定比尺度
- 格式:ppt
- 大小:137.50 KB
- 文档页数:5
1、数据的计量尺度有哪些?各自特征(1)定类尺度:计量层次最低;对事物进行平行的分类;各类别可以指定数字代码表示;使用时必须符合类别穷尽与互斥的要求;数据表现为“类别”;具有=或≠的数学特性(2)定序尺度:对事物分类的同时给出各类别的顺序;比定类尺度精确;未测量出类别之间的准确差值;数据表现为“类别”,但有序;具有>或<的数学特性(例如,产品分为一等品、二等品、三等品、次品等)(3)定距尺度:对事物的准确测度;比定序尺度精确;数据表现为“数值”;没有绝对零点;具有 + 或 — 的数学特性,但就是倍数关系不成立(如气温可以有温差,但不能有倍数关系)(4)定比尺度:对事物的准确测度;与定距尺度处于同一层次;数据表现为“数值”;有绝对零点;具有 ⨯ 或 ÷ 的数学特性,也可+或— ,倍数关系成立(如年龄可以有差值也可以有倍数关系)&以上四种计量尺度对事物的测量层次由低级到高级、由粗略到精确逐步地进,高层次计量尺度有低层次计量尺度的全部特征,反之不成立。
·对测量尺度层次的判断(1)较低层次的测量尺度测量精度低,而较高层次的测量尺度测量精度高。
(2)较低层次的测量尺度计算方法少,而较高层次的测量尺度计算方法多。
(3)较低层次的测量尺度信息数量少,而较高层次的测量尺度信息数量多。
2、条形图与直方图的不同(1)直方图表示定量数据(定距、定比数据),条形图表示定性数据(定类、定序数据)(2)条形图就是用条形的长度表示各类别频数的多少,其宽度就是固定的;直方图就是用面积表示各组频数的多少,矩形的高度表示每一组的频数或百分比,宽度则表示各组的组距,高度与宽度均有意义(3)直方图的各矩形通常就是连续排列,条形图则就是分开排列3、均值、中位数与众数的特点及之间的关系(1)众数:不受极端值影响、具有不惟一性、数据分布偏斜程度较大时应用(2)中位数:不受极端值影响、数据分布偏斜程度较大时应用(3)均值:易受极端值影响、数学性质优良、数据对称分布或接近对称分布时应用·当分布为适度偏态时,三者之间近似的数量关系就是:众数与算术平均数的距离就是中位数与算术平均数距离的3倍,即:e M X M X -=-30根据这一关系,可以得到以下三个关系式:()X M M X X M e e 2330-=--=320X M M e += 230M M X e -=4、为什么要计算离散系数?如何运用离散系数判断平均数的代表性? (1)离散系数:标准差与其相应的均值之比,就是对数据相对离散程度的测度,消除了数据水平高低与计量单位的影响,用于对不同组别数据离散程度的比较,用V 表示。
一基本概念、1、统计总体简称总体是我们要调查或统计某一现象全部数据的集合。
总体单位是构成总体的各个个别单位,它是组成总体的基本单位,也是调查项目的直接承担者。
如:对工业企业进行调查,全国工业企业是总体,每一个工业企业就是单位。
2标志与指标指标是反映统计总体的数量特征,标志反映的是总体单位的特征。
指标分为数量指标和质量指标。
(都可以用数量表示)数量指标,反映总体总规模或总水平,如人口数,产量,耕地面积。
质量指标,反映总体内在质量,如产品合格率,劳动生产率等。
标志分为品质标志和数量标志。
品质标志,如人的性别,籍贯等。
(只能用文字表示)数量标志,人的年龄,身高,职工工资等。
(用数量表示)关系:1)、指标反映的是总体,标志反映的是单位;2)、表示方法不同(文字还是数字);3)、标志是构成指标的基础,指标是标志的汇总,在一定情况下可以互相转化。
如A同学,性别女,女是A的标志,B同学,性别男,男是B的标志……假设一共有5位男同学,3位女同学,男女性别比为5:3,这个5:3就是指标了。
没有前面每个同学的性别标志,就不能通过加总得到后面的5:3.3从统计学而言,理论上,一切认识的对象均可被量化。
而其量化的方法则无外乎四种--定量、定比、定序、定类。
(定距尺度没有绝对零点,比如IQ)1、定类尺度:也称类别尺度或名义尺度,是将调查对象分类,标以各种名称,并确定其类别的方法。
它实质上是一种分类体系。
2、定序尺度:也称等级尺度或顺序尺度,是按照某种逻辑顺序将调查对象排列出高低或大小,确定其等级及次序的一种尺度。
3、定距尺度:也称等距尺度或区间尺度,是一种不仅能将变量(社会现象)区分类别和等级,而且可以确定变量之间的数量差别和间隔距离的方法。
4、定比尺度:也称比例尺度或等比尺度,是一种除有上述三种尺度的全部性质之外,还有测量不同变量(社会现象)之间的比例或比率关系的方法。
4.变异与变量在一个总体中,当某标志在每个总体单位上的具体表现都相同时,称此标志为不变标志。
统计学原理数据的计量与类型一、数据的计量尺度统计研究的任务之一就是要对数据进行处理和分析,而对数据进行处理与分析的前提就是要对数量进行计量,而要对数据进行计量,就要确定数据的计量尺度。
按照对客观事物测度的程度或精确水平来划分,可将计量尺度从低级到高级、由粗略到精确分为定类尺度、定序尺度、定距尺度、定比尺度四种。
1.定类尺度定类尺度又称列名尺度或列名水平,它是按照某种属性对客观事物进行平行分类或分组的一种测度,主要用于非参数的统计推断。
它是对事物的一种最粗略、计量精度最低或最基本的测度,是其他计量尺度的基础,其主要特征体现为:(1)只能区分事物的类别,但无法比较类间的大小。
(2)对事物的区分必须符合穷尽和互斥的要求。
(3)对其进行分析的统计量主要是频数或频率。
2.定序尺度定序尺度又称顺序尺度或有序水平,它是对事物之间等级或顺序差别的一种测度。
其计量精度要优于定类尺度。
它不仅可以测度类别差,而且还可以测度次序差,并可比较大小。
3.定距尺度定距尺度又称间隔尺度或间隔水平,它是对事物类别或次序之间间距进行的一种测度。
它是一种较定类尺度和定序尺度更为高级,更为精确的一种计量尺度。
其主要特征体现为:(1)不仅能区分事物的类别、进行排序、比较大小,而且可以精确地计量大小的差异,即可以进行加减运算,但不能计算乘除。
(2)没有绝对零点,即可以以任意一个零为起点。
这里的“零”表示一个数值,即“0”水平,而不表示“没有”或“不存在”。
4.定比尺度定比尺度又称比率尺度或比较水平,它是对事物之间比值的一种测度,可用于参数与非参数统计推断。
虽然它与定距尺度同属于一个等级的计量尺度,但其功能要比定距尺度强一些,其主要特征体现为:(1)除能区分类别、排序、比较大小、求出大小差异、可采用加减运算以外,还可以进行乘除运算。
(2)具有绝对零点,即“0”表示“没有”或“不存在”。
可见,定比尺度中的“0”是个没有意义的数值。
(3)所有统计量均可对其进行分析。
1.数据的计量尺度有哪几种?有定类尺度、定序尺度、定距尺度、定比尺度。
定类尺度也称类别尺度或列名尺度,它是把事物按属性或类别分组。
其计量的结果只是表现为某种类别,而对各类间的其他差别却无法测度。
定序尺度也叫顺序尺度,它是对事物之间等级差别或顺序差别的测度。
具有定类尺度的所有性能。
定距尺度也叫间隔尺度,是对事物间的类别或次序间的间距的测度,其计量结果表现为数值。
定比尺度也叫比率尺度,它与定距尺度属于同一层次,其计量结果也表现为数值。
2.常用的统计调查方式主要有哪些?⑴统计报表。
是按照国家有关法规的规定,自上而下地统一布置,自下而上地逐级提供基本统计数据的一种调查方式。
⑵普查。
是为特定目的而专门组织的一次性全面调查。
⑶抽样调查。
是从研究对象的总体中随机抽取一部分个体作为样本进行调查,并根据调查结果来推断总体数量特征的一种非全面调查方法。
3.分类数据,顺序数据的整理及图示方法各有哪些?⑴用频数分布表展示分类数据和顺序数据⑵用图形展示分类数据和顺序数据①条形图②饼图4.数据型数据的整理及图示方法有哪些?试述组距分组的步骤。
⑴用频数分布表(变量数列)展示数值型数据①单变量值分组②组距分组⑵用图示展示数值型数据①直方图②箱线图③线图④茎叶图组距分组的步骤:①确定组数②确定各组的组距③整理成频数分布表5.试描述均值,中位数,众数的特点及应用场合均值的计算是建立在每个观测值之上的,因此均值受极端值的影响很大。
在这种时候,均值歪曲了数据实际传递的信息,因此,当数据集有极端值时,均值并不是集中趋势的最好的描述。
众数、中位数和均值各自具有不同的特点,在实际应用中,应选择合理的测度值来描述数据的集中趋势。
当数据呈对称分布或接近对称分布时,三个代表值相等或接近相等,选择用均值比较好,因为均值包含了全部数据的信息,易被大多数人所理解和接受;当数据为偏态分布是,特别是当偏斜的程度较大时,应选择众数或中位数;当数据为定类尺度时,如商品(服装、鞋类)等的规格,用众数是较好的选择。
定距尺度和定比尺度的例子
以下是 9 条关于定距尺度和定比尺度的例子:
1. 你知道温度的测量吧,那摄氏度就是定距尺度呀!比如今天 25 度,明天 30 度,中间有明确的间隔,这多直观呀!就像我们一步一步往前走,每个脚印的距离都是确定的呢!
2. 想想看体重秤上的数字,那就是定比尺度啊!你的体重是 50 千克,我的是 60 千克,我们能清楚地比较谁更重,这不是很神奇吗?这就好像在一场比赛中,谁跑在前面一目了然!
3. 还记得跑马拉松的里程数吗?那可完全是定比尺度呢!公里就是一个明确的标准,大家都朝着这个目标前进,就如同攀登高峰,每一米的努力都算数,多带劲呀!
4. 我们每天看的时间也是定距尺度呀!1 点和 2 点之间差距 1 小时,这多清晰呀!这就像我们的人生,每一段时光都有着独特的意义,不容错过哟!
5. 金钱不也是定比尺度嘛!你有 100 元,我有 500 元,那差别可真大啊!这简直就是财富的竞赛,刺激吧!
6. 像测量房子的面积,平方米就是定距尺度呀!50 平方米的房子和 100 平方米的房子,那可是有很大不同呢,这就好比不同大小的包裹,里面装的东西多少一目了然!
7. 汽车的速度表显示的速度不就是定比尺度嘛!60 迈和 80 迈的差距很明显呀!这就像是赛车在赛道上飞驰,速度决定一切,哇塞!
8. 去超市买东西看的那些商品重量,不也是定距尺度嘛!1 千克的苹果和 2 千克的苹果,这选择起来很简单呀!就如同在琳琅满目的宝藏中挑选最喜欢的宝贝!
9. 我们在健身房锻炼时用的器械上的重量,那绝对是定比尺度哇!举起 30 千克的和举起 50 千克的,差距可不小呢,这像一场力量的较量,你敢不敢挑战呢?
总之,定距尺度和定比尺度就在我们的生活中无处不在呀,它们让我们的世界变得更加清晰和有序!。
定比尺度的概念
定比尺度是评估客观性质并实施精准计量的一种测量尺度。
它是一种特殊的测量方法,每个度量标准的间隔大小是固定的,且有一个确定的“零”点。
相较于其他测量方法,如
等距尺度和名义尺度,定比尺度的性质更为精确和严谨。
定比尺度的最显著特征是具有相等的间隔和绝对的零点。
具体而言,这种测量方式中
的“零”指的是不存在这个属性的状态,即真正的空缺。
此外,每个度量指标之间的间隔
幅度是一致的,并且在定比尺度中的度量量表具有本质的意义,能够进行各种数学计算。
在实际应用中,定比尺度常常被用来测量时间、温度、距离、体积、电压等物理量。
以温度为例,0℃是定比尺度的零点,1℃和2℃之间的间隔和2℃和3℃之间的间隔是相等的。
因此,使用定比尺度可以精确地测量温度。
与等距尺度相比,定比尺度的一个显著优势是可以进行比率计算。
这意味着,有两个
或多个测量数值可以进行百分比或比率的计算,这在实际应用中有着广泛的用途。
例如,
可以使用定比尺度比较两个城市的温度,计算出一个城市比另一个城市更热或更冷的度量值。
值得注意的是,即使在定比尺度中,也存在度量的误差和不确定性。
因此,在进行定
比尺度的测量时,需要使用合适的工具和方法,以确保数据的准确性和可靠性。
总之,定比尺度是一种高度精确和严谨的测量方法,在物理学、社会学、统计学和其
他学科领域都有着广泛的应用。
使用定比尺度可以精确地测量各种属性,计算比率和百分比,并对数据进行更准确的分析。