烯烃的复分解反应——机理及实例
- 格式:ppt
- 大小:874.00 KB
- 文档页数:21
⼤学有机化学⼈名反应总结有机化学⼀、烯烃1、卤化氢加成(1)【马⽒规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。
【机理】【本质】不对称烯烃的亲电加成总是⽣成较稳定的碳正离⼦中间体。
【注】碳正离⼦的重排(2)【特点】反马⽒规则【机理】⾃由基机理(略)【注】过氧化物效应仅限于HBr 、对HCl 、HI ⽆效。
【本质】不对称烯烃加成时⽣成稳定的⾃由基中间体。
【例】2、硼氢化—氧化【特点】不对称烯烃经硼氢化—氧化得⼀反马⽒加成的醇,加成是顺式的,并且不重排。
【机理】【例】 3、X 2加成【机理】【注】通过机理可以看出,反应先形成三元环的溴鎓正离⼦,然后亲和试剂进攻从背⾯进攻,不难看出是反式加成。
不对称的烯烃,亲核试剂进攻主要取决于空间效应。
【特点】反式加成 4、烯烃的氧化1)稀冷⾼锰酸钾氧化成邻⼆醇。
3H 33H3稀冷KMnO433M n OOH 2O 3H 33H 3 2)热浓酸性⾼锰酸钾氧化3)臭氧氧化 4)过氧酸氧化 5、烯烃的复分解反应【例】 6、共轭⼆烯烃 1)卤化氢加成2)狄尔斯-阿德尔(Diels-Alder )反应【描述】共轭⼆烯烃和烯烃在加热的条件下很容易⽣成环状的1,4加成产物。
【例】⼆、脂环烃1、环丙烷的化学反应【描述】三元环由于张⼒⽽不稳定,易发⽣加成反应开环,类似碳碳双键。
【特点】环烷烃都有抗氧化性,可⽤于区分不饱和化合物。
【注】遵循马⽒规则【例】2、环烷烃制备1)武兹(Wurtz)反应【描述】通过碱⾦属脱去卤素,制备环烷烃。
【例】2)卡宾①卡宾的⽣成A、多卤代物的α消除B、由某些双键化合物的分解②卡宾与烯烃的加成反应【特点】顺式加成,构型保持【例】③类卡宾【描述】类卡宾是⼀类在反应中能起到卡宾作⽤的⾮卡宾类化合物,最常⽤的类卡宾是ICH2ZnI。
【特点】顺式加成,构型保持【例】三、炔烃1、还原成烯烃1)、顺式加成2)、反式加成2、亲电加成1)、加X2【机理】中间体Br+R2 R1【特点】反式加成2)、加HXRRHBr R Br(⼀摩尔的卤化氢主要为反式加成)3)、加H2O【机理】【特点】炔烃⽔合符合马式规则。
烯烃的反应机理烯烃是一类具有碳碳双键的有机化合物,其具有较高的反应活性和广泛的应用价值。
烯烃的反应机理是指烯烃分子在不同条件下发生反应时所经历的分子结构变化过程。
本文将以烯烃的反应机理为标题,介绍烯烃在不同反应中的机理及其应用。
1. 烯烃的加成反应机理烯烃的加成反应是指烯烃分子中的碳碳双键与其他分子中的原子或基团发生共价键形成新的化学键。
这种反应通常需要催化剂的存在,催化剂能够加速反应速率。
加成反应通常分为电子亲和性和立体选择性两个方面。
电子亲和性是指反应中电子密度较大的部分与反应物中具有电子亲和性的原子或基团发生作用,立体选择性是指反应发生后立体构型发生改变。
2. 烯烃的氧化反应机理烯烃的氧化反应是指烯烃分子与氧气或氧化剂发生反应,生成含有氧原子的产物。
这种反应可以分为完全氧化和部分氧化两种类型。
完全氧化是指烯烃分子的碳碳双键和氧气中的氧原子全部发生反应,生成二氧化碳和水等产物。
部分氧化是指烯烃分子中的部分碳碳双键与氧气或氧化剂反应,生成醇、酮等含氧化合物。
3. 烯烃的聚合反应机理烯烃的聚合反应是指烯烃分子中的多个碳碳双键发生共价键形成长链烃分子的过程。
这种反应需要催化剂的存在,催化剂能够引发烯烃分子中的碳碳双键发生开环反应,并与其他烯烃分子发生共价键形成长链烃分子。
聚合反应是一种重要的反应类型,广泛应用于塑料、橡胶、纤维等材料的合成。
4. 烯烃的裂解反应机理烯烃的裂解反应是指烯烃分子中的碳碳双键断裂,生成较小分子的过程。
这种反应通常需要高温和催化剂的存在,高温能够提供足够的能量使碳碳双键断裂,催化剂能够降低反应的活化能,加速反应速率。
裂解反应主要用于烯烃的炼制和烯烃衍生物的合成。
5. 烯烃的重排反应机理烯烃的重排反应是指烯烃分子中的碳碳双键位置发生变化的过程。
这种反应通常发生在高温和催化剂的存在下,高温能够提供足够的能量使烯烃分子中的碳碳双键断裂和形成,催化剂能够降低反应的活化能,加速反应速率。
烯炔复分解反应
烯烃复分解反应(英文名为alkene metathesis)也称作烯烃换位反应,是指在金属催化剂作用下的两个碳-碳双键的切断并重新结合的过程。
按照反应过程中分子骨架的变化,可以分为五种情况:开环复分解、开环复分解聚合、非环二烯复分解聚合、关环复分解以及交叉复分解反应。
烯烃复分解反应的相关研究可以追溯到20世纪50年代中期,而正式的概念于1967年被N.Calderon等人提出。
烯烃复分解反应可以实现有机分子碳链的增长及特殊环状分子的构建,在高分子材料化学、有机合成化学等方面具有重要意义。
根据美国《科学观察》在2001年所列举的化学领域的最热门课题,钌金属络合物催化的烯烃复分解反应成为化学研究领域长期关注的热点。
2005年,三位化学家Yves Chauvin、Robert H. Grubbs和Richard R. Schrock因为在烯烃复分解反应方面的研究拿到诺贝尔化学奖。
金属卡宾络合物催化的烯烃复分解反应化学键的断裂与形成是化学研究领域中最基本的问题,研究碳-碳键的断裂与形成规律是有机化学中需要解决的核心问题之一,碳-碳双键和三键的键能与碳-碳单键相比要高得多,因此要切断前者并使其按照希望的方式重新结合,则需要更高的能量,所以寻找适当的催化剂实现上述转化,成为化学家近半个世纪的挑战课题.烯烃复分解反应,是指在金属催化下的碳-碳重键的切断并从新结合的过程,按照反映过程中分子骨架的变化,可以分为五种情况:开环复分解、开环复分解聚合、非环二烯复分解聚合、关环复分解以及交叉复分解反应。
由此可以看出,烯烃复分解反映在高分子材料化学、有机合成化学等方面具有重要意义。
根据美国《科学观察》所列举的化学领域的最热门课题,钌(Ru,一种稀有元素)金属络合物催化的烯烃复分解反应,在2001年一直成为化学研究领域中关注的热点。
1.历史回顾关于金属催化的烯烃分子的切断与重组,即烯烃复分解反应的研究,可以追溯到20世纪50年代中期。
在以后的20多年里,所发展的催化剂均为多组催化剂,如MoO3/SiO2,Re2O7/Al2O3,WCl6/Bu4Sn等。
但是,由于这些催化体系通常需要苛刻的反应条件和很强的路易斯酸性条件,使得反应对底物容许的功能基团有很大的限制。
这些问题促使人们去进一步认识和理解反映进行的机制。
20世纪70年代初期,Chauvin 提出的烯烃与金属卡宾通过[2+2]环加成形成金属杂环丁烷中间体的互相转化过程,是目前被广泛认同的机制.在试图合成金属杂环丁烷化合物的过程中,导致了在20世纪70年代末、80年代初的烯烃复分解反应单组分均相催化剂的发现,如钨和钼的卡宾络合物,特别是Schrock催化剂用于催化烯烃的复分解反映,都取得了比以往的催化体系更容易引发、更高的反应活性和更温和的反应条件,更重要的是单组分催化剂的发现使得人们深入地研究催化剂的结构-性能关系成为可能,从而为发现新一代的、性能更优秀的催化剂奠定了基础.2.第一代Grubbs催化剂的发现与应用20世纪90年代以前的催化剂,以过渡金属(如钛、钨、钼等)卡宾洛合物为主,尽管取得了一些成功,但这些催化剂大都对氧和水非常敏感,对含有羰基和羟基的底物也不适用,这样就限制了他们的广泛应用.一个突破性的进展是1992年美国加州理工学院的Robert Grubbs发现了钌卡宾洛合物,并成功应用于降冰片烯的开环聚合反应,克服了其他催化剂对功能基团容许范围小的缺点,该催化剂不但对空气稳定,甚至在水、醇或酸的存在下,仍然可以保持催化活性.在此基础上,于1996年Grubbs对原催化剂作了改进,该催化剂不但具有比原催化剂更高的活性和相似的稳定性,而且更容易合成,成为应用最为广泛的烯烃复分解催化剂.由于Grubbs催化剂的诞生,使得过去许多有机合成化学家束手无策的复杂分子的合成变得轻而易举.烯烃的开环复分解聚合反应已经成功应用于一些特殊功能高分子材料,如亲水性高分子、高分子液晶等的合成.关环复分解反应在许多复杂药物、天然产物以及生理活性化合物合成过程中,表现出了特殊的优越性和高效率,如Grubbs将关环复分解反应应用于环肽化合物以及超分子体系---索烃的高效合成;Nicolaou、Danishefsky等用于抗癌物质Epothilone A及其类似物的合成;Martin用于抗癌物Manzamine A的合成,其中在D环和E环的构筑过程中,两次运用关环复分解反应;Furstner用于具有抗癌活性的Tricolorin A和G及其类似物的全合成;Schreiber运用已改进了的催化烯烃交叉复分解反应,用于FK1012的合成等.关环复分解反应在昆虫信息素Peachtwig borer的生产中已有应用,产量大于300千克,E值为0.87,具有较好的原子经济性.3.第二代Grubbs催化剂的开发与应用最近,Grubbs通过系统地对催化剂结构-性能关系进行研究,发现催化剂的活性与其膦配体的解离有关,认为催化循环过程中经过一个高活性的单磷中间体,根据这一设计理念,提出了以比膦配体具有更强给电子能力和更高稳定性的N-杂环卡宾配体代替其中一个膦配体,于1999年发展了第二代Grubbs催化剂除了具有第一代催化剂的优点以外,更重要的是其催化性比第一代催化剂提高了两个数量级,在开环复分解聚合反应中,催化剂用量可以降低至百万分之一,在关环复分解反应中,催化剂用量也仅为万分之五,同时选择性更高,对底物的适应范围更加广泛,催化剂的成本也更低.目前,第二代Grubbs催化剂已成功地应用于烯烃的开环复分解聚合反应,它不仅对于高张力的环状烯烃,而且对于低张力的环状烯烃以及空间位阻较大的三、四取代烯烃,并表现出好的立体化学选择性,这些都是第一代Grubbs催化剂所不能达到的.因此,可以预测,第二代Grubbs催化剂将获得更为广泛的应用,特别是应用于一些工业催化过程.4.发展趋势与展望经过近半个世纪的努力,金属卡宾催化的烯烃复分解反应已经发展成为标准的合成方法并得到广泛应用,Grubbs催化剂的反应活性以及对反应底物的适用性已经和传统的碳-碳键形成方法(如Diels-Alder反应、Wittig反应,曾分别获得诺贝尔化学奖)相媲美.从其发展历程可以看出,每一次研究的突破,无不归因于长期坚持不懈的基础研究积累,从而不断地创新,广泛的应用前景使其能成为一个热点领域的根本动力.尽管烯烃复分解反应的研究已经取得了很大突破,但仍然存在不少挑战.首先,目前的催化体系,对于形成四取代烯烃的交叉复分解反应以及桶烯的开环聚合还不能有效地实现,钌的催化体系还不能适应于带有碱性官能团(如氨基、氰基)的底物;烯烃复分级反应中的立体化学问题、特别是有关催化不对称转化(尽管使用手性Mo催化剂已经实现了开环聚合反应的动力学拆分)的问题还没有很好地解决,关于交叉复分解反应中产物的顺、反异构体的选择性控制,虽然对于某些特定的底物已经取得了一些成功,但还没有普遍的规律可循;另外,烯烃复分解反应的工业应用还很少.所有这些都是需要解决的问题,其关键是在基础研究方面能否有进一步突破,特别是在催化的效率、选择性等方面.丁奎岭 戴立信(中国科学院上海有机化学研究所)。
基础有机化学反应总结一、烯烃1、卤化氢加成 (1)CHCH 2RHXCH CH 3RX【马氏规则】在不对称烯烃加成中,氢总是加在含碳较多的碳上。
【机理】CH 2CH 3+CH 3CH 3X +CH 3CH 3+H +CH 2+C3X +CH 3X主次【本质】不对称烯烃的亲电加成总是生成较稳定的碳正离子中间体。
【注】碳正离子的重排 (2)CHCH 2RCH 2CH 2R BrHBrROOR【特点】反马氏规则 【机理】 自由基机理(略)【注】过氧化物效应仅限于HBr 、对HCl 、HI 无效。
【本质】不对称烯烃加成时生成稳定的自由基中间体。
【例】CH 2CH3BrCH CH 2BrC H 3CH +CH 3C H 3HBrBrCH 3CH 2CH 2BrCH CH 3C H 32、硼氢化—氧化CHCH 2R CH 2CH 2R OH1)B 2H 62)H 2O 2/OH-【特点】不对称烯烃经硼氢化—氧化得一反马氏加成的醇,加成是顺式的,并且不重排。
【机理】2CH 33H 323H 32CH CH 2CH 32CH CH=CH (CH 3CH 2CH 2)3-H 3CH 2CH 2C22CH 3CH 2OCH 2CH 2CH 3H 3CH 2CH 2C2CH 2CH 3+OH -OHB-OCH 2CH 2CH 3CH 2CH 2CH 3H 3CH 2CH 2CBOCH 2CH 2CH 3CH 2CH 2CH 32CH 2CH 3HOO -B(OCH 2CH 2CH 3)3B(OCH 2CH 2CH 3)3+3NaOH3NaOH3HOCH 2CH 2CH 33+Na 3BO 32【例】CH 31)BH 32)H 2O 2/OH -CH 3HH OH3、X 2加成C CBr /CCl CC BrBr【机理】CC CC Br BrC Br +CC Br OH 2+-H +CC Br OH【注】通过机理可以看出,反应先形成三元环的溴鎓正离子,然后亲和试剂进攻从背面进攻,不难看出是反式加成。
本文发表于《大学化学》杂志2006年(第21卷)第一期第1-7页烯烃复分解反应---2005年诺贝尔化学奖简介马玉国(北京大学化学与分子工程学院 北京100871)摘要:瑞典皇家科学院将2005年诺贝尔化学奖授予法国石油研究院的Yves Chauvin 博士,美国加州理工学院的Robert H. Grubbs 博士和美国麻省理工学院的Richard R. Schrock 博士,以表彰他们对发展有机合成中的复分解反应所做出的突出贡献。
本文对2005年诺贝尔化学奖获奖者及其得以获奖的工作—复分解反应作简单介绍。
多年以来,有机合成中的烯烃复分解反应(其在高分子科学中的应用―Metathesis Polymerization 也常被译作易位聚合)已被广泛认可为目前最重要的催化反应之一。
这一反应的重要性体现于它在包括基础研究、药物及其他具有生物活性的分子合成、聚合物材料及工业合成等各个领域的广泛应用。
2005年10月5日,瑞典皇家科学院宣布将2005年诺贝尔化学奖授予法国石油研究院的Yves Chauvin 博士,美国加州理工学院的Robert H. Grubbs 博士和麻省理工学院的Richard R. Schrock 博士,以表彰他们为发展烯烃复分解反应所作的突出贡献(图1)。
Yves Chauvin Robert H. Grubbs Richard R. Schrock图1 2005年诺贝尔化学奖得主( ,版权属诺贝尔基金会)1. 烯烃的复分解反应(Olefin Metathesis )Metathesis 源自于希腊文中的meta (change, 改变)和thesis (position, 位置),代表着在反应中两个反应物的组成部分交换了位置(图2)。
R 1R 12R 2+R 1R 12R 2R 1R 11R 1+R 2R 22R 2图2 烯烃的复分解反应的化学式在烯烃复分解反应的结果来看,两个底物烯烃在催化剂作用下发生卡宾互换反应,即一对烯烃中由双键相连接的两部分发生了交换,进而生成了两个新的烯烃。