飞机主要的飞行性能和飞行科目
- 格式:doc
- 大小:26.50 KB
- 文档页数:3
这部分我们要了解飞机最简单的运动形式:平飞、上升和下降。
平飞、上升和下降指的是飞机既不带倾斜也不带侧滑的等速直线飞行。
这也是飞机最基本的飞行状态。
飞机平飞、上升和下降性能是飞机最基本的飞行性能,如:平飞最大速度、平飞最小速度、最大上升角、最大上升率,升限、最小下降角、最大下降距离等,这些都是飞行员首先要学习和掌握的。
一.平飞飞机作等速直线水平的飞行,叫平飞。
平飞中作用于飞机的外力有升力、重力、拉力(或推力)和阻力。
平飞时,飞机无转动,各力对重心的力矩相互平衡,且上述各力均通过飞机重心。
为保持平飞,需要有足够的升力以平衡飞机的重量,为了产生这一升力所需的飞行速度,叫平飞所需速度影响平飞所需速度的因素:*飞机重量——在其它因素都不变的条件下,飞机重量越重,为保持平飞所需的升力就越大,故平飞所需速度也越大。
相反,飞机重量越轻,平飞所需速度就越小。
*机翼面积——机翼面积大,升力也大。
为了获得同样大的升力以平衡飞机重量,所需平飞速度就小。
反之,机翼面积小,平飞所需速度就大。
*空气密度——空气密度小,升力也小,为了获得同样大的升力以平衡飞机重量,平飞所需速度就增大。
反之,空气密度大,平飞所需速度就减小,空气密度的大小是随飞行高度以及该高度的气温气压而变化的,飞行高度升高,或在同一高度上,气温升高或气压降低,空气密度都会减小。
反之增大。
*升力系数——升力系数大,平飞所需速度就小。
因为,升力系数大,升力大,只需较小的速度就能获得平衡飞机重量的升力。
反之,升力系数小,平飞所需速度就大。
而升力系数的大小又决定于飞机迎角的大小和增升装置的使用情况。
迎角不同,开力系数不同,平飞所需速度也就不同。
在小于临界迎角的范围内,用大迎角平飞,升力系数大,平飞所需速度就小,用小迎角平飞,升力系数小,平飞所需速度就大,即是说,平飞中每一个迎角均有一个与之对应的平飞所需速度。
*增升装置的使用情况不同,升力系数大小也不同,平飞所需速度也将下一样。
1.飞机的飞行性能:在对飞机进行介绍时,我们常常会听到或看到诸如“活动半径”、“爬升率”、“巡航速度”这样的名词,这些都是用来衡量飞机飞行性能的术语。
简单地说,飞行性能主要是看飞机能飞多快、能飞多高、能飞多远以及飞机做一些机动飞行(如筋斗、盘旋、战斗转弯等)和起飞着陆的能力。
速度性能最大平飞速度:是指飞机在一定的高度上作水平飞行时,发动机以最大推力工作所能达到的最大飞行速度,通常简称为最大速度。
这是衡量飞机性能的一个重要指标。
最小平飞速度:是指飞机在一定的飞行高度上维持飞机定常水平飞行的最小速度。
飞机的最小平飞速度越小,它的起飞、着陆和盘旋性能就越好。
巡航速度:是指发动机在每公里消耗燃油最少的情况下飞机的飞行速度。
这个速度一般为飞机最大平飞速度的70%~80%,巡航速度状态的飞行最经济而且飞机的航程最大。
这是衡量远程轰炸机和运输机性能的一个重要指标。
当飞机以最大平飞速度飞行时,此时发动机的油门开到最大,若飞行时间太长就会导致发动机的损坏,而且消耗的燃油太多,所以一般只是在战斗中使用,而飞机作长途飞行时都是使用巡航速度。
高度性能最大爬升率:是指飞机在单位时间内所能上升的最大高度。
爬升率的大小主要取决与发动机推力的大小。
当歼击机的最大爬升率较高时,就可以在战斗中迅速提升到有利的高度,对敌机实施攻击,因此最大爬升率是衡量歼击机性能的重要指标之一。
理论升限:是指飞机能进行平飞的最大飞行高度,此时爬升率为零。
由于达到这一高度所需的时间为无穷大,故称为理论升限。
实用升限:是指飞机在爬升率为5m/s时所对应的飞行高度。
升限对于轰炸机和侦察机来说有相当重要的意义,飞得越高就越安全。
飞行距离航程:是指飞机在不加油的情况下所能达到的最远水平飞行距离,发动机的耗油率是决定飞机航程的主要因素。
在一定的装载条件下,飞机的航程越大,经济性就越好(对民用飞机),作战性能就更优越(对军用飞机)。
活动半径:对军用飞机也叫作战半径,是指飞机由机场起飞,到达某一空中位置,并完成一定任务(如空战、投弹等)后返回原机场所能达到的最远单程距离。
第二讲飞机的基本飞行性能讲义一、引言飞机的基本飞行性能是指飞机在不同飞行阶段中的各种性能指标。
了解和掌握飞机的基本飞行性能对于飞行员和飞机设计师来说都是十分重要的。
本讲义将介绍飞机的基本飞行性能指标及其计算方法。
二、起飞性能起飞性能是飞机在地面开始起飞到到达安全飞行高度之间的性能指标。
主要包括起飞距离、起飞速度和最大爬升率。
1. 起飞距离起飞距离是指飞机从起飞开始到离地面50英尺高时所需的距离。
起飞距离计算公式如下:起飞距离 = 加速距离 + 抬轮距离 + 离地距离其中,加速距离是指飞机从静止到达起飞速度所需的距离;抬轮距离是指飞机从离地面50英尺高到离地面100英尺高所需的距离;离地距离是指飞机离开地面100英尺高时所需的距离。
2. 起飞速度起飞速度是指飞机在起飞时所需的最低速度。
起飞速度取决于飞机的重量和机翼的亮度。
一般来说,起飞速度随飞机重量的增加而增加,随机翼的亮度的增加而减小。
3. 最大爬升率最大爬升率是指飞机在起飞过程中爬升的最大速率。
最大爬升率取决于飞机的发动机推力、机翼提供的升力和飞机的阻力。
飞机的最大爬升率在不同高度下可能会有所不同。
三、巡航性能巡航性能是指飞机在巡航飞行阶段的性能指标。
主要包括巡航速度、巡航升力系数和巡航推力。
1. 巡航速度巡航速度是指飞机在巡航飞行阶段所保持的恒定速度。
巡航速度取决于飞机的气动性能和发动机的推力。
为了保持较低的燃料消耗和较长的航程,飞机会选择一个较低的巡航速度。
2. 巡航升力系数巡航升力系数是指飞机在巡航飞行阶段的升力与机翼面积、空气密度和飞机速度的比值。
巡航升力系数影响飞机的升力和阻力。
3. 巡航推力巡航推力是指飞机在巡航飞行阶段的发动机推力。
巡航推力决定飞机的速度和燃料消耗。
四、下降和着陆性能下降和着陆性能是指飞机从巡航飞行阶段到着陆的过程中的性能指标。
主要包括下降速度、下降距离和着陆距离。
1. 下降速度下降速度是指飞机从巡航飞行阶段开始向地面下降时的速度。
飞行器的飞行性能与操纵性飞行器是一种能够在空中飞行的机械装置,广泛应用于航空领域。
飞行器的飞行性能和操纵性是评价其飞行能力的重要指标。
本文将就飞行器的飞行性能和操纵性进行探讨。
一、飞行性能飞行性能是指飞行器在飞行过程中表现出来的各项能力和特点。
主要包括以下几个方面。
1.1 起飞性能起飞性能是指飞行器从地面起飞到升空的过程中,所需要的时间和能量消耗等指标。
一个优秀的飞行器应该具备良好的起飞性能,以确保飞机能够迅速离地并进入到安全高度。
1.2 巡航性能巡航性能是指飞行器在飞行过程中的巡航阶段表现出的能力。
包括飞行速度、飞行高度和航程等指标。
飞行速度是衡量飞行器性能的重要参考,高速飞行可以显著减少飞行时间。
同时,飞行高度与航程也是考虑因素,适当的高度和较长的航程可提供更广阔的应用范围。
1.3 爬升性能爬升性能是指飞行器在从巡航阶段爬升到更高的高度时所表现出的能力。
这是一项重要的飞行性能指标,与飞机的引擎功率、重量、气压等因素息息相关。
较好的爬升性能能够使飞行器在短时间内迅速攀升到所需高度。
1.4 下降和着陆性能下降和着陆性能是指飞行器在从巡航阶段下降到降落时的表现能力。
该性能主要与飞机的机翼、起落架以及飞行员的技术水平等相关。
良好的下降和着陆性能能够保证飞机平稳降落,确保安全性和舒适性。
二、操纵性操纵性是指飞行器在操纵员的操作下,对飞行控制的响应能力。
一个操纵性良好的飞行器应具备以下几个特点。
2.1 稳定性稳定性是评价飞行器操纵性能好坏的重要指标之一。
指的是飞行器在受到扰动时,能够自动或者经过飞行员的操纵,迅速恢复到稳定状态。
较好的稳定性能够提高乘客的舒适度和飞行安全。
2.2 敏捷性敏捷性是指飞行器在操纵员的操作下,对操纵指令的快速响应能力。
敏捷性好的飞行器能够迅速、精确地完成飞行任务,提高飞行效率和准确性。
2.3 操纵灵活性操纵灵活性是指飞行员能够轻松地操作飞行器,实现精细的操纵动作。
这与飞行器的机械设计、操纵装置的灵活性等相关。
飞行专业知识点总结导论飞行是一门复杂而又迷人的学科,涉及到空气动力学、航空制造、飞行动力学、导航和飞行电子学等众多领域。
飞行员需要掌握丰富的专业知识,包括飞行原理、飞机构造、飞行器性能、气象学、导航、驾驶技术等方面的内容。
本文将从飞行原理、飞机结构、飞行器性能、气象学、导航和驾驶技术等方面进行总结与分析。
一、飞行原理1. 空气动力学空气动力学是研究空气对飞行器的作用的学科,是飞行学科的基础。
通过空气动力学的研究,我们可以了解到飞机在不同状态下的飞行特性,包括升力、阻力、稳定性、操纵性等。
飞机的机翼形状、机身设计、控制面设置等都离不开空气动力学的原理。
2. 升力与阻力升力是飞机上升的力量,而阻力则是飞机前进时所受的阻碍力。
在飞机的设计与驾驶中,升力与阻力的平衡是十分重要的。
飞机具有不同的升力和阻力特性,在不同的飞行状态下,升力和阻力的变化会对飞机的性能产生影响。
3. 稳定性与操纵性飞机的稳定性是指飞机在特定状态下保持平衡的能力,包括纵向稳定性、横向稳定性和航向稳定性。
操纵性指的是飞机在飞行中受操纵面操控时的稳定性。
飞机的稳定性与操纵性是飞行员控制飞机的重要依据,也是飞机设计时需要考虑的重要因素。
二、飞机结构1. 飞机构造飞机的构造包括机翼、机身、机尾、起落架等部分。
飞机的不同构造对其飞行性能和安全性都有影响。
飞机构造的设计要考虑到载荷、重量、气动性能、结构强度等因素,以确保飞机的安全可靠。
2. 发动机飞机发动机是飞机的动力源,不同类型的发动机包括活塞发动机、涡轮螺旋桨发动机、涡喷发动机等。
飞机发动机的工作原理、性能和维护都是飞行员必须了解的内容,也和飞机的飞行性能有密切关系。
3. 飞机系统飞机包括了许多复杂的系统,如油系统、液压系统、电气系统、空调系统等。
这些系统的正常工作对飞机的安全飞行至关重要,飞行员需要了解不同系统的工作原理与故障处理方法。
三、飞行器性能1. 飞行器运动学飞行器的运动学是研究飞机在三维空间中的运动特性。
飞机飞行动力学飞机飞行动力学飞机是一种飞行器,它的机身由机翼、机身、发动机、尾翼等部分组成。
飞机飞行动力学是研究飞机的飞行原理和飞行的力学性能的科学。
它主要包括飞行车的基本运动、气动力学、稳定性、控制性、安全性和飞行性能等方面的内容。
一、飞机飞行的基本运动飞机的飞行可以分为三种基本运动:滚转、俯仰和偏航。
滚转是飞机绕着纵轴旋转,俯仰是飞机绕着横轴旋转,偏航是飞机绕着垂轴旋转。
这三种基本运动是飞机飞行的基础。
二、飞机气动力学飞机在飞行中会受到各种各样的气动力学作用,如风阻、升力、阻力、推力、重力等。
飞机运动状态完全受气动力学效应的影响,需要在飞行中保持稳定的气动性能来保证飞机的安全和效率。
1.升力和阻力当飞机在空气中飞行时,它可以获得升力和阻力。
升力来自于机翼的气动力学效应,当机翼在空气中移动时,会产生一个向上的力,这个力就是升力。
而阻力是机翼对空气的阻力,飞机在空气中飞行时,必须克服阻力才能前进。
升力和阻力的大小与速度、空气密度、机翼面积等因素有关,它们是影响飞机飞行的重要因素。
2.推力和重力另外,飞机还有推力和重力。
推力是发动机产生的向前的力,是飞机前进的动力来源。
重力是地球对飞机产生的吸引力,是飞机受力的来源。
飞机的飞行速度和高度都受重力的影响,飞机必须通过控制升力和推力的大小来维持飞行高度和速度,保持平衡状态。
三、飞机稳定性和控制性稳定性是指飞机在飞行中能够保持平衡的能力。
控制性是指飞机在飞行中能够按照飞行员的指令进行动作。
1.纵向稳定性和控制性纵向稳定性和控制性主要涉及飞机的俯仰运动。
它是指飞机能够在纵向方向上保持平衡的能力,并且能够按飞行员的指令执行俯仰角变化。
俯仰角是飞机机身和地平线之间的夹角。
飞机在起飞、加速和爬升等阶段,需要调整俯仰角来维持稳定的飞行状态,并且在降落和着陆时也需要用到俯仰角控制飞机的姿态。
2.横向稳定性和控制性横向稳定性和控制性主要涉及飞机的滚转和偏航运动。
它是指飞机能够在横向方向上保持平衡的能力,并且能够按照飞行员的指令执行滚转和偏航角变化。
飞机原理与构造第五讲飞机的飞机性能飞机的飞行性能是指飞机在飞行过程中所表现出来的各种性能指标,包括速度、升限、爬升率、航程、续航时间等。
这些性能指标直接影响着飞机的运行能力和使用范围。
首先是飞机的速度性能。
飞机的速度性能包括巡航速度和最大速度两个指标。
巡航速度是指在飞行中所能够稳定维持的速度,是飞机在巡航过程中的最佳速度。
最大速度则是指飞机所能够达到的最高速度,一般情况下只有在紧急情况下才会达到最大速度。
速度性能的优劣直接决定了飞机的飞行效率和运输能力。
其次是飞机的升限性能。
飞机的升限是指飞机所能够达到的最大高度。
飞机的升限受到气压、空气密度和发动机性能等因素的影响。
升限性能的好坏直接决定了飞机的航线选择和飞行效率。
高升限的飞机可以飞行在更高的高度上,可以躲避天气和地面障碍物,减少与其他飞机的冲突,从而提高飞行安全性和速度。
接下来是飞机的爬升率性能。
飞机的爬升率是指飞机垂直上升的速度。
爬升率与飞机的动力性能、气动布局和负荷有关。
高爬升率的飞机可以迅速爬升到所需的飞行高度,减少起飞时间和燃料消耗。
爬升率性能的好坏对于快速升高、跳跃式或途中爬升和救生工作都具有重要意义。
此外,飞机的航程性能也是非常重要的。
航程是指飞机在油料有限的情况下所能够飞行的距离。
航程性能受到飞机的燃油容量、航程重量、巡航速度和高度等因素的影响。
航程与飞机的使用范围和任务有关,长航程的飞机适合用于远程运输和长途航行,而短航程的飞机适合用于短途运输和地区内交通。
航程性能的好坏直接关系到飞机的商业价值和运输能力。
最后是飞机的续航时间性能。
续航时间是指飞机在油料有限的情况下所能够持续飞行的时间。
续航时间性能与飞机的燃油容量、油耗、巡航速度和高度等因素有关。
续航时间长的飞机可以在不需要补充燃料的情况下持续飞行更长时间,适合使用在需要长时间停留的任务和航线上,如救援、测绘和巡逻等。
总的来说,飞机的飞行性能决定了飞机的飞行能力和使用范围。
优秀的飞机性能能够提高飞机的飞行效率、安全性和经济性,有利于飞机的商业运营和实际应用。
飞机主要的飞行性能和飞行科目
一、飞机的主要飞行性能
飞机的飞行性能是评价飞机优劣的主要指标。
主要的飞行性能包括下列几项:
(一)最大平飞速度(V最大)。
’
飞机的最大平飞速度是在发动机最大率(或最大推力)时一飞机所获得的平飞速度。
飞机的最大平飞速度是在发动机最大率(或最大推力)时一飞机所获得的平飞速度。
影响飞机最大平飞速度的主要因素是发动机的推力和飞机的阻力。
由于发动机推力、飞机阻力与高度有关,所以在说明最大平飞速度时,要明确是在什么高度上达到的。
通常飞机不用最大平飞速度长时间飞行,因为耗油太多,而且发动机容易损坏,缩短
使用寿命。
除作战或特殊需要外,一般以比较省油的巡航速度飞行。
对歼击歼来说,V最大更重要一些。
歼击机靠它来追上敌机,予以歼灭。
同时也靠它变被动为主动。
创造世界速度纪录的飞机,都是以最大平飞速度作为评定标准。
其速度单位是“公里/小时”。
(二)巡航速度(V巡) ‘
巡航速度是指发动机每公里消耗燃油最少情况下的飞行速度。
这时飞机的飞行最经济,航程也最远,发动机也不大“吃力”。
对于远程轰炸机和运输机,巡航速度也是一项重要的性能指标。
其单位也是“公里/小时”。
(三)爬升率(V、,)
飞机的爬升率是指单位时问内飞机所上升的高度,其单位是“米/分”或“米/秒”。
爬升率大,说明飞机爬升快,上升到预定高度所需的时间短。
爬升率是歼击机的一项重要性能。
爬升率与飞行高度有关。
随着飞行高度增加,空气密度减少,发动机推力降低,所以一般最大爬升率在海平面时,随着高度增加而减小。
(四)升限(H)
飞机上升所能达到的最大高度,叫做升限。
“升限”对战斗机是一项重要性能。
歼击机升限比敌机高,就可居高临下,取得主动权。
飞机的升限有两种:一种叫理论升限,它指爬升率等于零时的高度,没有什么实际意义;常用的是“实用升限”。
所谓“实用升限”就是飞机的爬升率等于每秒5米时的高度。
此外还有动力升限,它是靠动能向上冲而取得最大高度的。
一般创纪求的升限是指动力升限。
(五)航程及续航时间
航程是指飞机一次加油所能飞越的最大距离。
用巡航速度飞行可取得最大航程。
增加航程的主要办法是多带燃料、减小发动机的燃料消耗和增大升阻比K。
航程远,表示飞机的活动范围大。
对军用飞机来说,可以直接威胁敌人的战略后方,远程作战能力强;对民用客机和运输机来说,可以把客货运到更远的地方,而减少中途停留加油的次数。
续航时间是指飞机一次加油,在空中所能持续飞行的时间。
这一性能对侦察机、海上巡逻机和反潜机是很重要的;歼击机的续航时间长,也有利于对敌作战。
增加续航时间的措施同增加航程的措施相类似。
现代作战飞机大都挂有副油箱,就是为了多带燃料,以增大航程和航时。
某些飞机为了增大航程,并减小起飞时的载油量,以缩短滑跑距离或增加其它载重,可用空中加油的办法,在飞行途中由加油机补给燃料。
(六)作战半径
飞机从某一机场起飞,执行作战任务后再返回原机场,这距
离就是“作战半径”。
理论上“作战半径”应该是航程的一半。
但因飞机在最远点处要执行作战任务,消耗燃料,
缩短直线航程,故一般规定“作战半径"等于航程的25~40%。
二、飞机的主要飞行科目
飞行科目一般包括飞机的起飞、着陆,直线飞行(平飞、上升和下滑)和曲线飞行(或称机动飞行)。
(一)飞机的起飞和着陆
飞机的起飞和着陆是飞行最基本的科目。
飞机这时是在变速运动。
1.飞机的起飞
飞机的起飞过程,即飞机从静止不动、开始滑跑起,在地面越跑越怏,一直肌速到离开地面升入空中为止。
起飞过程飞机一直处于加速状态。
飞机从静止开始滑跑离开地面,并上升到25米高度的加速运动过程,叫做起飞。
现代喷气式飞机的起飞过程分成二个阶段: (1)地面加速滑跑阶段; (2)加速上升到安全高度阶段(图2—53)。