著名外国数学家生卒年表
- 格式:pps
- 大小:88.50 KB
- 文档页数:1
世界十大数学家1. 爱因斯坦(Albert Einstein, 1879-1955):爱因斯坦是世界著名物理学家,是现代物理的创始人之一。
他的理论有广阔的应用,包括狭义相对论、广义相对论、光电效应和波粒二象性。
在他的余生中,他致力于寻找一个统一的理论,以解释宇宙的复杂性。
2. 牛顿(Isaac Newton,1642-1727):牛顿是一位由伟大的科学家、物理学家、数学家和哲学家。
他的工作包括三大方面:运动规律、万有引力定律和微积分。
他创建了高级代数的原始形式,并证明两个不同的平面几何系可以用同一幅图表示。
3. 高斯(Carl Friedrich Gauss,1777-1855):高斯是一位德国数学家和物理学家,他被称为“所有时代中最伟大的数学家之一”。
他是一位多产的数学家,在数学中取得了很多创新,在统计学和电磁学中也有许多成就。
4. 柯西(Augustin-Louis Cauchy,1789-1857):柯西是一位法国数学家和物理学家,是现代分析学的奠基人之一。
他是少数成就了分析学、微积分和数学物理学的数学家之一。
5. 阿基米德(Archimedes of Syracuse,287BC-212BC):阿基米德是一位古希腊物理学家、数学家和工程师。
他被认为是其时代最卓越的数学家之一。
他的重要发现包括浮力、杠杆原理、和圆的周长和面积。
6. 狄利克雷(Johann Peter Gustav LejeuneDirichlet,1805-1859):狄利克雷是一位德国数学家,他对于现代数学的发展做出了很多贡献。
他为数学分析奠定了基础,并缔造了关于调和级数、导数和微积分的很多理论。
7. 拉格朗日(Joseph Louis Lagrange,1736-1813):拉格朗日是一位意大利数学家和物理学家,他被认为是机械物理学的奠基人之一。
他创造了静力学,提出了著名的拉格朗日方程,并建立了变分法。
8. 基尔霍夫(Gustav Robert Kirchhoff,1824-1887):基尔霍夫是德国数学家,他的工作在电学和热力学领域发展中起了关键性作用。
世界十大数学家简介1.亚历山大里亚的欧几里得:Ευκλειδης,约公元前330年—前275年,,被称为“几何之父”;他活跃于前323年-前283年时期的亚历山大里亚,他最著名的著作是的基础,提出五大公设,发展,被广泛的认为是历史上最成功的教科书;欧几里得也写了一些关于、、及的作品;2.刘徽生于公元250年左右山东人,中国古代伟大的数学家;他的杰作九章算术注和海岛算经是我国最宝贵的数学遗产;刘徽是世界上最早提出十进小数概念的人,他正确地提出了正负数的概念及其加减运算的规则;提出了“割圆术”,并用“割圆术”求出圆周率π为;刘徽在割园术中提出的“割之弥细,所失弥少,割之又割以至于不可割,则与园合体而无所失矣”被视为中国古代极限观念的佳作;3.秦九韶公元1202-1261,字道古,人;秦九韶与、、并称;宋淳祜四至七年1244至1247,他在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了闻名的巨著数书九章,并创造了“”;这不仅在当时处于世界领先地位,在近代数学和现代电子计算设计中,也起到了重要作用,被称为“中国剩余定理”;他所论的“正负开方术”,被称为“秦九韶程序”;现在,世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则;秦九韶在数学方面的研究成果,比英国数学家取得的成果要早800多年;4.勒奈·笛卡尔Rene Descartes,1596年3月31日生于城;笛卡尔是伟大的家、物理学家、数学家、生理学家;笛卡尔最杰出的成就是在数学发展上创立了解析几何学;在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位;笛卡儿致力于代数和几何联系起来的研究,于1637年,在创立了坐标系后,成功地创立了解析几何学;他的这一成就为的创立奠定了基础;解析几何直到现在仍是重要的数学方法之一;5.费马Pierre de Fermat,1601~1665法国著名数学家,被誉为“之王”;他是解析几何的发明者之一;对于微积分诞生的贡献仅次于艾萨克·牛顿、戈特弗里德·威廉·凡·莱布尼茨,概率论的主要创始人,以及独承17世纪数论天地的人;6.戈特弗里德·威廉·凡·莱布尼茨Gottfriend Wilhelm von Leibniz,1646年7月1日~1716年11月14日最重要的家、家、家、历史学家和家,一位举世罕见的科学天才,和1643年1月4日—1727年3月31日同为的创建人;他博览群书,涉猎百科,对丰富人类的科学知识宝库做出了不可磨灭的贡献;7. Leonhard Euler,1707-1783,1707年出生在的城;18世纪最优秀的,也是历史上最伟大的数学家之一,被称为“分析的化身”;欧拉的结果分散在数学的各个领域里,几乎在数学每个领域都可以看见欧拉的名字,以欧拉命名的定理、公式、函数等不计其数,其中有:欧拉、欧拉、欧拉、欧拉、欧拉8.约瑟夫·路易斯·拉格朗日Joseph-Louis Lagrange 1735~1813、;1736年1月25日生于,1813年4月10日卒于;他在、和三个学科领域中都有历史性的贡献,他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用.使数学的独立性更为清楚,而不仅是其他学科的工具.9.Johann Carl Friedrich Gauss1777年4月30日—1855年2月23日,生于不伦瑞克,卒于哥廷根,德国著名数学家、物理学家、天文学家、大地测量学家;高斯的成就遍及数学的各个领域,在、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献;他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究;10.希尔伯特,D.,David,1862~1943德国著名数学家;他于1900年8月8日在巴黎第二届上,提出了新世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,对这些问题的研究有力推动了20世纪数学的发展,在世界上产生了深远的影响;希尔伯特领导的数学学派是19世纪末20世纪初数学界的一面旗帜,希尔伯特被称为“数学界的”;。
数学家简介1. 阿贝尔( Abel, 1802--1829 ) 挪威数学家生于芬诺,幼年丧父,生活贫困。
从小酷爱数学,1821年以公费考入奥斯陆的克里斯提安大学 ; 1825年公费出国留学; 1827年回国在克里斯提安大学任教,不久患肺结核病。
1829年被聘为柏林大学教授,未到任即病逝。
在阿贝尔的数学研究中,“五次方程的代数解法问题”是其重要部分。
从16世纪到18世纪的三百年间,许多数学家对这个问题进行过研究,但未得到解决。
1824年,还只有23岁的大学生阿贝尔第一次做出了“五次方程的代数解法不可能存在”的数学证明,引起了当时数学界的很大震动。
阿贝尔在数学方面的研究是多方面的。
他与德国数学家雅可比共同奠定了椭圆函数论的基础,开辟了数学上的一个新分支。
此外,他还研究了级数的性质等问题。
2. 泰勒(Taylor ,1685-1731)英国数学家生于爱德蒙顿,毕业于剑桥大学圣约翰学院。
1709年获得法学博士学位,1712年被选为英国皇家学会会员,1714-1718年担任该会的学术秘书。
他和哈雷、牛顿是亲密的朋友。
在数学方面,泰勒主要从事函数性质的研究。
他与1712年得出并于1715年发表了函数展开成级数的一般公式,被称为泰勒级数。
他研究了插值法的某些原理,引入了有限差分法,并利用这种计算方法研究了弦的横振动问题、光线通过非均匀介质的光程微分方程的确定问题等。
另外,泰勒还是一位有才华的音乐家和绘画家。
泰勒一生饱受忧愁、疾病和悲伤事件的创伤,他的两个妻子都因难产而去世,他本人也只活了短短的46年。
3. 麦克劳林(Maclaurin ,1698-1746)英国数学家生于苏格兰的基尔莫丹。
11岁进入格拉斯哥大学学习,15岁获得硕士学位。
19岁(1717年)成为阿伯丁大学的数学教授。
1719年被选为英国皇家学会会员。
1722-1726年在法国巴黎从事科学研究工作。
1724年以物理学的研究成果获得巴黎科学院的奖金。
中外著名数学家资料集天才数学家欧拉(Leonhard Euler 公元1707-1783年)欧拉1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了.1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算".欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉在数学上的建树很多,对著名的哥尼斯堡七桥问题的解答开创了图论的研究。
中外著名数学家1、韦达(1540-1603),法国数学家。
年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为政府破译敌军密码。
韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数理论研究的重大进步。
韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”。
1579年,韦达出版《应用于三角形的数学定律》2、帕斯卡(1623──1662年)是法国数学家、物理学家和哲学家.16岁的时候就发现了著名的“帕斯卡定理”,即“圆锥曲线内接六边形的三组对边的交点共线”,对射影几何学作出了重要贡献.19岁时,发明了一种能做加法和减法运算的计算器,这是世界上第一台机械式的计算机.他对连续不可分量、微分三角形、面积和重心等问题的深入研究,对微积分学的建立起到了积极的作用.帕斯卡对数学的最大贡献是创立概率论,为了解决概率论和组合分析方面的问题,帕斯卡广泛应用了算术三角形(即二项式定理系数表,西方称帕斯卡三角,我国称贾宪三角或杨辉三角),并深入研究了二项展开式的系数规律以及这个三角形的构造及其许多有趣的性质。
帕斯卡在物理学方面提出了重要的“帕斯卡定律”。
他所著《思想录》和《致乡人书》对法国散文的发展产生了重要的影响。
3、在数学史上,很难再找到如此年轻而如此有创见的数学家。
他就是出生在法国的伽罗华(1811——1832)伽罗华才华横溢,思维敏捷,十七岁时就写了一篇关于《五次方程代数解法》这个世界数学难题的论文,最先提出了近代数学的一个基本概念——“群”。
可是这篇论文被法国科学院一位目空一切的数学家丢失了。
次年,他又写了几篇数学论文送交法国科学院,不料主审人因车祸去世,论文也不知所踪。
再过两年,他被近把自己的研究再次写成简述,寄往法国科学,他去信尖锐地提醒权威们:“第一,不要因为我叫伽罗化,第二,不要因为我是大学生,”而“预先决定我对这个问题无能为力。
世界十大数学家是:1.欧几里得、2.刘微、3.秦九韶、4.笛卡尔、5.费马、6.莱布尼茨、7.欧拉、8.拉格朗日、9.高斯、10.希尔伯特1. 欧几里德(Euclid of Alexandria),希腊数学家。
约生于公元前330年,约殁于公元前260年。
欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。
欧几里德写过一本书,书名为《几何原本》(Elements)共有13卷。
这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有很大的影响。
《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。
欧几里德使用了公理化的方法。
公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。
在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。
这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。
《几何原本》是古希腊数学发展的顶峰。
欧几里得(活动于约前300-?) 古希腊数学家。
以其所著的《几何原本》(简称《原本》)闻名于世。
关于他的生平,现在知道的很少。
早年大概就学于雅典,深知柏拉图的学说。
公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。
他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。
但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。
据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。
欧几里得回答说: " 在几何里,没有专为国王铺设的大道。
" 这句话后来成为传诵千古的学习箴言。
斯托贝乌斯(约500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。
欧几里得说:给他三个钱币,因为他想在学习中获取实利。
1、洛必达(1661~1704)洛必达(Marquis de l'Hôpital,1661-1704)法国的数学家.1661年出生于法国的贵族家庭,1704年2月2日卒于巴黎。
他曾受袭侯爵衔,并在军队中担任骑兵军官,后来因为视力不佳而退出军队,转向学术方面加以研。
他早年就显露出数学才能,在他15岁时就解出帕斯卡的摆线难题,以后又解出约翰·伯努利向欧洲挑战“最速降曲线”问题。
稍后他放弃了炮兵的职务,投入更多的时间在数学上,在瑞士数学家伯努利的门下学习微积分,并成为法国新解析的主要成员。
洛必达的<<无限小分析>>(1696)一书是微积分学方面最早的教科书,在十八世纪时为一模范著作,书中创造一种算法(洛必达法则),用以寻找满足一定条件的两函数之商的极限,洛必达于前言中向莱布尼兹和伯努利致谢,特别是约翰·伯努利。
洛必达逝世之后,伯努利发表声明该法则及许多的其它发现该归功于他。
洛必达的著作尚盛行于18世纪的圆锥曲线的研究。
他最重要的著作是《阐明曲线的无穷小于分析》〔1696〕,这本书是世界上第一本系统的微积分学教科书,他由一组定义和公理出发,全面地阐述变量、无穷小量、切线、微分等概念,这对传播新创建的微积分理论起了很大的作用。
在书中第九章记载著约翰‧伯努利在1694年7月22日告诉他的一个著名定理:「洛必达法则,则求一个分式当分子和分母都趋于零时的极限的法则。
后人误以为是他的发明,故「洛必达法则」之名沿用至今。
洛必达还写作过几何,代数及力学方面的文章。
他亦计划写作一本关于积分学的教科书,但由于他过早去逝,因此这本积分学教科书未能完成。
而遗留的手稿于1720年巴黎出版,名为《圆锥曲线分析论》。
2、罗尔(Michel Rolle,1652年4月21日生于昂贝尔特-1719年11月8日卒于巴黎)是法国数学家。
出生于小店家庭,只受过初等教育,且过早结婚,年轻时贫困潦倒,靠充当公证人与律师抄录员的微薄收入养家糊口,他利用业余时间刻苦自学代数与丢番图的著作,并很有心得。
世界数学家介绍范文数学家是研究数学原理和方法的专业学者,他们对数学问题进行研究和解决,并为其他领域的科学和技术提供理论基础。
世界上有许多杰出的数学家,他们做出了重要的发现和贡献,推动了数学的发展。
以下是一些世界知名的数学家的介绍。
阿基米德(287年-212年BC):阿基米德古希腊数学家、物理学家、工程师和发明家,被认为是古代数学和物理学的奠基人之一、他对浮力、杠杆和测量等问题进行了深入研究,并开发了一种新的数学方法,无穷小和无穷大的方法。
他的著作《测圆》和《关于球和圆柱》是他最为著名的作品。
欧几里得(约公元前330年-公元前275年):欧几里得是古希腊的数学家,被誉为几何学之父。
他的著作《几何原本》对数学几何学的发展起到了重要的推动作用,被称为数学领域的一部圣经。
这本书主要涉及到平行线、角度、三角形、多边形和圆等几何概念。
古利尔莫·费尔马(1607年-1665年):费尔马是法国数学家,被誉为近代数学之神秘人物。
他在代数和几何方面的突出贡献使他成为数学史上最伟大的数学家之一、费尔马的最著名的工作是费尔马定理,它是一个三角形的最简单的特殊情况,即当n为正整数时,a^n+b^n=c^n在整数域内无解。
费尔马在书中提出了这个定理,并声称已经找到了证明,但他没有留下具体的证明方法,这个问题困扰了数学界长达几个世纪。
卡尔·弗里德里希·高斯(1777年-1855年):高斯是德国数学家、天文学家和物理学家,被公认为现代数学之父。
他在数学上的许多重要发现,如高斯消元法和高斯分布函数,对现代科学有着巨大的影响。
高斯还提供了多个领域的基础,包括数论、代数学和几何学。
亚历山大·格罗滕迪克(1844年-1912年):格罗滕迪克是德国数学家,被认为是19世纪最重要的数学家之一、他的研究覆盖了许多数学领域,如代数学、数论和几何学等。
格罗滕迪克最著名的贡献是他的数学研究方法,特别是他的研究方法和数学证明中的公理化方法。
数学史上十大数学家数学史上有许多杰出的数学家,他们通过独一无二的贡献和成就,推动了数学的发展和进步。
以下是数学史上十大数学家的简要介绍:1. 牛顿(1643-1727):艾萨克·牛顿是英国著名的数学家和物理学家,他发现了微积分的基本原理,创立了微积分学,也为经典力学打下了坚实的基础。
2. 欧拉(1707-1783):瑞士数学家欧拉是十八世纪最伟大的数学家之一。
他对数论、解析数论、解析几何和图论等领域都有重要贡献。
他创立了关于指数和对数的基本规则,并研究了无穷级数的收敛性。
3. 高斯(1777-1855):德国数学家高斯被公认为现代数学的奠基人之一。
他的贡献涵盖了数论、代数、几何和物理学等领域。
他提出了高斯消元法解决线性方程组的方法,并在几何学中发展了非欧几何学。
4. 埃尔米特(1815-1895):德国数学家埃尔米特主要研究代数和数论。
他发现了埃尔米特变换和埃尔米特矩阵,对矩阵理论和线性代数有重要贡献。
5. 庞加莱(1854-1912):法国数学家亨利·庞加莱被誉为现代数学之父,尤其在分析学、拓扑学和数论方面有深远影响。
他提出了庞加莱猜想,对拓扑学的发展做出了巨大贡献。
6. 黎曼(1826-1866):德国数学家黎曼对数论和微分几何有重要贡献。
他定义了黎曼曲面和黎曼几何,并将复变函数理论发展为复分析。
7. 库尔特(1898-1974):匈牙利数学家保罗·库尔特是现代概率论和统计学的奠基人之一。
他提出了随机矩阵理论,并在统计学中发展了极大似然估计。
8. 卡尔丹(1801-1892):法国数学家及物理学家阿达姆·卡尔丹的贡献涵盖了常微分方程和分析力学。
他发现了卡尔丹定理和卡尔丹条件,为微分方程的理论打下了重要基础。
9. 泽尔尼克(1884-1953):奥地利数学家埃德蒙·泽尔尼克主要研究泛函分析和函数论。
他发展了泛函分析的基本理论,提出了泽尔尼克引理和泽尔尼克空间。