光伏组件热斑效应.
- 格式:ppt
- 大小:1.08 MB
- 文档页数:13
光伏热斑效应概述及解释说明1. 引言1.1 概述光伏热斑效应是指在光伏发电过程中,由于光照强度不均匀或材料表面特性等因素的影响,产生局部温度升高的现象。
这种现象对光伏发电系统的性能和寿命有着重要的影响。
因此,深入了解和解决光伏热斑效应问题具有重要的实际意义。
1.2 文章结构本文将首先概述光伏热斑效应的定义和原理,并分析其产生的主要影响因素。
其次,我们将探讨一些解决光伏热斑效应问题的方法,并讨论各种方案的优劣与适用性。
最后,在结论部分,我们将总结已经取得的研究成果并展望未来在该领域可能面临的挑战。
1.3 目的本文旨在提供一个综合而清晰地概述光伏热斑效应的文章。
通过对相关知识点进行介绍和讲解,读者可以更好地理解光伏热斑效应及其相关原理,进而为解决该问题提供一定参考。
同时,通过分析已有的研究成果和存在的问题,我们可以为未来的研究方向提出展望,并希望能够对光伏产业的发展和应用提供一定启示。
2. 光伏热斑效应概述:2.1 光伏效应简介:光伏效应是指当光辐射照射到半导体材料上时,产生的电荷对电流的响应。
光伏效应是太阳能电池转换太阳能为电能的基础原理,也是光伏热斑效应产生的前提条件之一。
2.2 热斑效应简介:热斑效应是指在高浓度光照射下,光伏组件表面形成的局部区域温度升高现象。
当太阳能辐射聚焦在一个小区域上时,该区域会受到更高的温度影响,并且可能降低整个光伏系统的性能和寿命。
2.3 光伏热斑效应定义与原理解释:光伏热斑效应是指在高浓度太阳能辐射条件下,由于光线聚焦导致局部区域温度增加,进而引发出现局部失效或性能降低现象。
当太阳能集中在一个小区域上时,这个小区域将吸收更多的能量并产生显著的局部温升,而其他部分的温度保持相对稳定。
这会导致光伏组件中电流产生不均匀分布,降低整个系统的效率。
光伏热斑效应产生的原理主要涉及两个方面。
首先是热载流子效应,高浓度光照射下,热载流子(由高能量光激发生成的载流子)在表面局部区域堆积并增加物质界面处的复合速率。
组件热斑效应众所周知为了使组件达到最高的功率输出,光伏组件中的单体电池须具有相似的特性,对于组串及阵列也是如此。
但在实际使用过程中,可能出现电池裂纹或不匹配、内部连接失效、局部被遮光或弄脏等情况,导致一个或一组电池的特性与整体不谐调。
失谐电池不但对组件输出没有贡献,而且会消耗其他电池产生的能量,导致局部过热。
这种现象称为热斑效应。
当组件被短路时,内部功率消耗最大,热斑效应也最严重。
热斑效应不仅会严重影响组件的性能和使用寿命,还有可能引发燃烧及火灾,给电站带来财产损失和人员伤害,因此有效的判断热斑效应的发生及严重性是电站长期的工作。
下左图是电站现场发生的组件背板灼烧现象。
对于热斑效应的判断,切记勿用手去触摸组件,因为当热斑发生时,组件的局部温度非常高,极有可能造成灼伤。
运维人员应选择相应的测试仪器去对组件整体温度进行测试判断,并提早发现组件是否已经存在局部温度异常。
此时选用最方便最快捷的测试仪器即是红外热像仪。
红外热像仪可以全方位拍摄整个组件甚至阵列的温度分布情况,及时发现热斑所在。
并通过软件全面了解组件当前的发热情况,对于明显有热斑的组件可以清楚判断,同时可对组件中尚不明显的热点进行分析判断。
如上右图所示。
从图中可看出组件靠近地面的部位均存在一定程度的热斑效应,这是热斑效应发生概率较高的部位,原因是:(1)这部分组件最容易被遮挡,被遮挡的时间也最长;(2)灰尘覆盖最严重,有时候清洗的不干净时,这部分囤积的灰尘也越多。
(3)靠近地面,通风较差,散热不佳。
因此发生热斑效应的概率较高。
当然引起热斑效应的原因并不止这些,组件本身的性能差别,是否存在隐裂,是否有损伤等等也会造成热斑效应。
HT测试仪器建议在运维过程中,对于已经存在热斑效应的组件,需要对其进行I-V曲线测试判断其功率下降的比例,对于热斑效应较严重的组件可考虑更换组件,避免对整个组串造成过大影响。
对于尚未存在热斑效应的组件,最好进行抽查,对部分组件的I-V曲线进行测试,这样可以提前发现造成组件功率下降的原因,并及时改进。
光伏组件热斑效应研究光伏组件热斑效应是指在光伏组件工作过程中,由于各种原因导致组件表面出现局部热斑现象。
这种现象会对光伏组件的性能产生不利影响,因此对光伏组件热斑效应进行研究具有重要意义。
光伏组件是将太阳光转化为电能的装置,其工作原理是利用光伏效应将光能转化为电能。
在正常工作情况下,光线通过光伏组件的表面玻璃覆盖层,进入光伏电池层,然后被光伏电池层吸收并转化为电能。
然而,光伏组件在工作过程中会受到多种因素的影响,从而导致热斑效应的产生。
光伏组件的表面玻璃覆盖层具有一定的吸收性,会吸收部分光线并将其转化为热能。
这些被吸收的光线会在玻璃覆盖层内部产生热斑,从而使组件局部温度升高。
其次,光伏电池层的材料本身也会存在一定的光吸收能力,这会导致光伏电池层吸收光线后产生热斑。
此外,光伏组件的背面通常有一层金属反射层,该反射层会将未被光伏电池层吸收的光线反射回来,从而形成光热效应。
光伏组件热斑效应的存在对组件性能产生了多重影响。
首先,热斑会使组件局部温度升高,从而导致光伏电池层的工作温度升高。
光伏电池的工作效率与温度密切相关,温度升高会降低光伏电池的转换效率。
此外,热斑还会引起光伏电池层的热应力,从而降低光伏组件的可靠性和寿命。
为了研究光伏组件热斑效应并寻找相应的解决办法,科研人员进行了大量的实验和理论分析。
实验方面,他们通过在实验室中搭建光伏组件测试平台,模拟不同工况下的光伏组件工作情况,然后通过红外热成像技术等手段对组件表面的温度分布进行测量和分析。
理论方面,他们运用热传导和光学等相关理论,建立了热斑效应的数学模型,从而对热斑的形成机制进行解释和预测。
根据研究结果,科研人员提出了一些减轻光伏组件热斑效应的方法。
首先是优化组件结构和材料,使其具有更好的光吸收和热传导性能,从而减少热斑的产生。
其次是改进光伏组件的散热设计,增加散热设备和通风孔,提高组件的散热效果。
另外,科研人员还提出了一些新颖的解决方案,如利用热管技术和热电联供等方法来处理热斑问题。
光伏组件中的“热斑效应”原理一、什么是“热斑效应”?相信大多数光伏从业者都听说过“热斑效应”及其危害的宣传。
常见的资料对热斑效应解释为:在一定条件下,光伏系统中的部分电池会被周围其它物体所遮挡,造成局部阴影,这将引起被遮挡某些电池发热,产生所谓“热斑”现象。
但上述解释还不够完整,局部遮挡只是形成热斑的原因之一,另外一个原因是电池本身的缺陷。
因此,比较准确的定义应该是:热斑是互相连接(主要是串联方式)的电池工作在不同的条件下或者没有相同的性能造成的,它的本质原因是电池之间的失配(对于光伏系统来说,组件之间的失配原理和此相同)。
换句话说,热斑产生的原理是:一个串联电路中,电池由于某些原因,导致其所表现出的工作状态不一致。
这些原因包括遮挡(如周围物体的阴影、落叶、鸟粪等)导致部分电池所表现出的性能和其它电池)不同,或者是电池本身的性能就不同(比较严重的情况是部分电池存在明显缺陷)。
事实上,电池之间性能完全一致的可能性是很小的。
因此,从严格意义上来说,热斑效应是一种正常现象。
有权威检测机构基于大量数据积累和资料调研表明,在辐照度大于800W/m2时,热斑最高温度与组件平均温度之间的温度差值小于10度是可以接受的;如果少数组件存在温差超过10℃的情况,只要这个比例不超过5%,系统功率输出正常,也是可以接受的(例如组件上有直径3-125px的鸟粪,组件边缘有尘土积聚,轻微焊接问题,电池片轻微缺陷,盖板部分玻璃脏污等)。
二、“热斑效应”的产生机理那么产生热斑的基本机理是什么呢?图1:理想太阳能电池和非理想太阳能电池比较图1所示是太阳电池的完整工作曲线,图中:第一象限:是我们常见的电池发电时的IV曲线;第二象限:代表给太阳电池加反向偏压时,电池由发电变为耗电(分界点是纵轴短路电流处);第四象限:代表给太阳电池加正向偏压,正向电压产生的电流方向是从P区流向N区,和光生电流方向相反,所以当正向偏压大于电池的开路电压时,电流反向,电池由发电变为耗电(分界点是横轴开路电压处)。
太阳能光伏组件热斑效应的检测与控制措施研究摘要:随着社会的不断发展,人类与生态环境之间的矛盾也越来越突出,已经严重威胁到人类的生存和发展。
在这种情况下,我国制定了生态环保政策,积极使用清洁能源,减少对生态环境的破坏。
太阳能以高效的利用率以及清洁、可再生等因素,成为应用最为广泛的一种清洁能源。
目前而言,我国的太阳能技术也取得了显著的发展,但是,太阳能光伏组件在长期的运行过程中,会出现一些影响光伏组件性能的质量问题,比如“热斑效应”,不仅影响光伏组件的工作效率,同时也对光伏组件的使用寿命造成了严重的影响。
基于此,需要相关的技术人员深入分析“热斑效应”的形成原因以及控制措施,保证太阳能光伏组件的高效运行。
关键词:太阳能;光伏组件;热斑效应;控制措施引言:能源是推动社会发展的重要动力,传统的能源是以石油、煤炭以及天然气为代表,新型能源则是以核能、风能、太阳能以及地热能为代表,共同组建了当今社会的能源体系。
但是,随着我国节能环保政策的不断深入,逐步压缩了对传统能源开采,积极发展新型清洁能源,以此来降低生态环境破坏带来的影响。
在这种情况下,太阳能成为了人们关注的重点,因为太阳能取之不尽、用之不竭,而且,太阳能的转化效率也比较高,是最为理想的一种新能源。
在太阳能系统当中,光伏组件就是其中的核心,光伏组件在长期的运行过程汇总,会出现一些影响光伏组件性能的质量问题,其中以“热斑效应”为代表,不仅影响光伏组件的使用效率,还严重地威胁到了光伏组件的使用寿命。
基于此,我们需要对光伏组件的数据进行详细的分析,分析一下出现“热斑效应”的根本原因,以及带来的影响,并且还需要进行深入的分析,制定科学合理的控制措施,以此来保证光伏组件的工作效率和工作质量,提高光伏组件的使用寿命。
一、“热斑效应”的概念在光伏组件当中,如果一串联支路出现了被遮挡、裂缝、气泡、起皮等情况,内部的连接构件也有可能出现失效的情况。
出现这种之后,通过这一串联支路的电阻就会增加,串联支路就会出现严重的发热情况,进而严重地消耗光伏组件所产生的能量,不仅如此,随着消耗能源的不断增多,串联支路的发热情况也会越来越严重,这种情况被称之为“热斑效应”。
光伏组件热斑的判断标准可能因具体标准制定机构或行业规范的不同而有所差异。
一般来说,光伏组件在正常工作时的温度为30℃时,局部温度高于周边温度6.5℃时,可认为组件局部为热斑区域。
然而,这并不是绝对的,因为热斑检测会受到辐照度、组件输出功率、环境温度及组件工作温度、热斑形成原因等因素的影响。
为了确定太阳电池组件承受热斑加热效应的能力,可进行热斑耐受试验。
试验后,太阳电池的输出功率下降不应超过额定功率的10%,太阳电池组件应无变形或损坏。
以上信息仅供参考,建议咨询专业人士获取更准确的信息。
光伏组件热斑效应简析一、什么是光伏组件的热斑效应在一定的条件下,光伏组件中缺陷区域(被遮挡、裂纹、气泡、脱层、脏污、内部连接失效等)被当做负载消耗其它区域所产生的能量,导致局部过热,这种现象称为光伏组件的“热斑效应”。
二、光伏组件热斑效应的危害热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。
三、光伏组件热斑检测1、检测工具热成像仪:红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。
通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。
2、检测方法在一定的辐照度下,用热成像仪对运行中的光伏组件进行热斑检测,检测前尽量保证光伏组件表面无脏污及异物遮挡,同时还要注意勿使身体及检测仪遮挡光伏组件;检测仪器距离光伏组件不能太近,避免热(红外)相机捕捉到组件发射的太阳光点而造成误判断。
热斑检测最好在春末、夏季、秋初的上午11时---下午16时之间的时间段内进行,由于区域原因而导致辐照度、环境温度等的不同,热斑检测的最佳时间段也会相应不同。
3、热斑判断一般情况下认为:光伏组件在正常工作时的温度为30℃时,局部温度高于周边温度6.5℃时,可认为组件局部为热斑区域。
不过这也不是绝对的,因为热斑检测会受到辐照度、组件输出功率、环境温度及组件工作温度、热斑形成原因等因素的影响,因而判断热斑效应最好是以热成像仪图像上的数据分析为准。
(以下图片为组件局部的热斑成像)(1)异物长时间遮挡的热斑成像(2)组件烧损处的热斑成像(3)组件裂纹处的热斑成像(4)其他原因造成的热斑成像注:相同或不同原因导致的热斑形状都不是固定的四、解决热斑效应问题的方法1、在组件上加装旁路二极管。
太阳能光伏组件致命伤害-热斑效应2012-04-23 14:43:38 北极星太阳能光伏网微博评论浏览次数:177字号:T|T随着社会对能源的需求量越来越大,"能源安全危机"的问题也愈发突显。
对此,经济和社会学家舍尔赫尔曼曾提出"阳光型世界经济"的概念,指出利用阳光型能源和阳光型原材料即可再生能源来满足人类对能源和原材料的总体需求,可为世界经济发展提供一个可持续增长的长远战略和出路。
因此,开发利用可再生能源、实现能源工业可持续发展的任务更加迫切,更具深远的意义。
太阳辐射能具有取之不尽、用之不竭、无污染、廉价、能够自由利用等特点,引起了人们对研究太阳电池的浓厚兴趣。
太阳电池具有质量轻、使用安全、不污染环境、工作时不产生热量等优点,是一种电压稳定性良好的纯直流电源。
近年来,太阳电池应用于太阳光发电的技术已经取得了很大进展,很可能成为人类未来主要电力来源之一。
因此,太阳电池的研究有极其重要的意义。
随着太阳电池的广泛应用,一些影响电池寿命的不利因素也出现在我们面前。
热斑就是其中之一。
一、热斑的成因太阳电池热斑是指太阳电池组件在阳光照射下,由于部分组件受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑,如图1所示。
热斑可能导致整个电池组件损坏,造成损失。
因此,需要研究造成热斑的内在原因,从而减小热斑形成的可能性。
太阳电池热斑的形成主要由两个内在因素构成,分别与内阻和太阳电池自身暗电流大小有关。
图1太阳组件出现热斑损坏的实验照片通常简化假定其温度取决于下列几个主要因素:日照强度L、环境温度T,以及内阻产生的温升Ti,组件温度(阵列温度)T可近似地按下式计算:式中:L=0,Ts=0,Ti=0时阵列的温度;To、a1、a2为根据实验数据按最小二乘法处理后所得的系数,与所使用的太阳电池的类型、安装地点、支架形式等因素都有关系。
由式(1)可见,当光伏阵列中太阳电池被云、树叶或其它物体遮挡时,由于光照的变化,其温度将明显不同于阵列中那些未被遮挡的部分。
光伏组件热斑效应简析一、什么是光伏组件的热斑效应在一定的条件下,光伏组件中缺陷区域(被遮挡、裂纹、气泡、脱层、脏污、内部连接失效等)被当做负载消耗其它区域所产生的能量,导致局部过热,这种现象称为光伏组件的“热斑效应”。
二、光伏组件热斑效应的危害热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。
三、光伏组件热斑检测1、检测工具热成像仪:红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。
通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。
2、检测方法在一定的辐照度下,用热成像仪对运行中的光伏组件进行热斑检测,检测前尽量保证光伏组件表面无脏污及异物遮挡,同时还要注意勿使身体及检测仪遮挡光伏组件;检测仪器距离光伏组件不能太近,避免热(红外)相机捕捉到组件发射的太阳光点而造成误判断。
热斑检测最好在春末、夏季、秋初的上午11时---下午16时之间的时间段内进行,由于区域原因而导致辐照度、环境温度等的不同,热斑检测的最佳时间段也会相应不同。
3、热斑判断一般情况下认为:光伏组件在正常工作时的温度为30℃时,局部温度高于周边温度6.5℃时,可认为组件局部为热斑区域。
不过这也不是绝对的,因为热斑检测会受到辐照度、组件输出功率、环境温度及组件工作温度、热斑形成原因等因素的影响,因而判断热斑效应最好是以热成像仪图像上的数据分析为准。
(以下图片为组件局部的热斑成像)(1)异物长时间遮挡的热斑成像(2)组件烧损处的热斑成像(3)组件裂纹处的热斑成像(4)其他原因造成的热斑成像注:相同或不同原因导致的热斑形状都不是固定的四、解决热斑效应问题的方法1、在组件上加装旁路二极管。
热斑效应的分析在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。
被遮蔽的太阳电池组件此时会发热,这就是热斑效应。
这种效应能严重的破坏太阳电池。
有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。
为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。
孤岛效应:太阳能发电系统与市电系统并联供电时,当市电发生故障系统未能及时检知并切离市电系统,而产生独立供电现象。
一旦发生孤岛运转现象时,会造成人员受伤与设备之损坏,故系统设计须具备该效应侦测保护功能。
改善的方法就是采用“反孤岛检测”。
太阳电池组件热斑效应介绍及检测方法:太阳电池组件通常安装在地域开阔、阳光充足的地带。
在长期使用中难免落上飞鸟、尘土、落叶等遮挡物,这些遮挡物在太阳电池组件上就形成了阴影,在大型太阳电池组件方针中行间距不适合也能互相形成阴影。
由于局部阴影的存在,太阳电池组件中某些电池单片的电流、电压发生了变化。
其结果使太阳电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升。
太阳电池组件中某些电池单片本身缺陷也可能使组件在工作时局部发热,这种现象叫“热斑效应”。
在实际使用太阳电池中,若热斑效应产生的温度超过了一定极限将会使电池组件上的焊点熔化并毁坏栅线,从而导致整个太阳电池组件的报废。
据国外权威统计,热斑效应使太阳电池组件的实际使用寿命至少减少10%。
热斑现象是不可避免的,尽管太阳电池组件安装时都要考虑阴影的影响,并加配保护装置以减少热斑的影响。
为表明太阳电池能够在规定的条件下长期使用,需通过合理的时间和过程对太阳电池组件进行检测,确定其承受热斑加热效应的能力。
确定太阳电池组件承受热斑加热能力的检测试验叫“热斑耐久试验”。
热斑耐久试验过程需严格遵循国际标准IEC 61215-2005,试验内容大致如下:1. 装置(1)辐照源1,稳态太阳模拟器或自然光,辐照度不低于700W/㎡,不均匀度不超过±2%,瞬时不稳定度在±5%以内。
对于光伏组件,这两个效应你不可忽视!光伏组件作为光伏发电系统中的核心组成部分,质量问题重点影响着电站系统效率,其中,热斑效应和PID效应对光伏组件功率的影响尤其突出,不容忽视。
热斑效应热斑效应是指在一定条件下,串联支路中被遮蔽的光伏组件将当做负载,消耗其他被光照的电池组件所产生的能量,被遮挡的光伏电池组件此时将会发热的现象。
被遮挡的光伏组件、将会消耗有光照的光伏组件所产生的部分能量或所有能量,降低输出功率;严重将会永久性破坏光伏组件、甚至烧毁组件。
产生的原因1.造成热斑效应的根源是有个别坏电池的混入、电极焊片虚焊、电池由裂纹演变为破碎、个别电池特性变坏、电池局部受到阴影遮挡等。
2.由于局部阴影的存在,光伏组件中某些电池单片的电流、电压发生了变化。
其结果使电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升。
防护措施在光伏电池组件的正负极间并联一个旁路二极管,以增加方阵的可靠性。
通常情况下,旁路二极管处于反偏压,不影响组件正常工作。
其原理是当一个电池被遮挡时,其他电池促其反偏成为大电阻,此时二极管导通,总电池中超过被遮电池光生电流的部分被二极管分流,从而避免被遮电池过热损坏。
以避免光照组件所产生的能量被受遮蔽的组件所消耗。
PID效应电位诱发衰减效应(PID,PotentialInducedDegradation)是电池组件长期在高电压作用下,使玻璃、封装材料之间存在漏电流,大量电荷狙击在电池片表面,使得电池表面的钝化效果恶化,导致组件性能低于设计标准。
PID现象严重时,会引起一块光伏组件功率衰减50%以上,从而影响整个组串的功率输出。
高温、高湿、高盐碱的沿海地区最易发生PID现象。
产生的原因1.系统设计原因:光伏电站的防雷接地是通过将方阵边缘的组件边框接地实现的,这就造成在单个组件和边框之间形成偏压,组件所处偏压越高则发生PID现象越严重。
对于P型晶硅组件,通过有变压器的逆变器负极接地,消除组件边框相对于电池片的正向偏压会有效的预防PID现象的发生,但逆变器负极接地会增加相应的系统建设成本;2.光伏组件原因:高温、高湿的外界环境使得电池片和接地边框之间形成漏电流,封装材料、背板、玻璃和边框之间形成了漏电流通道。
在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。
被遮蔽的太阳电池组件此时会发热,这就是热斑效应。
这种效应能严重的破坏太阳电池。
有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。
为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。
太阳电池组件通常安装在地域开阔、阳光充足的地带。
在长期使用中难免落上飞鸟、尘土、落叶等遮挡物,这些遮挡物在太阳电池组件上就形成了阴影,在大型太阳电池组件方阵中行间距不适合也能互相形成阴影。
由于局部阴影的存在,太阳电池组件中某些电池单片的电流、电压发生了变化。
其结果使太阳电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升。
太阳电池组件中某些电池单片本身缺陷也可能使组件在工作时局部发热,这种现象叫“热斑效应”。
在实际使用太阳电池中,若热斑效应产生的温度超过了一定极限将会使电池组件上的焊点熔化并毁坏栅线,从而导致整个太阳电池组件的报废。
据国外权威统计,热斑效应使太阳电池组件的实际使用寿命至少减少10%。
热斑现象是不可避免的,尽管太阳电池组件安装时都要考虑阴影的影响,并加配保护装置以减少热斑的影响。
为表明太阳电池能够在规定的条件下长期使用,需通过合理的时间和过程对太阳电池组件进行检测,确定其承受热斑加热效应的能力。
在实际应用中,太阳能电池一般是由多块电池组件串联或并联起来,以获得所期望的电压或电流的。
为了达到较高的光电转换效率,电池组件中的每一块电池片都须具有相似的特性。
在使用过程中,可能出现一个或一组电池不匹配,如:出现裂纹、内部连接失效或遮光等情况,导致其特性与整体不谐调。
在合理的光照条件下,一串联支路中被遮蔽的光伏电池,会由发电单元变为耗电单元,被遮蔽的光伏电池不但对组件输出没有贡献,而且会消耗其它电池产生的电力,此时会发热,这就是热斑效应。
编者按:分布式光伏电站在并网运行期间,光伏组件因长期在户外裸漏,受到局部阴影后会使光伏组件局部温度升高产生热斑效应,影响发电功率,甚至寿命缩短30%,因此需要注重相关预防措施。
光伏组件热斑效应是众多人经常听说到的,分布式光伏电站在并网运行期间,因长期在户外裸漏难免会出现颗粒灰尘堆积、禽鸟粪便、落叶杂草等情况,对光伏组件表面遮挡,不仅影响光伏发电功率及发电量,而且光伏组件受到局部阴影后会使光伏组件局部温度升高,才会产生热斑效应。
然而这样的热斑效益不仅仅对发电功率影响,而且长期不及时清理对光伏组件使用寿命也有很大影响,严重情况也是引起火灾的源头。
光伏电站的热斑效应会直接导致光伏组件使用寿命缩短30%,长此以往可能会造成组件失效。
面对热斑效应光伏组件自身有预防措施:一般组件接线盒内都加装旁路二极管,当光伏组件出现热斑情况时候接线盒内部二极管开始工作,直接将遮挡部分整串电池屏蔽,然而此
时就间接损失被遮挡组串电池功率输出。
此时光伏电站整个回路每一片光伏组件功率都会因此损失了功率。
并不是损失某一块组件功率。
所以在光伏电站运行后应经常检查光伏组件表面是否有异物或局部遮挡情况出现,如发现应及时清除。
原标题:光伏电站中组件“热斑效应”带来危害。
光伏组件热斑效应
光伏组件的热斑效应(hot spot effect)是指在太阳能光伏组件中,当部分电池片或电池串联子串受到阴影覆盖或损坏时,可能导致热点形成的现象。
热斑效应可能对光伏组件的性能和可靠性产生负面影响。
热斑效应的原因是当部分电池片受到阴影覆盖或损坏时,这些受影响的电池片将无法产生有效的电流,而串联电路中的其他电池片将迫使电流通过这些受影响的电池片。
这会导致热斑效应,即受影响的电池片会成为高阻抗区域,而其他正常工作的电池片会通过这些区域产生的电流导致局部热点的形成。
热斑效应可能会导致以下问题:
1. 热损失:热斑区域产生的额外热量会导致局部温度升高,从而导致组件效率下降。
2. 功率损失:受影响的电池片无法产生有效的电流,从而导致整个光伏组件的功率下降。
3. 组件寿命影响:热斑效应可能会导致受影响的电池片或组件的寿命缩短。
为了减轻热斑效应的影响,光伏组件制造商通常采取以下措施:
1. 防护措施:通过使用遮挡物(如反射板、背板)或保护性覆盖层来减少阴影对电池片的影响,从而降低热斑效应的发生。
2. 电池片布置优化:通过合理布置电池片,使受影响的电池片数量最小化,减少热斑效应的潜在影响。
3. 热管理:采取适当的散热措施,如散热板、散热背板、风扇等,以帮助散热并降低热斑效应引起的温度升高。
需要注意的是,热斑效应的严重程度取决于阴影的位置和大小、光伏组件的设计和制造质量等因素。
定期的检测、维护和监控对于及时发现和解决热斑效应问题也非常重要。
光伏组件的热斑效应和试验方法光伏电池是将太阳光辐射能量直接转换成电能的器件。
单个硅晶体光伏电池能得到的最大电压约为0.6V,最大电流约为30mA/cm2。
因此光伏电池很少单个使用,而是串联或并联起来,以获得所期望的电压或电流。
光伏组件正是由多个光伏电池连接和封装而成的产品,是光伏发电系统中电池方阵的基本单元。
为了达到较高转换效率,光伏组件中的单体电池须具有相似的特性。
在实际使用过程中,可能出现电池裂纹或不匹配、内部连接失效、局部被遮光或弄脏等情况,导致一个或一组电池的特性与整体不谐调。
失谐电池不但对组件输出没有贡献,而且会消耗其他电池产生的能量,导致局部过热。
这种现象称为热斑效应。
当组件被短路时,内部功率消耗最大,热斑效应也最严重。
热斑效应原理当然,并不是所有的电池都可以通过调整遮光比例达到最佳阻抗匹配。
完全遮光情况下,不同特性的Y电池I-V曲线如图3所示。
斜率越低,表明电池的并联电阻越大。
考虑(S-1)个电池串的最大输出功率点所限定的“试验界限”,根据I-V 曲线与“试验界限”的交点,把电池分为电压限制型(A类)和电流限制型(B 类)。
A类电池并联电阻较大,可以通过减少遮光面积,达到最佳阻抗比配;B 类电池的并联电阻较小,完全遮光已是Y电池消耗功率最大的状态。
热斑耐久试验热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。
因此,IEC 61215:2005《地面用晶体硅光伏组件设计鉴定和定性》专门设置了热斑耐久试验,以考核光伏组件经受热斑加热效应的能力。
热斑耐久试验过程包括最坏情况的确定、5小时热斑试验以及试验后的诊断测量,分为以下4个步骤。
1、选定最差电池由于受到检测时间和成本的限制,热斑耐久试验不能针对组件中的每一个电池进行。
因此,正式试验之前先比较和选择热斑加热效应最显著的电池。
具体方法是,在一定光照条件下,将组件短路,依次遮挡每个电池,被遮光后稳定温度最高者为最差电池片。
太阳能光伏组件致命伤害-热斑效应
之一。
因此,太阳电池的研究有极其重要的意义。
随着太阳电池的广泛应用,一些影响电池寿命的不利因素也出现在我们面前。
热斑就是其中之一。
一、热斑的成因
太阳电池热斑是指太阳电池组件在阳光照射下,由于部分组件受到遮挡无法工作,使得被遮盖的部分升温远远大于未被遮盖部分,致使温度过高出现烧坏的暗斑,如图1所示。
热斑可能导致整个电池组件损坏,造成损失。
因此,需要研究造成热斑的内在原因,从而减小热斑形成的可能性。
太阳电池热斑的形成主要由两个内在因素构成,分别与内阻和太阳电池自身暗电流大小有关。
图1太阳组件出现热斑损坏的实验照片
通常简化假定其温度取决于下列几个主要因素:日照强度L、环境温度T,
以及内阻产生的温升Ti,组件温度(阵列温度)T可近似地按下式计算:
式中:L=0,Ts=0,Ti=0时阵列的温度;To、a1、a2为根据实验数据按最小二乘法处理后所得的系数,与所使用的太阳电池的类型、安装地点、支架形式等因素都有关系。
由式(1)可见,当光伏阵列中太阳电池被云、树叶或其它物体遮挡时,由于光照的变化,其温度将明显不同于阵列中那些未被遮挡的部分。
同样,当光伏电池处于开路、短路或典型负载等不同工作状态时,由于流过的电流和内阻均有变化,其温度亦有所不同。
当太阳电池组件中部分电池损坏时,其温度差异将更加明显。
二、热斑与暗电流的关系
由于一个太阳电池组件一般包含36或72块太阳电池硅片,不同的硅片的暗电流是不一样的,由图2所示太阳电池简略示意图可分析如下。