新人教版八下数学教案
- 格式:doc
- 大小:41.00 KB
- 文档页数:10
新人教版八年级数学下册二次根式教案(14篇)篇1:新人教版八年级数学下册二次根式教案1.二次根式:式子( ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)( )2= ( ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.= ? (a≥0,b≥0); (b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1) ,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1) ;(2)例3、在根式1) ,最简二次根式是( )A.1) 2)B.3) 4)C.1) 3)D.1) 4)例4、已知:例5、 (龙岩)已知数a,b,若 =b-a,则 ( )A. a>bB. a2、二次根式的化简与计算例1. 将根号外的a移到根号内,得 ( )A. ;B. - ;C. - ;D.例2. 把(a-b)-1a-b 化成最简二次根式例3、计算:例4、先化简,再求值:,其中a= ,b= .例5、如图,实数、在数轴上的位置,化简:4、比较数值(1)、根式变形法当时,①如果,则;②如果,则。
新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
八年级数学教案人教版(通用19篇)八年级数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的.应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4.【例2】如果x2+axy+16y2是完全平方,求a的值.【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题.【探研时空】1.已知x+y=7,xy=10,求下列各式的值.(1)x2+y2;(2)(x-y)22.已知x+=-3,求x4+的值.四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a2-b2=(a+b)(a-b);a2±ab+b2=(a±b)2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)•在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式分解.五、布置作业,专题突破八年级数学教案 2一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。
关于名师新人教版八年级数学下册教案5篇关于名师新人教版八年级数学下册教案5篇数学的本质在于它的自由。
数学是打开科学大门的钥匙。
数学是各式各样的证明技巧。
挑选好一个确定得研究对象,锲而不舍。
你可能永远达不到终点,但是一路上准可以发现一些有趣的东西。
这里给大家分享一些关于名师新人教版八年级数学下册教案,供大家参考学习。
名师新人教版八年级数学下册教案(精选篇1)一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1.平移2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。
⑶平移不改变图形的大小和形状(只改变图形的位置)。
(4)平移后的图形与原图形全等。
3.简单的平移作图①确定个图形平移后的位置的条件:⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的方法:⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
1.旋转2.旋转的性质⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
⑷旋转前后的两个图形全等。
3.简单的旋转作图⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成①确定组合图案中的“基本图案”②发现该图案各组成部分之间的内在联系③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;⑸旋转变换与轴对称变换的⑹轴对称变换与平移变换的组合。
方差一. 教学目的:1. 了解方差的定义和计算公式。
2. 理解方差概念的产生和形成的过程。
3. 会用方差计算公式来比较两组数据的波动大小。
二. 重点、难点和难点的突破方法:1. 重点:方差产生的必要性和应用方差公式解决实际问题。
2. 难点:理解方差公式三. 例习题的意图分析:1. 教材P125的讨论问题的意图:(1).创设问题情境,引起学生的学习兴趣和好奇心。
(2).为引入方差概念和方差计算公式作铺垫。
(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。
(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。
2. 教材P154例1的设计意图:(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。
(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。
四.课堂引入:除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。
例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。
五. 例题的分析:教材P154例1在分析过程中应抓住以下几点:1.题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
2.在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。
3.方差怎样去体现波动大小?这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
六. 随堂练习:1. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、11、12、7、13、10、8、12、8;乙:8、13、12、11、10、12、7、7、9、11;问:(1)哪种农作物的苗长的比较高?(2)哪种农作物的苗长得比较整齐?2. 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐2.段巍的成绩比金志强的成绩要稳定。
第十六章二次根式16.1二次根式第1课时二次根式的概念和性质1.二次根式的概念和应用.2.二次根式的非负性.重点二次根式的概念.难点二次根式的非负性.一、情景导入师:(多媒体展示)请同学们看屏幕,这是东方明珠电视塔.电视节目信号的传播半径r/km与电视塔高h/km之间有近似关系r=2Rh(R为地球半径).如果两个电视塔的高分别为h1km,h2km,那么它们的传播半径之比为多少?同学们能化简这个式子吗?由学生计算、讨论后得出结果,并提问.生:半径之比为2Rh12Rh2,暂时我们还不会对它进行化简.师:那么怎么去化简它呢?这要用到二次根式的运算和化简.如何进行二次根式的运算?如何进行二次根式的化简?这将是本章所学的主要内容.二、新课教授活动1:知识迁移,归纳概念用含根号的式子填空.(1)17的算术平方根是________;(2)如图,要做一个两条直角边长分别为7 cm和4 cm的三角形,斜边长应为________cm;(3)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为________m;(4)面积为3的正方形的边长为________,面积为a的正方形的边长为____________;(5)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t=________.【答案】(1)17(2)65(3)65(4)3 a (5)h 5活动2:二次根式的非负性(1)式子a表示的实际意义是什么?被开方数a满足什么条件时,式子a才有意义?(2)当a>0时,a________0;当a=0时,a________0;二次根式是一个________.【答案】(1)a的算术平方根,被开方数a必须是非负数(2)>=非负数老师结合学生的回答,强调二次根式的非负性.当a>0时,a表示a的算术平方根,因此a>0;当a=0时,a表示0的算术平方根,因此a=0.也就是说,当a≥0时,a≥0.三、例题讲解【例】当x是怎样的实数时,x-2在实数范围内有意义?解:由x -2≥0,得x ≥2.所以当x ≥2时,x -2在实数范围内有意义. 四、巩固练习1.已知a -2+b +12=0,求-a 2b 的值.【答案】a -2≥0,b +12≥0,又∵它们的和为0,∴a -2=0且b +12=0,解得a =2,b =-12.∴-a 2b =-22×(-12)=2.2.若x ,y 使x -1+1-x -y =3有意义,求2x +y 的值. 【答案】-1 五、课堂小结1.本节课主要学习了二次根式的概念.形如a(a ≥0)的式子叫做二次根式,“ ”称为二次根号.2.二次根式的被开方数必须是什么数才有意义?a(a ≥0)又是什么数?六.课后作业必做题: 选做题: 七.板书设计第2课时 二次根式的化简1.理解(a)2=a(a ≥0),并能利用它进行计算和化简.2.通过具体数据的解答,探究a 2=a(a ≥0),并利用这个结论解决具体问题.重点理解并掌握(a)2=a(a ≥0),a 2=a(a ≥0)以及它们的运用. 难点探究结论.一、复习导入教师复习口述上节课的重要内容,并板书:1.形如a(a≥0)的式子叫做二次根式.2.a(a≥0)是一个非负数.那么,当a≥0时,(a)2等于什么呢?下面我们一起来探究这个问题.二、新课教授活动1:根据算术平方根的意义填空:(4)2=____;(2)2=____;(13)2=____;(52)2=____;(0.01)2=____;(0)2=____.由学生计算、讨论得出结果,并提问部分过程,教师进行点评.老师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此(4)2=4.同理:(2)2=2;(13)2=13;(52)2=52;(0.01)2=0.01;(0)2=0.所以归纳出:(a)2=a(a≥0).【例1】教材第3页例2活动2:填空:22=___;0.12=___;(13)2=___;(37)2=___;(212)2=___;02=___.教师点评:根据算术平方根的意义,我们可以得到:22=2;0.12=0.1;(13)2=13;(37)2=37;(212)2=212;02=0.所以归纳出:a2=a(a≥0).【例2】教材第4页例3教师点评:当a≥0时,a2=a;当a≤0时,a2=-a.三、课堂小结本节课应理解并掌握(a)2=a(a≥0)和a2=a(a≥0)及其运用,同时应理解a2=-a(a≤0).四.课后作业必做题:选做题:五.板书设计16.2二次根式的乘除第1课时二次根式的乘法理解并掌握a·b=ab(a≥0,b≥0),a·b=a·b(a≥0,b≥0),会利用它们进行计算和化简.重点a·b=ab(a≥0,b≥0),a·b=a·b(a≥0,b≥0)及它们的运用.难点利用逆向思维,导出a·b=a·b(a≥0,b≥0).一、创设情境,导入新课活动1:发现探究填空:(1)4×9=_____,4×9=______;(2)25×16=_____,25×16=______;(3)19×36=____,19×36=_______;(4)100×0=_____,100×0=______.生:(1)4×9=6,4×9=6;(2)25×16=20,25×16=20;(3)19×36=2,19×36=2;(4)100×0=0,100×0=0.试一试,参考上面的结果,比较四组等式的大小关系.生:上面各组中两个算式的结果相等.二、新课教授活动2:总结规律结合刚才的计算,学生分组讨论,教师提问部分学生,最后教师综合学生的答案,加以点评,归纳出二次根式的乘法法则.教师点评:1.被开方数都是非负数.2.两个非负数算术平方根的积等于它们积的算术平方根.一般地,二次根式的乘法法则为:a·b=ab(a≥0,b≥0)由等式的对称性,反过来:ab=a·b(a≥0,b≥0)活动3:讲练结合教材第6~7页例题三、巩固练习完成课本第7页的练习.【答案】课本练习第1题:(1)10;(2)6;(3)23;(4)2.第2题:(1)77;(2)15;(3)2y;(4)4bc ac.第3题:4 5.四、课堂小结本节课应掌握:a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0)及其应用.五.课后作业必做题:选做题:六.板书设计第2课时二次根式的除法理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0),会利用它们进行计算和化简.重点理解并掌握ab=ab(a≥0,b>0),ab=ab(a≥0,b>0),利用它们进行计算和化简.难点归纳二次根式的除法法则.一、复习导入活动1:1.由学生回答二次根式的乘法法则及逆向等式.2.填空.(1)925=______,925=_____;(2)164=_____,164=_____;(3)8149=_____,8149=_____;(4)3664=_____,3664=_____.二、新课教授活动2:先由学生对上面的结果进行比较,观察每组两个算式结果的大小关系,并总结规律.教师点评:一个非负数的算术平方根除以一个正数的算术平方根,等于它们商的算术平方根.一般地,二次根式的除法法则是:ab=ab(a≥0,b>0)由等式的对称性,反过来:ab=ab(a≥0,b>0)【例】教材第8~9页例题三、巩固练习课本第10页练习第1题.【答案】(1)3(2)23(3)33(4)2a四、课堂小结本节课应掌握ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及其应用.五.课后作业必做题:选做题:六.板书设计第3课时 最简二次根式最简二次根式的概念、利用最简二次根式的概念和性质进行二次根式的化简和运算.重点最简二次根式的运用. 难点会判断这个二次根式是否是最简二次根式.一、复习导入(学习活动)请同学们完成下列各题.(请四位同学上台板书) 计算:(1)23;(2)2618;(3)82a ;(4)x 3x 2y.教师点评:(1)23=63;(2)2618=233;(3)82a =2a a ;(4)x 3x 2y=xy y .二、新课教授教师点评:上面这些式子的结果具有如下两个特点: 1.被开方数不含分母.2.被开方数中不含能开得尽方的因数或因式.师:我们把满足上述两个条件的二次根式,叫做最简二次根式.(教师板书) 教师强调:在二次根式的运算中,一般要把最后结果化为最简二次根式. 【例1】判断下列式子是不是最简二次根式,为什么?(1)3xy 12x ;(2)25a 3a 3;(3)1x;(4)0.2a.解:(1)被开方数中有因数12,因此它不是最简二次根式;(2)被开方数中有开得尽方的因式a 2,因此它不是最简二次根式;(3)被开方数中有分母,因此它不是最简二次根式;(4)被开方数中有因数0.2,它不是整数,所以它不是最简二次根式.【例2】化简:(1)278;(2)12x 2y 3(x ≥0);(3)a 2b 4+a 4b 2(ab ≥0).解:(1)278=27×28×2=916×6=346;(2)12x 2y 3=4x 2y 2·3y =2xy 3y ;(3)a 2b 4+a 4b 2=a 2b 2(b 2+a 2)=ab a 2+b 2. 【例3】教材第9页例7 三、课堂小结1.本节课应掌握最简二次根式的特点及其运用. 2.二次根式的运算结果要化为最简二次根式. 四.课后作业必做题:选做题:五.板书设计16.3二次根式的加减第1课时二次根式的加减理解并掌握二次根式加减的方法,并能用二次根式加减法法则进行二次根式的加减运算.重点理解并掌握二次根式加减计算的方法.难点二次根式的化简、合并被开方数相同的最简二次根式.一、复习导入(学生活动)1.计算:(1)x+2x;(2)3a-2a+4a;(3)2x2-3x2+5x2;(4)2a2-4a2+3a.2.教师点评:上面的运算实际上就是以前所学习的合并同类项,合并同类项就是字母连同指数不变,系数相加减.二、新课教授(学生活动)1.类比计算,说明理由.(1)2+22;(2)38-28+48;(3)32+8;(4)23-33+12.2.教师点评:(1)2+22=(1+2)2=32;(2)38-28+48=(3-2+4)8=58=102;(3)虽然表面上2与8的被开方数不同,不能当作被开方数相同,但8可化为22,32+8=32+22=(3+2)2=52;(4)同样12可化为23,23-33+12=23-33+23=(2-3+2)3= 3.所以在用二次根式进行加减运算时,如果被开方数相同则可以进行合并,因此可将二次根式先化为最简二次根式,比较被开方数是否相同.因此可得:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【例1】教材第13页例1 【例2】教材第13页例2 三、巩固练习教材第13页练习第1,2题.【答案】第1题:(1)不正确,两边不相等;(2)不正确,两边不相等;(3)正确.第2题:(1)-47;(2)35;(3)102-33;(4)36+142.四、课堂小结本节课应掌握进行二次根式加减运算时,先把不是最简二次根式的化成最简二次根式,再把相同被开方数的最简二次根式进行合并.五.课后作业必做题: 选做题: 六.板书设计第2课时 二次根式的加减乘除混合运算含有二次根式的式子进行加减乘除混合运算和含有二次根式的多项式乘法公式的应用.重点二次根式的加减乘除混合运算. 难点由整式运算知识迁移到含二次根式的运算. 一、复习导入(学生活动):请同学们完成下列各题. 计算:(1)(3x 2+2x +2)·4x ; (2)(4x 2-2xy)÷(-2xy); (3)(3a +2b)(3a -2b); (4)(2x +1)2+(2x -1)2. 二、新课教授由于整式运算中的x ,y ,a ,b 是字母,它的意义十分广泛,可以代表一切,当然也可以代表二次根式,因此整式中的运算规律也适用于二次根式,下面我们就使用这些规律来进行计算.【例1】计算: (1)(8+3)×6;(2)(42-36)÷2 2.分析:二次根式仍然满足整式的运算规律,所以可直接用整式的运算规律. 解:(1)(8+3)×6=8×6+3× 6 =48+18=43+32; (2)(42-36)÷2 2=42÷22-36÷22=2-323.【例2】计算:(1)(2+3)(2-5); (2)(5+3)(5-3); (3)(3-2)2.分析:第(1)题可类比多项式乘以多项式法则来计算,第(2)题把5当作a ,3当作b ,就可以类比(a +b)(a -b)=a 2-b 2,第(3)题可类比(a -b)2=a 2-2ab +b 2来计算.解:(1)(2+3)(2-5) =(2)2+32-52-15 =2+32-52-15 =-13-22;(2)(5+3)(5-3)=(5)2-(3)2=5-3=2; (3)(3-2)2=(3)2-2×3×2+(2)2 =5-2 6. 三、巩固练习教材第14页练习第1,2题.【答案】第1题:(1)6+10;(2)4+22;(3)11+55;(4)4.第2题:(1)9;(2)a -b ;(3)7+43;(4)22-410.四、课堂小结本节课应掌握利用整式运算的规律进行二次根式的乘除、乘方等运算.五.课后作业必做题: 选做题: 六.板书设计第十七章勾股定理17.1勾股定理第1课时勾股定理(1)了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.重点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创设情境,引入新课让学生画一个直角边分别为3 cm和4 cm的直角△ABC,用刻度尺量出斜边的长.再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长.你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,探求新知1.阅读教材第22~23页图17.1-2和图17.1-3,引导学生观察思考.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.小组合作探究:a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b.它们的面积分别怎样表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1】填空题.(1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5)已知等边三角形的边长为2 cm,则它的高为________cm ,面积为________cm2.【答案】(1)17(2)7(3)68(4)6,8,10(5)3 3【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.【答案】119或13三、巩固练习填空题.在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________;(2)如果∠A=30°,a=4,则b=________;(3)如果∠A=45°,a=3,则c=________;(4)如果c=10,a-b=2,则b=________;(5)如果a,b,c是连续整数,则a+b+c=________;(6)如果b=8,a∶c=3∶5,则c=________.【答案】(1)24(2)43(3)32(4)6(5)12(6)10四、课堂小结1.本节课学到了什么数学知识?2.你了解了勾股定理的发现和验证方法了吗?3.你还有什么困惑?五.课后作业必做题:选做题:六.板书设计第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=5≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是________米,水平距离是________米.分析:由∠CAB=30°易知垂直距离为23米,水平距离是6米.【答案】23 6【例2】教材第25页例2三、巩固练习1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________.【答案】503米2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.五.课后作业必做题:选做题:六.板书设计第3课时勾股定理(3)1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2.利用勾股定理,能在数轴上找到表示无理数的点.3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点在数轴上寻找表示2,3,5,…这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC=AB2-AC2,B′C′=A′B′2-A′C′2.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC≌△A′B′C′(SSS).师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出13所对应的点吗?教师可指导学生寻找像长度为2,3,5,…这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为2,3,5,…,所以只需画出长为2,3,5,…的线段即可,我们不妨先来画出长为2,3,5,…的线段.生:长为2的线段是直角边都为1的直角三角形的斜边,而长为5的线段是直角边为1和2的直角三角形的斜边.师:长为13的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c=13,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b 为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为13的线段是直角边长分别为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示13的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC =4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点,如下图:师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:①学生能否积极主动地思考问题;②能否找到斜边为17,另外两条直角边为整数的直角三角形.三、课堂小结1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.五.课后作业必做题:选做题:六.板书设计17.2勾股定理的逆定理第1课时勾股定理的逆定理(1)1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.重点探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点归纳猜想出命题2的结论.一、复习导入活动探究(1)总结直角三角形有哪些性质;(2)一个三角形满足什么条件时才能是直角三角形?生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.师:那么一个三角形满足什么条件时,才能是直角三角形呢?生1:如果三角形有一个内角是90°,那么这个三角形就为直角三角形.生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+42=52,那么围成的三角形是直角三角形.画画看,如果三角形的三边长分别为2.5 cm,6 cm,6.5 cm,有下面的关系:2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4 cm,7.5 cm,8.5 cm,再试一试.生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形.生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且2.52+62=6.52.再换成三边长分别为4 cm,7.5 cm,8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+7.52=8.52.师:很好!我们通过实际操作,猜想结论.命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.再看下面的命题:命题1如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.它们的题设和结论各有何关系?师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题.二、例题讲解【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)同旁内角互补,两条直线平行;(2)如果两个实数的平方相等,那么这两个实数相等;(3)线段垂直平分线上的点到线段两端点的距离相等;(4)直角三角形中30°角所对的直角边等于斜边的一半.分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、巩固练习教材第33页练习第2题.四、课堂小结师:通过这节课的学习,你对本节内容有哪些认识?学生发言,教师点评.五.课后作业必做题:选做题:六.板书设计第2课时勾股定理的逆定理(2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的概念.重点勾股定理的逆定理的证明及互逆定理的概念.难点理解互逆定理的概念.一、复习导入师:我们学过的勾股定理的内容是什么?生:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.师:根据上节课学过的内容,我们得到了勾股定理逆命题的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.师:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?师生行为:让学生试着寻找解题思路,教师可引导学生理清证明的思路.师:△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形A′B′C′,使B′C′=a,A′C′=b,∠C′=90°(如图),把画好的△A′B′C′剪下,放在△ABC上,它们重合吗?生:我们所画的Rt△A′B′C′,(A′B′)2=a2+b2,又因为c2=a2+b2,所以(A′B′)2=c2,即A′B′=c.△ABC和△A′B′C′三边对应相等,所以两个三角形全等,∠C=∠C′=90°,所以△ABC为直角三角形.即命题2是正确的.师:很好!我们证明了命题2是正确的,那么命题2就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:但是不是原命题成立,逆命题一定成立呢?生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立.师:你还能举出类似的例子吗?生:例如原命题:如果两个实数相等,那么它们的绝对值也相等.逆命题:如果两个数的绝对值相等,那么这两个实数相等.显然原命题成立,而逆命题不一定成立.二、新课教授【例1】教材第32页例1。
人教版八年级数学下册unit9教案
一、教材分析
本次课程主要教授八年级数学下册Unit9的内容。
该单元主要
包括圆的相关知识,例如圆的基本性质、圆的周长和面积的计算等。
本单元是初中数学的一个重要知识点,也是后续研究几何图形的必
备基础。
二、教学目标
1. 了解圆的相关概念和基本性质
2. 掌握圆的周长和面积的计算方法
3. 能够灵活运用相关知识解决实际问题
三、教学重难点
1. 圆的周长和面积的计算方法
2. 如何运用圆的性质解决相关问题
四、教学过程
1. 引入新知识,介绍圆的相关概念和基本性质
2. 讲解圆的周长和面积的计算方法
3. 练圆的周长和面积的计算方法
4. 案例分析,运用圆的性质解决实际问题
5. 课堂小结,强化研究效果
五、教学评估
1. 定期进行课堂测试,检查学生对知识掌握情况
2. 布置作业,巩固和拓展学生的研究内容
3. 定期与学生家长沟通,及时反馈学生研究情况
六、教学资源准备
1. 课本
2. 教案
3. 备课笔记
4. 练册
5. 课堂展示工具
七、教学反思
本次课程主要注重对学生数学基础知识的掌握,以及如何应用于实际问题中。
在教学过程中,学生表现积极,能够认真听讲,并在练习环节中积极配合。
下一步需要更多地引导学生扩展应用,提高数学解题的能力。
18.2.3正方形第1课时正方形的性质教学设计课题正方形的性质授课人素养目标1.理解正方形的概念,体会特殊平行四边形之间的关系.2.通过观察、比较、动手操作探究正方形边、角、对角线、对称的性质,培养学生的归纳探究能力和数学表达能力.3.利用正方形的性质定理进行计算或证明,培养学生分析问题和解决问题的能力.教学重点正方形性质的理解及其应用.教学难点正方形与平行四边形、矩形、菱形的区别与联系.教学活动教学步骤师生活动活动一:创设情境,导入新课设计意图通过图片展示,引导学生思考正方形的概念及性质.【情境导入】仔细观察下列实际生活中的图片,你会发现这些都是正方形的形象.正方形是我们熟悉的图形,你还能列举出正方形在生活中应用的其他例子吗?结合已有经验,类比菱形与矩形,正方形的概念是怎样的呢?教师总结:正方形可以定义为有一组邻边相等并且有一个角是直角的平行四边形.下面我们一起来探讨一下正方形的性质吧!【教学建议】让学生根据生活经验及图片思考正方形的概念,学生从矩形和菱形的角度回答正方形的概念也可以,正确即可.活动二:动手操作,探究新知设计意图通过回忆体会正方形与平行四边形、矩形、菱形的区别与联系.探究点正方形的性质1.边、角、对角线的性质探究(1)我们回忆一下小学学过的正方形,它有什么性质?答:正方形的四条边都相等,四个角都是直角.(2)上面正方形的概念中提到有一组邻边相等的平行四边形是什么图形?答:菱形.(3)上面正方形的概念中提到有一个角是直角的平行四边形是什么图形?答:矩形.事实上,如果把矩形、菱形各添加一个条件,平行四边形添加两个条件均可得到正方形,可以用下面结构图直观呈现这种关系:归纳总结:正方形既是矩形,又是菱形,它既有矩形的性质,又有菱形的性质.我们根据前边的学习,除了边和角,还可以研究一下正方形的对角线,那么它的对角线就是互相平分、相等且垂直.【教学建议】让学生回忆并类比平行四边形、矩形、菱形的性质来研究正方形的性质,引导学生从正方形是特殊的平行四边形、矩形、菱形入手,分别从边、角、对角线、对称性等几个方面进行归纳总结.设计意图引导学生发现直角三角形斜边上的中线的性质.正方形的对角线除了上述基本性质外,还有无其他性质呢?事实上,它可以将正方形分成四个全等的等腰直角三角形.我们可以试着证明:(教材P58例5)求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.已知:如图,四边形ABCD 是正方形,对角线AC ,BD 相交于点O.求证:△ABO ,△BCO ,△CDO ,△DAO 是全等的等腰直角三角形.证明:∵四边形ABCD 是正方形,∴AC =BD ,AC ⊥BD ,AO =BO =CO =DO.∴△ABO ,△BCO ,△CDO ,△DAO 都是等腰直角三角形,并且△ABO ≌△BCO ≌△CDO ≌△DAO.2.正方形的对称性我们再想一想:正方形是轴对称图形吗?它的对称轴是什么?答:如图,取一张正方形纸片,将它沿过对边中点的直线和对角线折叠,折叠后的两部分均能重合.归纳总结:正方形是轴对称图形,它的对称轴有四条,分别是对边中点的连线以及两条对角线所在的直线.【对应训练】1.正方形的一条边长是3,那么它的对角线长是322.如图,在正方形ABCD 中,点E 在BD 上,且BE =CD ,则∠BEC 的度数为67.5°.3.如图,在正方形ABCD 中,点E ,F 分别在AB ,BC 边上,AE =BF ,连接AF ,DE.求证:△ADE ≌△BAF.证明:∵四边形ABCD 为正方形,∴AD =BA ,∠DAE =∠ABF =90°.在△ADE 和△BAF 中,AD =BA ,∠DAE =∠ABF ,AE =BF ,∴△ADE ≌△BAF(SAS).活动三:综合运用,巩固提升设计意图强化学生对正方形性质的掌握.例如图,在正方形ABCD 中,点E 在边BC 上,点F 在CD 的延长线上,且BE =DF.(1)求证:AE =AF ,AE ⊥AF ;(2)若BD 与EF 相交于点M ,连接AM ,试判断AM 与EF 的数量关系和位置关系,并说明理由.(1)证明:∵四边形ABCD 为正方形,∴∠ABE =∠BAD =∠ADC =∠ADF =90°,AB =AD.又BE =DF ,∴△ABE ≌△ADF(SAS),∴AE =AF ,∠BAE =∠DAF.∴∠DAF +∠EAD =∠BAE +∠EAD ,即∠EAF =∠BAD =90°,∴AE ⊥AF.【教学建议】提醒学生:(1)与正方形性质相关的证明题往往是利用正方形边、角、对角线的性质,将其转化为证明三角形全等的条件;(2)正方形两条对角线将正方形分割为四个全等的等(2)解:AM =12EF ,AM ⊥EF.理由如下:如图,过点E 作EN ∥CD ,交BD 于点N ,∴∠MNE =∠MDF ,∠MEN =∠MFD ,∠NEB=∠C =90°.∵四边形ABCD 为正方形,∴∠NBE =45°,∴∠BNE =90°-∠NBE =45°,∴∠NBE =∠BNE ,∴BE =NE.又BE =DF ,∴NE =DF ,∴△MNE ≌△MDF(ASA),∴EM =FM.∵AE =AF ,∠EAF =90°,∴AM =12EF ,AM ⊥EF.【对应训练】1.如图,AC 是正方形ABCD 的对角线,若以AD 为边向正方形内部作等边三角形ADE ,边DE 交AC 于点F ,则∠EFC =75°.2.如图,E ,F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =2,则四边形BEDF 的周长是85.3.教材P59练习第2题.腰直角三角形,可得到45°角.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:正方形的概念是什么?正方形有哪些性质?正方形与平行四边形、矩形、菱形有怎样的区别和联系?【知识结构】【作业布置】1.教材P 61习题18.2第7,12,15,17题.2.相应课时训练.板书设计18.2.3正方形第1课时正方形的性质一、正方形的概念二、正方形的性质1.边.2.角.3.对角线.4.对称性.教学反思正方形性质的探究内容依旧集中在边、角、对角线三个方面,教学中注意引导学生思索平行四边形、矩形、菱形和正方形的区别与联系,使其形成完整的四边形知识网络.的应用,可以培养学生的应用意识从本节课的授课过程来看,灵活运用了多种教学方法,既有与现实生活的联系,又有动手操作,调动了学生学习的积极性,充分发挥了学生的主体作用.解题方法:如何区分平行四边形、菱形、矩形、正方形的性质?①从边的角度来看:平行四边形、矩形、菱形、正方形都具有对边平行且相等的性质,而菱形和正方形还具有四条边都相等的性质.②从角的角度来看:平行四边形、矩形、菱形、正方形都具有对角相等且邻角互补的性质,而矩形和正方形还具有四个角都是直角的性质.③从对角线的角度来看:平行四边形、矩形、菱形、正方形都具有对角线互相平分的性质,而矩形和正方形还具有对角线相等的性质,菱形和正方形还具有对角线互相垂直的性质.例1如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE ⊥CD ,GF ⊥BC ,AD =1500m ,小敏行走的路线为B→A→G→E ,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m ,则小聪行走的路程为4600m .解析:如图,连接GC.∵四边形ABCD 为正方形,∴∠BCD =90°,AD =CD ,∠ADB =∠CDB =45°.又GE ⊥CD ,∴△DEG 是等腰直角三角形.∴DE =GE.在△AGD 和△CGD AD =CD ,∠ADG =∠CDG ,DG =DG ,∴△AGD ≌△CGD(SAS ),∴AG =CG.∵GE ⊥CD ,GF ⊥BC ,∴∠GEC =∠ECF =∠GFC =90°,∴四边形GECF 是矩形.∴EF =CG ,∴EF =AG.∴BA +AD +DE +EF -BA -AG -GE =AD =1500m .∵小敏共走了3100m ,即BA +AG +GE =3100m ,∴小聪行走的路程为BA +AD +DE +EF =3100+1500=4600(m ).例2如图,在边长为6的正方形ABCD 中,M 为对角线BD 上一点,连接AM 并延长,交CD 于点P.若PM =PC ,求AM 的长.解:∵四边形ABCD 是边长为6的正方形,∴AD =CD =6,∠ADC =90°,∠ADM =∠CDM =45°.在△ADM 和△CDM DM =DM ,∠ADM =∠CDM ,AD =CD ,∴△ADM ≌△CDM(SAS ),∴∠DAM =∠DCM.∵PM =PC ,∴∠CMP =∠DCM ,∴∠APD =∠CMP +∠DCM =2∠DCM =2∠DAM.∵∠APD +∠DAM =180°-∠ADC =90°,∴∠DAM =30°.设PD =x ,则AP =2PD =2x ,PM =PC =CD -PD =6-x ,∴AD =AP 2-PD 2=3x =6,解得x =2 3.∴PM =6-x =6-23,AP =2x =43,∴AM =AP -PM =43-(6-23)=63-6.例1如图,正方形ABCD 的边长为4,E ,F 分别是BC ,CD 上一动点,且BE =CF ,连接AE ,BF 交于点P ,连接CP ,则CP 的最小值是(A )A .25-2B .32-2C .22D .2+2解析:在正方形ABCD 中,AB =BC ,∠ABC =∠BCD =90°.在△ABE 和△BCF =BC ,ABE =∠BCF ,=CF ,∴△ABE ≌△BCF(SAS ),∴∠BAE =∠CBF.∵∠CBF +∠ABF =90°,∴∠BAE +∠ABF =90°,∴∠APB =90°.如图,设AB 的中点为G ,连接GP ,GC ,则GP =GB =12AB =12×4=2.∵GP +CP≤GC ,∴当点C ,P ,G 在同一条直线上时,CP 有最小值GC -GP.∵BC =4,BG =2,∴GC =BC 2+BG 2=42+22=2 5.∴CP 的最小值是25-2.故选A .例2如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为(-4,4).点P从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;同时,点Q 从点O 出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连接BP ,过点P 作BP 的垂线,与经过点Q 且平行于y 轴的直线l 相交于点D.BD 与y 轴交于点E ,连接PE.设点P 运动的时间为t s .(1)∠PBD 的度数为45°,点D 的坐标为(t ,t)(用含t 的代数式表示).(2)当t 为何值时,△PBE 为等腰三角形?(3)探索△POE 的周长是否随时间t 的变化而变化?若变化,说明理由;若不变,试求这个定值.解:(1)解析:由题意可得AP =OQ =1×t =t ,∴易得AO =PQ.∵四边形OABC 是正方形,∴AO =AB =BC =OC ,∠BAO =∠AOC =∠OCB =∠ABC =90°.∵DQ ∥OC ,∴∠PQD =∠AOC =90°.∵DP ⊥BP ,∴∠BPD =90°.∴∠BPA =90°-∠DPQ =∠PDQ.∵AO =PQ ,AO =AB ,∴AB =QP.在△BAP 和△PQD BAP =∠PQD ,BPA =∠PDQ ,=QP ,∴△BAP ≌△PQD(AAS ).∴AP =QD ,BP=PD.∵∠BPD =90°,BP =PD ,∴∠PBD =∠PDB =45°.∵AP =t ,∴QD =t.∴点D 的坐标为(t ,t).(2)①若PB =PE ,由△BAP ≌△PQD 得PB =PD ,显然PB≠PE ,∴这种情况不存在,应舍去.②若EB =EP ,则∠BPE =∠PBE =45°.∴∠BEP =90°.∴∠PEO =90°-∠BEC =∠EBC.在△POE 和△ECB PEO =∠EBC ,POE =∠ECB ,=BE ,∴△POE ≌△ECB(AAS ).∴OE =CB =OC.∴点E 与点C 重合.∴点P 与点O 重合.∴AP =AO =t.∵B(-4,4),∴AO =CO =4.此时t =4.③若BP =BE ,在Rt △BAP 和Rt △BCE =BE ,=BC ,∴Rt △BAP ≌Rt △BCE(HL ).∴AP=CE.∵AP=t,∴CE=t.∴PO=EO=4-t.∵∠POE=90°,∴EP=PO2+EO2=2(4-t).如图,延长OA到点F,使得AF=CE,连接BF.在△FAB和△ECB=CB,BAF=∠BCE=90°,=CE,∴△FAB≌△ECB(SAS).∴FB=EB,∠FBA=∠EBC.∵∠EBP=45°,∠ABC=90°,∴∠ABP+∠EBC=45°.∴∠FBP=∠ABP+∠FBA=∠ABP+∠EBC=45°.∴∠FBP=∠EBP.在△FBP和△EBP =BE,FBP=∠EBP,=BP,∴△FBP≌△EBP(SAS).∴FP=EP.∴EP=FP=FA+AP=CE+AP.∴EP=t+t=2t.∴2(4-t)=2t.解得t=42-4.综上所述,当t为4或42-4时,△PBE为等腰三角形.(3)△POE的周长不随时间t的变化而变化.由(2)可得EP=CE+AP,∴OP+PE+OE=OP+AP+CE+OE=AO+CO=4+4=8.∴△POE的周长是定值,这个定值为8.。
人教版初中八下数学教案一、教学目标1. 让学生理解相似多边形的概念,掌握相似多边形的性质。
2. 培养学生观察、分析、解决问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容1. 相似多边形的定义2. 相似多边形的性质3. 相似多边形的判定三、教学重点与难点1. 重点:相似多边形的性质及其应用。
2. 难点:相似多边形的判定。
四、教学过程1. 导入:通过展示两幅相似的图形,让学生观察并猜测它们之间的关系。
2. 新课导入:介绍相似多边形的定义,引导学生理解相似多边形的概念。
3. 性质讲解:(1)相似多边形对应边的比相等。
(2)相似多边形对应角相等。
(3)相似多边形的面积比等于对应边长的比的平方。
4. 性质应用:通过例题讲解,让学生掌握相似多边形的性质在实际问题中的应用。
5. 判定讲解:介绍相似多边形的判定方法,引导学生理解判定过程。
6. 判定练习:让学生通过判定练习,巩固所学知识。
7. 课堂小结:总结本节课所学内容,强调相似多边形的性质和判定方法。
8. 作业布置:布置适量作业,巩固所学知识。
五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对相似多边形的理解和应用能力。
同时,关注学生在学习过程中的思维发展,培养学生的逻辑思维能力和团队合作能力。
六、课后作业1. 完成教材上的练习题。
2. 结合生活实际,寻找相似多边形的例子,并加以解释。
3. 总结相似多边形的性质和判定方法,写在日记中。
通过以上教学设计,教师可以有效地引导学生学习相似多边形的知识,提高学生的数学素养,为后续学习打下坚实基础。
【人教版八年级下册数学教案全册】人教版八年级下册数学教案【优秀4篇】人教版八年级下册数学教案篇一教学目标:一、知识与技能1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。
三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。
2、通过分组讨论,培养学生合作交流意识和探索精神。
教学重点:理解和领会反比例函数的概念。
教学难点:领悟反比例的概念。
教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1、68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。
师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流。
学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。
教师组织学生讨论,提问学生,师生互动。
在此活动中老师应重点关注学生:①能否积极主动地合作交流。
②能否用语言说明两个变量间的关系。
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。
分析及解答:其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数。
二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为20__m3,注满游泳池所用的时间随注水速度u 的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S的变化而变化。
新人教版八下数学教案新人教版八下数学教案1:中位数和众数一、说教材1、教材的地位和作用《中位数与众数》是北师大版《数学》八年级上册第8章第2节内容。
《课程标准》对本节内容的要求是:“根据具体问题,能选择合适的统计量表示数据的集中程度。
”“根据统计结果做出合理的判断和预测,体会统计对于决策的作用,能比较清晰地表达自己的观点,并进行交流。
”“认识到统计在社会生活及科学领域中的应用,并能解决一些简单的实际问题。
”中位数与众数同平均数一样是描述一组数据的集中趋势的数据代表,是帮助学生学会用数据说基本概念,在此之前,教材已经安排了第1 节《平均数》,本节内容是继《平均数》学习之后的后续内容,既是对前面所学知识的深化与拓展,又是联系现实生活,培养学生应用数学意识和质疑习惯的良好素材。
教材有意识地安排了一些以表格、统计图等方式呈现数据,这样既加强了知识间的联系,巩固了学生对各种图表信息的获取能力,同时也增强学生对生活中所见到的统计图表进行数据处理和评判的主动意识。
2、教学目标知识与技能:(1)掌握中位数和众数的概念;能根据所给信息正确求出中位数和众数。
同时注意平均数、中位数和众数各自适用的范围。
(2)能结合具体的情境体会平均数、中位数和众数三者的差别,能初步选择恰当的数据代表对数据做出自己的评判。
(3)能从表格统计图等参考资料中获取信息,并能求出相关数据的平均数、中位数和众数。
过程与方法:在数据的处理中,理解平均数、中位数和众数区别与联系,掌握处理问题的方法。
情感态度与价值观:感受数学知识在生活中的实际价值,体验数学来源于生活,又服务于生活的特质,唤起学生学数学的兴趣。
3、重点与难点重点:掌握中位数和众数的概念,并会正确计算一组数据的中位数和众数。
难点:在具体的情境中选择恰当的数据代表并作出自己的判断。
4、对教材的处理:为了创设一种引人入胜的教学情境,充分挖掘趣味因素,限度的吸引学生的课堂投入,在引入课题时将引例以课本剧的形式呈现;为了体现数学更贴近学生生活实际又增加了“问题1”;为更好地突出重点在“合作探究”中,增加了“概念学习” 1、中位数、2、众数,同时都各配以两个小练习,引出了相应的点评以完成对两概念的补充说明;为了内化知识形成框架,将:“议一议”作为课堂小结处理二、说学生学生在小学五年级下时已学习过中位数、众数的概念,并能够解决简单的数学问题和实际问题,认识到了两个统计量在现实生活中的实际价值。
前两节又学习了平均数,具备了一定的数据处理、描述和分析能力。
而且八年级学生身心一进一步成熟,具备了一定的自学能力和分析判断能力。
三、说教学法1、说教法课前将学生分为六个组,按成绩由低到高的顺序编上1~5号。
根据教材内容和八年级学生的认知特点,结合班级的实际情况,首先在课前将教学内容以“预习学案”的形式印发给学生,要求学生先独立自学完成,再通过小组交流合作学习完成。
重点、难点问题课上分组展示解决。
教师调控课堂及时追问与点评。
在课前准备中,要求分组调查八年级各班男同学的运动鞋号码。
2、说学法基于以上分析,学生以在自学教材、查阅相关参考书籍的基础上,独立自主完成学案为主,以课前小组内合作交流为辅进行。
最后分组展示突破重难点。
内化知识、训练思维、培养能力。
新人教版八下数学教案2:正方形一、教材分析:《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。
纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。
既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。
本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。
根据大纲要求,本节课制定了知识、能力、情感三方面的目标。
(一)知识目标: 1、要求学生掌握正方形的概念及性质; 2、能正确运用正方形的性质进行简单的计算、推理、论证;(二)能力目标: 1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力; 2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;(三)情感目标: 1、让学生树立科学、严谨、理论联系实际的良好学风; 2、培养学生互相帮助、团结协作、相互讨论的团队精神; 3、通过正方形图形的完美性,培养学生品格的完美性。
二、学生分析:该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。
三、教法分析 :针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。
通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。
通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。
四、学法分析 :本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。
在小组讨论中通过互相学习,让学生体验合作学习的乐趣。
五、教学程序:第一环节:相关知识回顾以提问的形式平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。
并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。
第二环节:新课讲解通过学生们的发现引出课题“正方形”1、正方形的定义 :引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。
请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。
再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。
此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。
2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。
以上是对正方形定义和性质的学习,之后是进行例题讲解。
3、例题讲解 : 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形。
此题是文字证明题,由学生们分组相互探讨,共同研究此题的已知、求证部分,然后由小组派代表阐述证明过程,教师板书,在板书的过程中,请其它小组的同学提出合理化建议,使此题证明过程条理更加清晰,更加符合逻辑,同时强调证明格式的书写。
从而培养他们语言表达能力,让学生的个性得到充分的展示4、课堂练习 : 第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。
第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。
5、课堂小结 : 此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。
6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。
六、教学反思一、本节课设计的以问题为主线,培养学生有条理思考问题的习惯和归纳概括能力,并重视培养学生语言描述,然后进行引导交流形成规范语言。
二、通过一道拓展延伸练习题,鼓励学生大胆尝试,同时鼓励其他同学进行互帮互助,交流自己解决问题的过程及成功的体验,给学生留下了充分的空间,不断激发学生的探索精神,培养了学生的动手操作、合作交流和逻辑推理能力,提高学生分析和解决问题的能力,使学生有成功体验。
新人教版八下数学教案3:从分数到分式一、教学目标1. 了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件.二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件.2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件.3.认知难点与突破方法难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别.三、例、习题的意图分析本章从实际问题引出分式方程 = ,给出分式的描述性的定义:像这样分母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.1.本节进一步提出P4[思考]让学生自己依次填出:,,, .为下面的[观察]提供具体的式子,就以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?可以发现,这些式子都像分数一样都是 (即A÷B)的形式.分数的分子A与分母B 都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别. 希望老师注意:分式比分数更具有一般性,例如分式可以表示为两个整式相除的商(除式不能为零),其中包括所有的分数 .2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式才有意义.3. P5例1填空是应用分式有意义的条件—分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解.四、课堂引入1.让学生填写P4[思考],学生自己依次填出:,,, .2.学生看P3的问题:一艘轮船在静水中的航速为20千米/时,它沿江以航速顺流航行100千米所用实践,与以航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时.轮船顺流航行100千米所用的时间为小时,逆流航行60千米所用时间小时,所以 = .3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?五、例题讲解P5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0?(1) (2) (3)[分析] 分式的值为0时,必须同时满足两个条件:○1分母不能为零;○2分子为零,这样求出的m的解集中的公共部分,就是这类题目的解.[答案] (1)m=0 (2)m=2 (3)m=1六、随堂练习1.判断下列各式哪些是整式,哪些是分式?9x+4, , , , ,2. 当x取何值时,下列分式有意义?(1) (2) (3)3. 当x为何值时,分式的值为0?(1) (2) (3)七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.(3)x与y的差于4的商是 .2.当x取何值时,分式无意义?3. 当x为何值时,分式的值为0?八、答案:六、1.整式:9x+4, , 分式: , ,2.(1)x≠-2 (2)x≠ (3)x≠±23.(1)x=-7 (2)x=0 (3)x=-1七、1.18x, ,a+b, , ; 整式:8x, a+b, ;分式: ,2. X =3. x=-116.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.四、课堂引入1.请同学们考虑:与相等吗? 与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五、例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号. ,,,,。