教学重难点重点:运用算术平方根的性质,进行二次根式的化简;难点:会利用积与商的算术平方根的性质化简二次根式.教学过程导入新课1.做一做:√169= 13 ,√42= 4 ,(√4)2= 4 ,√a 2= |a | , (√a )2=a.2.观察下列代数式:(1)√5 ; (2)√11 ; (3)√7.2 ; (4)√49121;(5)√a 2+1 ; (6)√(c +b )(c −b)(其中b =24,c =25).这些式子有什么共同特征?(1)形式上含有根号;(2)根指数都为2;(3)被开方数为正数. 探究新知一般地,形如√a (a ≥0)的式子叫做二次根式,其中a 是被开方数.判断一个数式是不是二次根式必须同时满足:①根指数都为2;②被开方数为非负数.【例1】 说一说下列各式哪些是二次根式.(1) √32; (2)6; (3) √−12;(4) √−m (m ≤0); (5) √xy ; (6)√53.【解】(1)(4).(2)没有开方运算;(3)被开方数是负数;(5)xy 可能是负数;(6)根指数不是2活动:探究二次根式的性质计算下列各式,你能发现什么?(1)√4×√9= 6, √4×9=6 ;√16×√25= 20, √16×25=20;√4√9=23,√49=23;√16√25=45,√1625=45. (2)用计算器计算:√6×√7 ≈6.481 , √6×7≈6.481;√6√7≈0.925 8 , √67≈0.925 8. 即:√4×√9= √4×9;√16×√25=√16×25;√6×√7=√6×7; √4√9=√49; √16√25=√1625; √6√7=√67. 积的算术平方根等于积中各因式的算术平方根的积;√ab =√a ·√b (a ≥0,b ≥0)商的算术平方根等于被除式的算术平方根除以除式的算术平方根. √a b =√a √b(a ≥0,b >0).【例2】化简:(1)√81×64;(2)√25×6;(3)√59. 观察:化简以后结果中的被开方数又有什么特征?【解】(1)√81×64=√81×√64=9×8=72;(2)√25×6=√25×√6=5×√6=5√6; (3)√59=√5√9=√53. 被开方数中都不含分母,也不含能开得尽方的因数.一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式.最简二次根式的特点:①被开方数不含分母;②被开方数不含能开得尽方的因数或因式;③分母不含根号.【例3】化简:(1)√50;(2)√27; (3)√3. 【解】(1)√50=√25×2=√25×√2=5×√2=5√2; (2)√27=√2√7=√2×√7√7×√7=√147; (3)√3=√3√3×√3=√33. 注:化简时,要求最终结果是最简二次根式.课堂练习 1.下列根式中,不是最简二次根式的是( )A .√7B .√3C .√12D .√22.若x 为任意数,则下列各式中一定成立的是( )A.24x x =B.24x x -=C.x x =2D.x x -=23.下列各式中正确的是( )A.416±=B.()222-=-C.24-=-D.3327=4.化简()225-⨯,结果是( ) A.-52 B.52 C.-10 D.10 5.要使式子√a+2a 有意义,a 的取值范围是( )A. a ≠ 0B. a >-2且a ≠ 0C. a >-2或a ≠ 0D. a ≥-2且a ≠ 0参考答案1.C2.A3.D4.B5.D课堂小结1.判断一个数式是不是二次根式必须同时满足:①根指数都为2;②被开方数为非负数.2.二次根式的性质: √ab =√a ·√b (a ≥0,b ≥0);√a b =√a√b (a ≥0,b >0).3.最简二次根式满足的条件:①二次根式的被开方数不含开得尽方的因数(或因式);②二次根式的被开方数不含分母(即根号内不能是分数);③分母不能含有根号. 布置作业习题2.9第1,2,3题板书设计7 二次根式第1课时 二次根式及其化简 1.二次根式的定义及其判断依据;2.二次根式的性质:√ab =√a ·√b (a ≥0,b ≥0);√a b =√a √b (a ≥0,b >0).3.最简二次根式的定义及其判断依据.。
北师大版八年级数学上册第二章实数教学设计一. 教材分析北师大版八年级数学上册第二章实数,主要介绍了实数的概念、分类和运算。
本章内容是初中数学的重要基础,对于学生理解和掌握数学知识体系具有重要意义。
教材内容安排合理,既有理论知识的讲解,又有实际例子的演示,使学生能够更好地理解和运用实数知识。
二. 学情分析八年级的学生已经掌握了初步的数学知识,对于实数的概念和运算有一定的了解。
但学生在实数的分类和运算方面存在一定的困难,需要通过本章的学习进一步巩固和提高。
同时,学生对于数学知识的理解和运用能力各有差异,需要在教学过程中关注学生的个体差异,因材施教。
三. 教学目标1.理解实数的概念,掌握实数的分类。
2.熟练掌握实数的运算方法,能够运用实数知识解决实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.实数的分类:有理数、无理数、整数、分数、正数、负数等。
2.实数的运算:加法、减法、乘法、除法、乘方等。
五. 教学方法1.讲授法:讲解实数的概念、分类和运算方法。
2.案例分析法:分析实际例子,让学生更好地理解和运用实数知识。
3.讨论法:分组讨论,培养学生的合作意识和解决问题的能力。
4.练习法:布置适量作业,巩固所学知识。
六. 教学准备1.教材:北师大版八年级数学上册。
2.教案:实数教学设计。
3.PPT:实数相关知识点和案例分析。
4.作业:适量实数运算练习题。
七. 教学过程1.导入(5分钟)利用PPT展示实数的应用场景,引导学生思考实数的概念和分类。
2.呈现(10分钟)讲解实数的概念、分类和运算方法,通过PPT展示相关知识点,让学生更好地理解和掌握。
3.操练(10分钟)分组讨论实数的运算方法,让学生动手实践,相互交流,巩固所学知识。
4.巩固(10分钟)布置适量作业,让学生独立完成,检查对实数知识的掌握情况。
5.拓展(10分钟)分析实际例子,让学生运用实数知识解决实际问题,提高学生的应用能力。
2.1. 数怎么又不够用了(一)教学目标(一)教学知识点1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出理由.(二)能力训练要求1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观要求1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神. 教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教具准备有两个边长为1的正方形,剪刀.投影片两张:第一张:做一做(记作§2.1.1 A);第二张:补充练习(记作§2.1.1 B).教学过程Ⅰ.创设问题情境,引入新课:[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢? [生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.Ⅱ.讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师. [师]现在我们一齐把大家的做法总结一下:下面再请大家共同思考一个问题,假设拼成大正方形的边长为a ,则a 应满足什么条件呢? [生甲]a 是正方形的边长,所以a 肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a 应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数.[生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了. 2.做一做:投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b ,则b 应满足什么条件? (3)b 是有理数吗?[师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a ,b ,斜边为c ,则有a 2+b 2=c 2.[师]在这个题中,两条直角边分别为1和2,斜边为b ,根据勾股定理得b 2=12+22,即b 2=5,则b 是有理数吗?请举手回答.[生甲]因为22=4,32=9,4<5<9,所以b 不可能是整数. [生乙]没有两个相同的分数相乘得5,故b 不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a ,b 都不是有理数,而是另一类数——无理数.关于无理数的发现是发现者付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.Ⅲ.课堂练习(一)课本P25随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.Ⅳ.课时小结1.通过拼图活动,让学生感受有理数又不够用了,经历无理数产生的实际背景和引入的必要性.2.能判断一个数是否为有理数.Ⅴ.课后作业课本P49习题2.1解:设长、宽分别为3、2的长方形的对角线长为a,得a2=32+22,a2=13a不可能是整数,也不可能是分数.Ⅵ.活动与探究下图是由16个边长为1的小正方形拼成的,任意连结这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和三条长度不是有理数的线段.解:如图,AB=2,BE=1,AB、BE是有理数.AD2=AB2+BD2=22+32=13,AC2=1+1=2.AE2=AB2+BE2=22+12=5.AC、AD、AE既不是整数,也不是分数,所以不是有理数.教学反思:无理数的引入是比较重要的,也渗透着估计数的大小的问题,为后面教学内容做一个好的铺垫。
第二章实数6.实数(一)一、学生起点分析实数是在有理数和勾股定理等知识基础上进行的第二次数系扩张,在教学中注意运用类比方法,使学生明确新旧知识之间的联系,如实数的相反数、倒数、绝对值等概念可完全类比有理数建立,并通过例题和习题来巩固,适当加深对它们的认识。
二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级上册第二章《实数》的第六节。
这节内容教材安排了3个课时,本节课为第一课时。
主要是建立实数的概念并能对实数按要求进行不同的分类,同时了解实数范围内的相反数、倒数、绝对值的意义,让学生在动手操作中明确实数和数轴上的点是一一对应的。
●教材地位及作用在本节之前学生已学习了平方根、立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入。
中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程、函数的基础。
三、教学目标分析教学目标●知识与技能目标1.了解实数的意义,能对实数按要求进行分类;2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样。
3.了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小。
●过程与方法目标1.通过对实数分类的探究,增强学生的分类意识;2.在利用数轴上的点来表示实数的过程中,将数和图形结合在一起,让学生进一步体会数形结合的思想。
●情感与态度目标1.通过对实数进行分类的练习、进一步领会分类的思想方法;2.在探究利用数轴上的点表示实数的过程中,训练学生多角度思维,培养和发展学生的合作意识。
教学重点1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
教学难点建立实数概念及分类四、教法学法1.教学方法:自主探究—交流—发现2.课前准备:多媒体课件、投影仪、电脑五、教学过程:本节课设计了八个教学环节:第一环节:复习引入新课;第二环节:实数概念;第三环节:实数分类;第四环节:实数相关概念;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:课堂小节;第八环节:作业布置。
第二章实数2.1.1 认识无理数(第1课时)一、教学目标:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;二、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】a ,请问:①a可能是整数吗?②a可能是分数吗?【议一议】:已知22【释一释】:释1.满足22a =的a 为什么不是整数? 释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段: 1.长度是有理数的线段 2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形 (右1)2.三边长都是有理数 2.只有两边长是有理数3.只有一边长是有理数 4.三边长都不是有理数 【仿一仿】:例:在数轴上表示满足()220x x =>的x解: (右2)仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.本节课的教学目标是:1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.2.1.2 认识无理数(第2课时)三 、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?1-,0,2,3,…) 有理数(如31,52-,119,0.5,… )2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”.第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础.2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况?探究结论:分数只能化成有限小数或无限循环小数.即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力.第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数. 例1填空:0.351,4.96∙∙-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( )有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数无理数集合…(3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形;(D ) 面积为1.44的正方形.例4一个直角三角形两条直角边的长分别是3和5,则斜边a 是有理数吗?解:由勾股定理得: 22235a =+,即2=34a .因为34不是完全平方数,所以a 不是有理数.强调:1. 无理数是无限不循环小数,有理数是有限小数或无限循环小数.2. 任何一个有理数都可以化成分数qp形式(q ≠0, p ,q 为整数且互质),而无理数则不能.练一练:1.课本P 23 随堂练习.2.已知:在数43-,5, 1.42∙∙-,π,3.1416,32,0,24,2n (1)- ,-1.424224222…中, (1)写出所有有理数; (2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.目的:通过例题的讲解、练习,让学生充分理解无理数、有理数的概念、区别,感受数的分类.效果:通过学生练习,更加明确了有理数、无理数的概念,及它们之间的区别与联系,激发学生学习兴趣,巩固了对概念的理解.第五个环节:课堂小结内容:本节课你有哪些收获?51.无理数的定义.2.你是怎样判断一个数是无理数还是有理数的?3.请把已学过的数怎样分类?目的:让学生学会及时对知识点、数学方法进行总结,并整理成经验,形成知识体系,培养学生良好的学习习惯,提高其归纳总结能力.效果:师生共同总结补充,形成完整的知识体系.第六个环节:布置作业习题2.2 1.2.3.2.2.1 平方根(第1课时)一、教学目标:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.二、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1.三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3、2.2.2 平方根(第2课时)一、教学目标①了解平方根、 开平方的概念,明确算术平方根与平方根的区别和联系.②进一步明确平方与开平方是互逆的运算关系.③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.教学重点是①了解平方根、开平方的概念.②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.③了解平方根与算术平方根的区别与联系.教学难点是①平方根与算术平方根的区别和联系.②负数没有平方根,即负数不能进行开平方的运算.二、教学过程设计:本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节 第一环节 复习旧知 引入新知;第二环节 形成概念,辨析概念;第三环节 例题和巩固练习;第四环节 课堂小结;第五环节 思维拓展;第六环节 布置作业. 第一环节 复习旧知 引入新知内容:方法一 复习引入1.什么叫算术平方根?3的平方等于9,那么9的算术平方根就是 3 . 52的平方等于 254 ,那么254 的算术平方根就是_____52_________. 展厅的地面为正方形,其面积49平方米,则边长_ 7_米.2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何?乘方有没有逆运算?平方与算术平方根之间的关系?已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____.方法二 复习引入问题 平方等于9,254,49的数还有吗?目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash 情景引入,增加动画效果.效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣.说明 数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望.第二环节 : 新课学习内容 (一)探究新知填空32=(9 ) (-3)2=(9 ) ( )2=9 02=0(12)2=(14))214= (不存在)2=-4 (12-)2=((二)形成概念(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.而把正的平方根叫做a 的算术平方根.表达式为:若x 2=a ,那么x 叫做a 的平方根. 记作 a ±.例如:(±4)2=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a .目的 形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系.效果 由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠.说明 平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方.对这两个概念加以比较与区别有利于学生的理解与掌握.第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11解 (1)()2648=±,648∴±的平方根是,8=±即;(2)()24949771211211111,=∴±±的平方根为,711±=±即;(3)()20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即;(4)()()()22,25252525=∴±±--2的平方根是, 25±=±即;(5)11的平方根是目的 这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.效果 通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.(二)思考提升1.()25-的平方根是 ,的算术平方根是_____,49的平方根是_____;2.2= ,= ,= ,=_______;3= ,20a≥=当 .(三)巩固练习1 .下列说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.下列说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数3.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( ).(A) a +1(C) 2a +1(D)4.x为何值,有意义? 答 因为02x -≥,所以0x ≤ 目的 围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解.效果 学生基本能顺利解决这些问题,并利用探索的规律进行规范的表达. 第四环节 课堂小结内容 引导学生总结本课时的知识、方法.目的 让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯.效果 在老师的引导下学生自己总结本节课的知识、方法,如平方根的概念 若2x a =,则x 叫a的平方根,x =平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根.平方与开方之间的关系;求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数.第五环节 提高训练内容1.5的小数部分为a,5b ,求a b +的值.2.已知实数a ,b满足296b b =①若a ,b 为ABC ∆的两边,求第三边c 的取值范围;②若a ,b 为ABC ∆的两边,第三边c 等于5,求ABC ∆的面积.目的 安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理.第六环节 作业布置 习题2.42.3.立方根一 、教学目标①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;二、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢? (球的体积公式为334R =v ,R 为球的半径) 提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).2.一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1)001.0 3=)( ; (2)6427 3=-)( ; (3)0 3=)(.。
第二章实数6.实数一、依据新课标制定教学重点:1.了解实数意义,能对实数进行分类;2.在实数范围求相反数、倒数和绝对值、明确实数的运算运算规律;3.明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数。
依据新课标制定教学难点:利用数轴上的点表示无理数。
二、教学任务分析1. 教学目标:(1).了解实数的意义,能对实数按要求进行分类;了解实数和数轴上的点一一对应,能根据实数在数轴上的位置比较大小.(2).了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内的相反数、倒数、绝对值的意义完全一样.(3).在利用数轴上的点来表示实数的过程中,让学生进一步体会数形结合的思想。
(4).在认识“实数”这一新知识时,学生应用已有的“有理数”的相关概念及运算规律类比解决“实数”的相关概念及运算规律,从而获取解决实数相关问题的基本方法。
(5).了解数系扩展对人类认识发展的必要性;2. 知识目标:通过观察、操作、想象、推理、交流等活动,发展空间观念,推理能力和有条理的表达能力。
3. 能力目标:通过对问题的发现和解决,培养学生的相互协作意识及数学表达能力,体验探索、交流与成功。
三、教学过程设计本节课设计了七个教学环节:第一环节:复习引入;第二环节:实数概念和分类;第三环节:实数相关概念;第四环节:实数的运算;第五环节:探究——实数与数轴上点之间的对应关系;第六环节:课堂练习;第七环节:归纳小结;第一环节:复习引入新课内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备。
效果:学生主动思考并积极回答,通过相互补充完善了旧知识的复习掌握,通过对有理数分类的复习,使学生进一步明确了分类要按同一标准不重不漏。
通过举例明确了无理数的表现形式,野味后续判断或者对实数进行分类提供了认知准备。
第二环节:实数概念和分类内容1:把下列各数分别填入相应的集合内:32,41,7,π,25-,2,320,5-,38-,94,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)知识整理:有理数和无理数统称为实数。
八 年级20 至20 学年度 第 学期 第 周 教师西安市教育委员会监制 西安电机中学 中数组班级 科目 教学时数 1 课时课 题2.1.1 数怎么又不够用了教学目标和要求知识要点1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出理由. 能力要求1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性。
2.识别某些数是否为有理数,训练他们的思维判断能力。
情感与价值观要求1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生进行交流,讨论与探索等教学活动,培养学生合作与钻研精神。
教学重点 1.让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数 2.会判断一个数是否为有理数教学难点 1.把两个边长为1的正方形,拼成一个大正方形的动手操作过程 2.判断一个数是否为有理数教学方法 活动探究、动手实践 教 具有两个边长为1的正方形,剪刀复习检查 有理数的分类(二分法)、(三分法)、(五分法)板 书设计板书实践活动亲自动手做拼图活动,感受无理数存在的必要性和合理性教学反思说实在的话,这节课真实在自己的“弟子”的搀扶下完成的!! 无理数的引入是比较重要的,也渗透着估计数的大小的问题,为后面教学内容做一个好的铺垫。
一句话——“事实胜于雄辩”2.1.1 数怎么又不够用了 1. 复习2. 引入 概念 例题3. 巩固 练习4. 小结、作业2.1.1 数怎么又不够用了(备用)八年级20 至20 学年度第学期第周教师新课教学过程(讲授程序及内容)备注一、创设情境,导入新课。
我们都学过:自然数、小数、分数,在七年级我们还学过负数。
在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数。
那么现在,特别是学习完“勾股定理”以后,有理数范畴是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题:二、直观感知,理解识别图形。
准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形。
1.做一做:请同学们把自己拼的图展示一下:a b c现在我们把大家的做法总结一下:2.说一说:假设拼成大正方形的边长为a,则a应满足什么条件呢?①a是正方形的边长,所以a肯定是正数。
②由两个小正方形面积之和等于大正方形面积,则根据正方形面积公式可知a2 = 2③由a2 = 2可判断a应是1点几。
我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答:西安市教育委员会监制西安电机中学中数组八 年级20 至20 学年度 第 学期 第 周 教师西安市教育委员会监制 西安电机中学 中数组913131,943232,412121=⨯=⨯=⨯新课教学过程 (讲授程序及内容)备注三、实践探究,明确强化。
3.议一议:因为12=1,22=4,32=9, … 【整数的平方越来越大】 而 a 2 = 2 所以 a 应在1和2之间。
故a 不可能是整数。
又因为 ,…【两个相同因数的乘积为分数】 所以a 不可能是分数。
经过讨论可知:等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数。
但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了4.试一试:(1) 上图中,以直角三角形的斜边为边的正方形的面积是多少? (2) 设该正方形的边长为b ,则b 应满足什么条件? (3) b 是有理数吗?在直角三角形中,两条直角边分别为1和2,斜边为b , 根据勾股定理 得 b 2=12+22, 即 b 2=5。
因为 22=4,32=9,4<5<9,所以b 不可能是整数又因为 没有两个相同的分数相乘得5,故b 不可能是分数由于没有一个整数或分数的平方会等于5,所以5必定不是有理数八年级20 至20 学年度第学期第周教师新课教学过程(讲授程序及内容)备注四、巩固练习,归纳小结。
上面讨论的数a,b都不是有理数,而是另一类数——无理数!!关于无理数的发现是发现者付出了昂贵的代价的。
古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”——也就是一切现象都可用有理数去描述。
后来,这个学派中一个叫希伯索斯的发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海!后来古希腊人终于正视了希伯索斯的发现。
也就是我们前面所掌握: a2=2中的a不是有理数5.练一练:正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?五、小结通过拼图活动,真实地感受——有理数又不够用了!!经历无理数产生的实际背景掌握如何判断一个数是否为——无理数六、作业:课本P 33 技能 1. 问题 2. 3.补充资料:课本P 36 “读一读”——无理数的发现西安市教育委员会监制西安电机中学中数组八 年级20 至20 学年度 第 学期 第 周 教师西安市教育委员会监制 西安电机中学 中数组班级 科目 教学时数 1 课时课 题2.1.2 数怎么又不够用了教学目标和要求知识要点1. 借助计算器探索无理数是无限不循环小数,体会“无限逼近”的思想2. 会判断一个数是有理数还是无理数 能力训练1. 借助计算器进行估算,培养学生的估算能力2. 探索无理数的定义,并能辨别出一个数是无理数还是有理数 情感与价值观要求1. 让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力2. 充分调动学生的积极性,提高他们的辨识能力教学重点 1.无理数概念的探索过程2.用计算器进行无理数的估算3.了解无理数与有理数的区别,并能正确地进行判断 教学难点 无理数概念的建立及估算 教学方法活动探究、动手实践复习检查 有理数的分类(二分法)、(三分法)、(五分法)板 书设计板书教学反思这节内容是无理数的概念以及实数的分类。
是数的范围的又一次扩充。
是很重要的一节。
培养学生的分类归纳的思想。
但对概念的理解掌握一些同学还是不很好。
只能在以后的教学过程中不断的加深。
2.1.2 数怎么又不够用了1. 复习2. 引入 概念 例题3. 巩固 练习4. 小结、作业2.1.2 数怎么又不够用了(备用)八年级20 至20 学年度第学期第周教师新课教学过程(讲授程序及内容)备注一、创设情境,导入新课。
我们在上节课了解到有理数又不够用了,并且我们还发现了一些数。
如a2=2, b2=5 中的a,b 既不是整数,也不是分数。
那么它们究竟是什么数呢?本节课我们就来揭示它的真面目二、直观感知,理解识别图形。
请看图:判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由1.做一做:因为3个正方形的面积分别为1,2,4 【面积又等于边长的平方】所以面积大的正方形边长就大判断:面积为2的正方形的边长a的大致范围呢?[生]2.说一说:由于a2大于1且a2小于4,则a大致为1点几a肯定比1大而比2小,可以表示为1<a<2那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5所以a是1点4几,即十分位上是4请大家用同样的方法确定百分位、千分位上的数字西安市教育委员会监制西安电机中学中数组八 年级20 至20 学年度 第 学期 第 周 教师西安市教育委员会监制 西安电机中学 中数组新课教学过程 (讲授程序及内容)备注 三、实践探究,明确强化。
探索过程如下(用表格的形式反映出来):边长a 面积S 1<a <2 1<S <4 1.4<a <1.5 1.96<S <2.25 1.41<a <1.42 1.9881<S <2.0164 1.414<a <1.415 1.999396<S <2.002225 1.4142<a <1.41431.99996164<S <2.000244493.议一议:请大家继续探索,并判断a 是有限小数吗?a =1.41421356…,再继续进行,且a 是一个无限不循环小数用上面的方法估计面积为5的正方形的边长b 的值 边长b 会不会算到某一位时,它的平方恰好等于5? 请大家分组合作后回答:B = 2.236067978…,再继续进行,b 也是一个无限不循环小数4.试一试:请大家把下列各数表示成小数: 3,112,458,95,54,是有限小数还是无限小数,是循环小数还是不循环小数?【答】 3=3.0, 54=0.8, 95=∙5.0,∙=71.0458, ∙∙=818.11123,54是有限小数,112,458,95是无限循环小数。
有理数总可以用有限小数或无限循环小数表示 反过来,任何有限小数或无限循环小数都是有理数像上面研究过的a 2=2, b 2=5中的a ,b 是无限不循环小数无理数是无限不循环小数,有理数是有限小数或无限循环小数 任何一个有理数都可以化为分数的形式,而无理数则不能八 年级20 至20 学年度 第 学期 第 周 教师西安市教育委员会监制 西安电机中学 中数组新课教学过程 (讲授程序及内容)备注四、巩固练习,归纳小结。
5.练一练:下列各数中,哪些是有理数?哪些是无理数?3.14,-34,∙∙75.0,0.1010010001…五、小结无理数是无限不循环小数,有理数是有限小数或无限循环小数。
任何一个有理数都可以化为分数的形式,而无理数则不能六、作业: 课本 P 37 技能 1. 2. 理解 1.补充资料:1. 下列各数中,哪些是有理数?哪些是无理数?0.351,-∙∙69.4,32,3.14159,-5.2323332…,123456789101112…2. 在下列每一个圈里,至少填入三个适当的数:3. 设面积为5π的圆的半径为a(1)a 是有理数吗?说说你的理由(2)估计a 的值(精确到十分位,并利用计算器验证你的估计) (3)如果精确到百分位呢? 解: ∵πa 2=5π ∴a 2=5(1) a 不是有理数,因为a 既不是整数,也不是分数, 而是无限不循环小数。
(2) 估计a ≈2.2 (3) a ≈2.24八 年级20 至20 学年度 第 学期 第 周 教师西安市教育委员会监制 西安电机中学 中数组班级 科目教学时数 1 课时课 题2.2.1 平方根教学目标和要求知识要点1.了解数的算术平方根的概念,会用根号表示一个数的算术平方根2.了解算术平方根的性质 能力训练1.加强概念形成过程的教学,提高学生的思维水平2.鼓励学生进行探索和交流,培养他们的创新意识和合作精神 情感与价值观要求1.让学生积极参与教学活动,培养他们对数学的好奇心和求知欲2.训练学生动脑、动口、动手能力教学重点 了解算术平方根的概念、性质,会用根号表示一个正数的算术平方根教学难点 了解算术平方根的概念、性质教学方法探究、启发式复习检查 有理数、无理数 小数板 书设计板书教学反思我们可以看出一个正数的平方与求算术平方根是互为逆运算。