防止汽轮机大轴弯曲技术(正式版)
- 格式:docx
- 大小:143.34 KB
- 文档页数:6
防止汽轮机大轴弯曲技术范本汽轮机大轴弯曲是一种常见的问题,可能会导致机器的失效和意外。
因此,防止汽轮机大轴弯曲是非常重要的。
本文将介绍一些防止汽轮机大轴弯曲的技术范本。
1. 合理设计大轴结构合理设计大轴的结构是防止大轴弯曲的基础。
首先,应尽量避免轴上的集中负载,将负载适当分散到整个轴上,以降低轴的应力。
其次,轴的直径和长度要符合工作负荷和转速的要求,以保证轴的刚度和强度。
2. 选择合适的材料选择合适的材料对于防止大轴弯曲非常重要。
高强度和刚性的材料可以有效地防止轴的弯曲变形。
常用的材料有高合金钢、铸钢和高强度铸铁等。
此外,还应对材料进行适当的热处理,提高其硬度和强度。
3. 加装支撑装置在大轴的设计中加装支撑装置可以有效地防止大轴的弯曲。
支撑装置的作用是增加轴的刚度,减小轴的挠度,从而防止轴弯曲。
常见的支撑装置有轴承和滑动轴承等。
在选择支撑装置时,还应根据轴的受力状况和转速要求进行合理的选择。
4. 合理安装和调整轴的位置在安装大轴时,应保证轴的安装位置和轴心线的垂直度和平行度符合要求。
同时,在安装过程中应注意避免轴的过度拉伸和弯曲变形。
在调整大轴的位置时,应根据轴的受力情况和运行条件进行合理的调整。
5. 加强轴的保养和维护定期对大轴进行保养和维护是防止大轴弯曲的重要措施之一。
保养和维护工作主要包括轴的润滑、冷却和清洁等。
适当的润滑可以减小轴的摩擦和磨损,提高轴的工作效率和寿命。
适当的冷却可以降低轴的温度,减小热膨胀和热变形的影响。
总结起来,防止汽轮机大轴弯曲的技术范本主要包括合理设计大轴结构、选择合适的材料、加装支撑装置、合理安装和调整轴的位置,以及加强轴的保养和维护。
通过采取这些措施,可以有效地减小大轴的弯曲变形,提高汽轮机的工作效率和可靠性。
防止汽轮机大轴弯曲技术防止汽轮机大轴弯曲是保证汽轮机正常运行和延长其寿命的关键技术之一。
汽轮机大轴在运行过程中会承受巨大的转矩和载荷,特别是在启动和停机过程中,由于转子与定子的热胀冷缩不一致等原因,容易引起大轴的弯曲和变形,严重影响汽轮机的正常运行和安全性。
因此,针对汽轮机大轴弯曲问题,工程师们采取了一系列的技术措施来提高汽轮机大轴的强度和刚度,保证其在运行过程中不易发生弯曲。
一、合理设计大轴结构合理的大轴结构设计是防止大轴弯曲的基础。
设计中需要考虑到转矩和载荷分布的特点,使大轴结构具有足够的强度和刚度来抵抗外部的力矩和载荷。
此外,还应注意避免设计过于复杂,影响制造难度和成本。
二、优化轴材质的选择选择合适的材料是预防大轴弯曲的重要因素。
通常情况下,汽轮机大轴采用高强度合金钢制造,如40CrNiMoA。
此外,还可以采用增加适度含碳量来提高材料的强度和硬度。
在具体选择时,需要综合考虑材料的高温性能、耐疲劳性能和焊接性能等因素。
三、加强加工工艺控制汽轮机大轴的加工工艺对防止弯曲至关重要。
在大轴的车削、磨削、淬火等加工过程中,需要严格控制加工工艺参数,避免过度热处理引起大轴的过热和变形。
此外,对于淬火工艺,要保证大轴的冷却速度均匀,避免产生过多的应力和变形。
四、采用轴端支撑技术为了增强大轴的刚度和稳定性,可以采用轴端支撑技术。
通过在大轴两端安装轴承和油膜支撑等装置,形成对大轴的支撑力,减小大轴的自由度,从而减小大轴的变形和弯曲。
此外,轴端支撑装置还可以起到减少震动和噪声的作用。
五、加强轴系刚性设计轴系刚性对于防止大轴弯曲也起着重要作用。
轴系的刚性设计包括轴承、定位环和连轴器等部件的选择和布置,以及轴系的支撑结构和刚性连接。
通过增加轴承的数量和改善轴承的布置,使轴系具有更好的支持力和刚性,能够更好地抵抗外部转矩和载荷的作用。
六、定期检测和维修定期检测和维修是防止大轴弯曲的重要手段。
通过定期的振动测试、温度测量和形状检查等手段,能够及时发现和分析大轴的变形情况,避免发现问题过晚,并采取相应的维修措施,保持大轴的良好状态。
防止汽轮机大轴弯曲技术范本汽轮机大轴弯曲是一种常见的问题,给汽轮机的运行稳定性和寿命带来了很大的威胁。
为了防止汽轮机大轴弯曲,需要采取一系列的技术措施。
本文将介绍几种常用的防止汽轮机大轴弯曲的技术范本。
1. 使用高强度材料汽轮机大轴的弯曲问题通常是由于材料的强度不足引起的。
因此,在设计和制造汽轮机大轴时,应使用高强度材料,如优质合金钢等。
高强度材料能够提供更好的抗弯曲性能,并能够承受更大的载荷。
2. 加强轴杆的支撑和固定为了增强汽轮机大轴的刚度和稳定性,需要对轴杆进行适当的支撑和固定。
可以使用支撑轮轴、筏板和弹簧等装置,将轴杆固定在相应的位置上,从而减少轴杆的挠度和变形,并防止其发生弯曲。
3. 定期进行轴杆的维护和检测定期对汽轮机大轴进行维护和检测是防止其弯曲的关键。
维护包括轴杆的润滑和清洁,确保其表面的光滑度和清洁度,减少摩擦和磨损。
同时,还应定期进行轴杆的非破坏性检测,如超声波检测和磁粉检测等,以及应力分析和振动分析,及早发现轴杆的问题,并及时采取修复措施。
4. 加强轴承和轴承座的设计轴承和轴承座是汽轮机大轴的关键部件,对防止轴杆弯曲起着至关重要的作用。
必须对轴承和轴承座进行合理的设计,以确保其具有足够的强度和刚度,能够承受汽轮机大轴的重量和运行载荷,并能够有效地分散和传递轴杆的应力和振动。
5. 提高汽轮机的运行稳定性汽轮机在运行过程中的不稳定因素也会导致大轴弯曲的发生。
为了防止大轴弯曲,需要提高汽轮机的运行稳定性。
在汽轮机设计和操作中,应充分考虑各种因素的影响,如温度变化、压力变化、负载变化等,采取相应的措施来减少这些因素对汽轮机大轴的影响,从而确保汽轮机的运行稳定性。
综上所述,防止汽轮机大轴弯曲是一个复杂的工程问题,需要从多个方面来进行考虑和解决。
通过使用高强度材料、加强轴杆的支撑和固定、定期进行轴杆的维护和检测、加强轴承和轴承座的设计以及提高汽轮机的运行稳定性等技术手段,可以有效地防止汽轮机大轴的弯曲问题的发生,提高汽轮机的运行效率和寿命。
防止汽轮机大轴弯曲事故措施防止汽轮机大轴弯曲事故措施一造成汽轮机大轴弯曲的原因1.启动中动静之间产生摩擦,使转子局部过热产生热弯曲。
2.热态启动时,冷水或冷汽进入汽缸。
3.热态启动或停机过程中轴封汽源切换不当轴封带水造成轴端局部冷却弯曲。
4.停机后盘车投入不及时。
5.停止盘车后热汽返入汽缸使上下缸温差过大。
6.机组启动条件不符合要求(主要热态启动)或操作失误。
二防止汽轮机大轴弯曲应具备和熟悉掌握的资料1.转子安装原始弯曲的最大晃动值(双振幅),新安装机组及大修后检修必须提供给运行人员大轴的原始晃动值和相位。
汽轮发电机轴系实测临界转速及正常起动运行工况各轴承的振动值。
2.正常情况下盘车电流和电流摆动值,以及相应的油温和顶轴油压。
3.正常停机过程的惰走曲线,以及相应的真空和顶轴油泵的开启时间。
紧急破坏真空停机过程的惰走曲线。
4.停机后,机组正常状态下的汽缸主要金属温度的下降曲线。
5.通流部分的轴向间隙和径向间隙。
6.记录机组起停全过程中的主要参数和状态。
停机后定时记录汽缸金属温度、大轴弯曲、盘车电流、汽缸膨胀、差胀等重要参数,直到机组下次热态启动或汽缸金属温度低于150℃为止。
三防止大轴弯曲的措施1.汽轮机冲转前必须符合下列条件,否则禁止起动。
1)大轴晃动、轴向位移、差胀、低油压和振动保护等表计显示正确并正常投入。
2)大轴弯曲不得超过原始值的0.02mm。
3)高压外缸上下内壁温差不大于50℃。
高压内缸上下内壁温差不大于35℃4)主蒸汽温度应高于高压内上缸内壁温度50~100℃以上,再热汽温度应大于中压内上缸内壁温度30℃以上,主、再热蒸汽的过热度均在50℃以上。
2.冲转前应连续盘车2~4小时(热态取大值)并尽可能避免中断停止盘车,否则必须延长盘车时间,注意大轴弯曲值的变化。
3.启动前应充分暖管疏水,加强对上、下缸温差的监视,发现异常情况应及时汇报和处理。
特别是锅炉进行水压试验后的启动。
4.选择合适的冲转参数,在启动中严密监视参数的变化应在规定范围内。
防止汽轮机大轴弯曲事故技术措施
在机组启、停过程中或正常运行时,由于汽缸变形、振动过大而引起摩擦以及热状态下汽轮机进冷水、冷汽等原因都可能导致汽轮机转子的弯曲。
为防止此类事故发生,特制订以下措施:
1
2
3
4
4.1大轴晃度值不超过原始值0.02mm,转子偏心小于0.0762mm。
4.2主蒸汽温度应至少高于汽缸最高金属温度50℃,蒸汽过热度不低于50℃
4.3转子进行充分的连续盘车,一般不少于4小时。
5、启、停及带负荷过程中,汽轮机各监视仪表都应投入,严格监视汽缸温差、胀差
6
7
真空。
8、机组在启、停和变工况运行时,应按规定曲线和技术指标控制参数变化,特别是应避免汽温大幅度快速变化。
9、高、低压加热器及除氧器的水位控制正常,能维持正常水位,水位高值报警及联锁保护完好,抽汽逆止门、危急疏水门应动作正常,关闭严密,严防向汽缸返冷水、
冷汽。
10、检查各级旁路喷水减温装置,防止阀门不严减温水进入蒸汽管道。
11
12
汽缸。
13
14
15、未及部分,按电厂运行规程和部颁反事故规定执行。
文件编号:RHD-QB-K6615 (解决方案范本系列)编辑:XXXXXX查核:XXXXXX时间:XXXXXX防止汽轮机大轴弯曲事故技术措施标准版本防止汽轮机大轴弯曲事故技术措施标准版本操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。
,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。
在机组启、停过程中或正常运行时,由于汽缸变形、振动过大而引起摩擦以及热状态下汽轮机进冷水、冷汽等原因都可能导致汽轮机转子的弯曲。
为防止此类事故发生,特制订以下措施:1、汽缸保温良好,能保证在启、停及正常运行过程中上、下缸不产生过大的温差。
2、首次启动过程中,应适当延长暖机时间,以利于全面检查,并避免潮湿的保温造成汽缸表面受热不均而变形。
3、汽轮机的监测仪表如转速表、大轴晃度表、振动表、汽缸金属温度表、轴向位移表、差胀表等必须齐全、完好、准确、可靠。
4、冲转前,必须符合下列条件,否则禁止启动:4.1大轴晃度值不超过原始值0.02mm,转子偏心小于0.0762mm。
4.2主蒸汽温度应至少高于汽缸最高金属温度50℃,蒸汽过热度不低于50℃4.3转子进行充分的连续盘车,一般不少于4小时。
5、启、停及带负荷过程中,汽轮机各监视仪表都应投入,严格监视汽缸温差、胀差和轴向位移的变化。
有专人监测振动,瓦振达到50μm报警,100μm以上时停机,严禁在临界转速下停留。
6、疏水系统应保证疏水畅通。
机组负荷在20%额定负荷以下,应开启低压调节阀后所有疏水;在10%额定负荷以下时,开启主汽阀后所有汽机本体疏水。
7、热态启动时,严格按规程选择合理的主汽参数,严格遵守操作规程。
轴封供汽温度应与汽缸金属温度匹配,轴封管道经充分疏水后方可投汽,并应先送轴封,后抽真空。
8、机组在启、停和变工况运行时,应按规定曲线和技术指标控制参数变化,特别是应避免汽温大幅度快速变化。
防止汽轮机大轴弯曲技术防止汽轮机大轴弯曲是一项重要的技术任务,因为大轴弯曲会导致汽轮机失效甚至损坏。
在汽轮机运行过程中,大轴受到来自转子的重力、转子的离心力和由于温度变化引起的热应力等多种力的作用,长期的受力会导致大轴弯曲。
下面将介绍一些常见的防止汽轮机大轴弯曲的技术措施。
1. 合理的轴承设计和选用合理的轴承设计和选用是防止大轴弯曲的关键因素之一。
轴承的选用应根据轴的负载、运行速度和工作环境等要求进行选择,以保证轴承具有足够的承载能力和稳定性。
同时,合理的轴承设计可以减小轴承对大轴的约束力,降低大轴的变形和弯曲。
2. 加强大轴的加工质量控制大轴的加工质量直接影响其使用性能和抗弯曲能力。
为了保证大轴的加工质量,需要对加工工艺进行严格的质量控制。
具体措施包括:提高车床的精度和稳定性,遵循正确的车削顺序和切削参数,严格控制刀具磨损和刀具寿命等。
3. 加强舱内附件的刚性连接汽轮机大轴上安装有多种舱内附件,如鼓风机、冷却水泵等。
这些附件的存在会增加大轴的荷载并对大轴产生额外的约束力。
为了减小附件对大轴的约束力,需要加强附件与大轴的刚性连接,采取适当的支撑和固定措施,如加强附件基座的刚性、合理安装支承和间隙等。
4. 针对大轴的温度变化采取整体热处理汽轮机运行中,大轴由于温度的变化会产生热应力,从而导致大轴发生变形和弯曲。
为了减小温度变化对大轴的影响,可以采取整体热处理的方法,通过控制热处理过程和温度来降低大轴的内部应力。
5. 加强对大轴的在线监测和维护对于汽轮机大轴,需要进行定期的在线监测和维护,及时发现和修复存在的问题,避免因轴的变形和弯曲而引发更严重的故障。
在线监测可以采用振动监测、温度监测等手段,及时获得大轴的工作状态和变化情况,为维护提供重要的依据。
综上所述,为了防止汽轮机大轴弯曲,需要从轴承设计、加工质量、舱内附件连接、温度变化和在线监测等多个方面进行综合考虑和措施实施。
通过这些技术措施的应用,可以有效地保护大轴的安全运行,延长汽轮机的使用寿命。
防止汽轮机大轴弯曲、轴瓦烧损事故技术措施Through the process agreeme nt to achieve a uni fied action policy for differe nt people, so as to coord in ate acti on, reduce bli ndn ess, and make the work orderly.编制:____________________ 审核:____________________ 批准:____________________防止汽轮机大轴弯曲、轴瓦烧损事故技术措施简介:该方案资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。
文档可直接下载或修改,使用时请详细阅读内容。
为了防止汽轮机转子弯曲和轴瓦烧损事故的发生,特提出以下重点要求:1.防止汽轮机大轴弯曲。
1.1应具备和熟悉掌握的资料。
1.1.1. 转子安装原始弯曲的最大晃动值(双振幅),最大弯曲点的轴向位置及在圆周方向的位置。
1.1.2. 大轴弯曲表测点安装位置转子的原始晃动值(双振幅),最高点在圆周方向的位置。
1.1.3. 机组正常启动过程中的波德图和实测轴系临界转速。
1.1.4. 正常情况下盘车电流和电流摆动值,以及相应的油温和顶轴油压。
1.1.5. 正常停机过程的惰走曲线,以及相应的真空和顶轴油泵的开启时间。
紧急破坏真空停机过程的惰走曲线。
1.1.6 •停机后,机组正常状态下的汽缸主要金属温度的下降曲线。
1.1.10. 通流部分的轴向间隙和径向间隙。
1.1.11. 应具有机组在各种状态下的典型启动曲线和停机曲线,并应全部纳入运行规程。
1.1.9 .记录机组启停全过程中的主要参数和状态。
停机后定时记录汽缸金属温度、大轴弯曲、盘车电流、汽缸膨胀、胀差等重要参数,直到机组下次热态启动或汽缸金属温度低于150 C为止。
1、防止汽轮机大轴弯曲事故的技术措施2.1汽轮机冲转前必须符合以下条件,否则禁止启动。
2.1.1 高压外缸上、下缸温差不超过42℃、高压内缸上、下缸温差不超过35℃。
2.1.2 主蒸汽温度至少高于汽缸最高金属温度50℃,但不超过427℃,蒸汽过热度不低于56℃。
2.2 冲转前,转子应进行充分连续盘车,一般不少于2—4小时(热态启动取大值),并应尽可能避免中间停止盘车,如发生盘车时间中断,则要延长盘车时间。
2.3 热态启动前检查停机记录,与正常停机曲线比较,发现异常情况应及时汇报处理。
2.4 机组启动前应先送汽封汽,后抽真空。
轴封汽源应与金属温度相匹配,低压轴封汽温度控制在150℃。
轴封汽管路应充分暖管、疏水,防止水或冷汽从汽封进入汽轮机。
2.5 启动升速过程中应有专人监视(测量)振动,如有异常应查明原因并处理,汽轮机升速过程中若轴振动达到0.125mm时报警、轴振动超过0.254mm应立即打闸停机,严禁硬闯临界转速或降速暖机,过临界转速时瓦盖振动超0.1mm过应立即打闸停机。
2.6 机组启动中因振动异常而停止启动后,必须经全面检查并确认机组以符合启动条件后且连续盘车不少于4小时(或大轴晃动值降至正常值时)才能再次启动,严禁盲目再次启动。
2.7 启动或低负荷时不得投入再热汽减温器喷水,减温器喷水投入时应先开启截止门,然后投入调整门,以减少截止门的冲刷。
2.7 启动过程中疏水系统投入时应注意保持凝结器水位低于疏水联箱的标高。
2.8 当主蒸汽温度过热度较低时,调速汽门的大幅度摆动,有可能引起汽轮机一定程度水冲击,此时应严密监视机组振动、胀差、轴向位移等数值,如有异常应立即打闸停机。
2.9 机组在启、停和变工况运行过程中,应按规定的曲线控制蒸汽参数的变化,主蒸汽、再热汽温的变化率及汽缸金属温度的变化率不大于规程规定,并保持一定的过热度,要避免汽温大幅度直线变化,当10分钟内汽温上升或下降达50℃时,应打闸停机。
最新整理防止汽轮机大轴弯曲技术
1机组在启动前检查偏心、蒸汽参数、盘车时间等各启动条件必须符合《集控运行技术标准》的规定,否则严禁启动。
机组在600rpm以下时,用打偏心表的方法来监视偏心。
2锅炉点火到机组并列期间,以及机组解列到高压首级金属温度或中压持环温度降到xxxx℃期间,应详细进行启、停机记录,发现异常情况及时汇报处理。
3启动前必须确认振动跳闸保护好用,否则不得启动。
4严格按《集控运行技术标准》投入轴封汽源,轴封供汽温度在规定范围内,轴封系统应充分暖管,疏水,保证轴封供汽不低于14℃的过热度。
5热态启动前应检查停机记录,并与正常停机记录比较,发现异常情况及时汇报处理。
6启动过程中严格按《集控运行技术标准》开、关各高、中压疏水,经常监视缸体上、下温差,发现异常及时汇报、分析、处理。
7启动过程中严密监视振动情况,如有异常应立即停止升速,查明原因处理,严禁硬闯临界转速或降速暖机。
8启动过程中,中速暖机结束后,必须按运行规程中规定确认高、中压缸膨胀达到要求后方可继续升速。
9机组因振动大而跳闸时,应立即破坏真空,紧急停机,同时进行停机各参数的记录。
10机组因振动大跳闸后再次启动时,必须查明原因,并经全面检查确认机组已符合启动条件,偏心恢复到原始值,再连续盘车不小于4小时后,方可再次启动,严禁盲目再次启动。
11启、停机过程中,当主蒸汽过热度较低时,主汽门、调速汽门大幅度的摆动,有可能使汽轮机产生一定程度的水冲击,此时应严密监视机组的振动、差胀、轴向位移等,超过极限应立即紧急停机。
防止汽轮机大轴弯曲事故技术措施1目的为了防止汽轮机大轴弯曲事故的放生,根据《防止电力生产重大事故的二十五项重点要求》,结合三台12MW汽轮机制定防止汽轮机大轴弯曲事故技术措施,从而规范电厂员工的运行操作和设备维护。
2范围本技术措施适用于12MW汽轮机。
3内容3.1汽轮机大轴弯曲的原因3.1.1汽轮机通流部分动静摩擦。
通流部分动静摩擦,造成转子局部过热一方面显著降低了摩擦部分的屈服极限;另一方面摩擦部分局部过热,其热膨胀受限于周围材料而产生很大压应力。
当应力超过该部位屈服极限时将发生塑性变形。
当转子温度均匀后,该部位就呈现凹面永久性弯曲。
3.1.2热状态汽轮机进冷汽冷水。
冷汽冷水进入汽缸,汽缸和转子由于上下缸温差过大而产生很大热变形。
转子热应力超过转子材料屈服极限,造成大轴弯曲。
如果在盘车状态进冷汽冷水,造成盘车中断,将加速大轴弯曲,严重时将使大轴永久弯曲。
3.1.3套装件位移。
套装转子上套装件偏斜、卡涩和产生相对位移;汽轮机断叶、强烈振动、转子产生过大弯矩等原因使套装件和大轴产生位移,都将造成汽轮机大轴弯曲。
3.1.4转子材料内应力过大。
汽轮机转子原材料不合格,存在过大内应力,在高温状态运行一段时间后,内应力逐渐释放,造成大轴弯曲。
3.1.5运行管理不当。
总结转子弯曲事故,大多数在发生、发展过程中都有领导违章指挥,运行人员违章操作,往往这是事故直接原因和事故扩大的原因。
如不具备启动条件强行启动、忽视振动、异音危害、各类原因造成汽缸进水、紧急停机拖延等违章违规造成大轴弯曲。
3.2防止大轴弯曲的措施3.2.1做好汽轮机组基础技术工作3.2.1.1转子安装原始弯曲的最大晃动值(双振幅),最大弯曲点的轴向位置及在圆周方向的位置,机组应备有安装和大修资料。
3.2.1.2大轴弯曲表测点安装位置的原始晃动值(双振幅),最高点在圆周方向的位置。
3.2.1.3机组正常起动过程中的波德图和实测轴系临界转速。
3.2.1.4正常情况下盘车电流和电流摆动值,以及相应的油温和润滑油压。
防止汽轮机大轴弯曲技术范文近年来,随着工业领域的迅猛发展,汽轮机作为一种重要的发电设备,被广泛应用于电力、石化、钢铁等行业。
然而,由于长期运行和工作条件的限制,汽轮机大轴弯曲问题成为困扰工程师和技术人员的一个难题。
因此,研究防止汽轮机大轴弯曲技术势在必行。
首先,对汽轮机大轴进行优化设计是防止其弯曲的关键。
在设计阶段,应根据汽轮机的工作条件、负载要求以及大轴的材料强度等因素进行合理的设计。
首先,应选用高强度的材料来制造大轴,以提高其抗弯曲能力。
其次,应合理设计大轴的截面形状,以增加其承载能力。
例如,将大轴设计为中空圆筒形状,可以有效减小其重量,降低自身弯曲的风险。
此外,在设计大轴支承结构时,应考虑到传力的均匀分布,减小局部载荷对大轴造成的影响。
其次,加强汽轮机大轴的材料控制是防止其弯曲的关键。
材料的选择和质量直接关系到大轴的弯曲风险。
因此,在生产制造过程中,应严格控制大轴材料的质量,并确保其符合设计要求。
一方面,可以通过对材料进行理化性能测试,以确保其力学性能满足要求。
另一方面,可以对材料进行控制冶金处理,如热处理和表面处理,以提高大轴的抗弯曲能力。
此外,还应加强对大轴材料的质量追溯和管理,确保每一根大轴都符合标准要求。
另外,在汽轮机的安装和维护过程中,应注意对大轴的保护工作。
首先,在大轴的运输和搬运过程中,应采取相应的措施,避免发生碰撞和摔落等情况。
其次,在安装大轴时,应严格按照技术规范进行操作,并使用合适的装配工具和设备,以避免外力对大轴造成的损伤。
最后,在汽轮机的维护过程中,应定期进行大轴的检测和监测。
通过使用现代的无损测试技术,如超声波探测和磁粉检测,可以及时发现并处理大轴的缺陷和损伤。
总之,防止汽轮机大轴弯曲是确保汽轮机稳定运行的重要环节。
通过对大轴的优化设计、加强材料控制以及做好保护工作,可以有效降低大轴弯曲的风险,延长汽轮机的使用寿命,并提高其运行效率和可靠性。
只有不断加强科学研究和技术创新,才能在汽轮机大轴弯曲问题上取得更好的解决效果。
In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.防止汽轮机大轴弯曲技术措施正式版防止汽轮机大轴弯曲技术措施正式版下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。
文档可以直接使用,也可根据实际需要修订后使用。
1.1 汽轮机冲转前必须检查大轴偏心度<0.076mm,大轴晃动值不超过原始值的0.02 mm。
汽轮机大修后启动时,必须用千分表在每个轴承挡油环上测量主轴的跳动量<0.0254mm。
1.2 汽缸上下缸温差(指调端高压缸上下部排汽区;中压缸上下两端排汽区)>42℃汽轮机组禁止启动。
主汽阀入口温度至少具有56℃的过热度。
1.3 机组冷、热态启动应按“启动时主蒸汽参数”、“冷态启动转子加热规程”、“热态启动推荐值”图表曲线进行。
1.4 在任何情况下,汽轮机第一级蒸汽温度不允许比第一级金属温度低56℃或高111℃。
1.5 热态启动时,应先送汽封后抽真空,汽封送汽前必须充分疏水,确认管道无水后才可向汽封送汽。
1.6 汽封供汽必须具有50℃以上的过热度,低压供汽封汽温度控制在121~180℃之间。
1.7 机组未盘车前禁止向汽封供汽。
1.8 当高、中压汽封供汽温度小于150℃或汽封供汽温度与调端高压缸端壁温差小于85℃时,检查汽封喷水应关闭。
1.9 在机组启动过程中,按“汽轮机转速保持推荐值”“冷态转子加热规程” “热态启动推荐值”曲线进行暖机,暖机时间由中压缸进汽温度达到260℃时开始计算。
防止汽轮机大轴弯曲技术1机组在启动前检查偏心、蒸汽参数、盘车时间等各启动条件必须符合《集控运行技术标准》的规定,否则严禁启动。
机组在600rpm 以下时,用打偏心表的方法来监视偏心。
2锅炉点火到机组并列期间,以及机组解列到高压首级金属温度或中压持环温度降到150℃期间,应详细进行启、停机记录,发现异常情况及时汇报处理。
3启动前必须确认振动跳闸保护好用,否则不得启动。
4严格按《集控运行技术标准》投入轴封汽源,轴封供汽温度在规定范围内,轴封系统应充分暖管,疏水,保证轴封供汽不低于14℃的过热度。
5热态启动前应检查停机记录,并与正常停机记录比较,发现异常情况及时汇报处理。
6启动过程中严格按《集控运行技术标准》开、关各高、中压疏水,经常监视缸体上、下温差,发现异常及时汇报、分析、处理。
7启动过程中严密监视振动情况,如有异常应立即停止升速,查明原因处理,严禁硬闯临界转速或降速暖机。
8启动过程中,中速暖机结束后,必须按运行规程中规定确认高、中压缸膨胀达到要求后方可继续升速。
9机组因振动大而跳闸时,应立即破坏真空,紧急停机,同时进行停机各参数的记录。
10机组因振动大跳闸后再次启动时,必须查明原因,并经全面检查确认机组已符合启动条件,偏心恢复到原始值,再连续盘车不小于4小时后,方可再次启动,严禁盲目再次启动。
11启、停机过程中,当主蒸汽过热度较低时,主汽门、调速汽门大幅度的摆动,有可能使汽轮机产生一定程度的水冲击,此时应严密监视机组的振动、差胀、轴向位移等,超过极限应立即紧急停机。
12机组在启停机变工况运行时,严格按《集控运行技术标准》规定的速率控制汽温、汽压的变化,避免汽温大幅度直线变化。
当对照其它测点后确认主、再热汽温直线下降65℃时,应立即打闸停机。
13低负荷和启、停机过程中不得投入主、再热蒸汽的减温水。
14转子静止后,应立即投入连续盘车,并严密监视盘车电流和转子偏心,当盘车电流较大摆动、盘车有异音时,应及时分析、汇报、处理,如汽缸内有明显的金属磨擦声,应立即停止连续盘车,改为定期盘车180°,如动静磨擦严重,盘车不动时,不得用任何手段进行强制盘车。
防止汽轮机大轴弯曲技术模版汽轮机大轴弯曲是一种常见的故障现象,会严重影响汽轮机的运行效率和寿命。
因此,为了防止汽轮机大轴弯曲,需要采取一系列的技术措施。
本文将介绍几种常用的防止汽轮机大轴弯曲的技术模版。
一、加强轴承润滑技术轴承润滑是防止汽轮机大轴弯曲的关键技术之一。
在轴承润滑方面,可以采取以下几种措施:1.使用高温润滑油,提高轴承的润滑性能。
高温润滑油具有较好的黏度温度特性,能够在高温环境下保持良好的润滑性能,从而减少轴承的摩擦损失和热量积累,降低大轴受热变形的风险。
2.采用润滑油冷却系统,降低轴承的工作温度。
润滑油冷却系统可以通过将冷却水或冷却空气引入轴承间隙,有效地降低轴承的工作温度,避免轴承因过热而发生变形。
3.定期检查轴承的润滑状态,及时更换润滑油。
定期检查轴承的润滑状态可以及时发现润滑油的老化和污染情况,并及时更换润滑油,保证轴承的润滑性能和运行稳定性。
二、增强轴承支撑能力技术轴承的支撑能力是防止汽轮机大轴弯曲的另一个重要因素。
在增强轴承支撑能力方面,可以采取以下几种措施:1.优化轴承结构,提高轴承刚度。
通过优化轴承结构,采用高刚度材料和精密制造工艺,提高轴承的刚度,使其能够更好地支撑大轴重量和受力,减少大轴的挠曲。
2.增加轴承的数量和布局密度。
通过增加轴承的数量和布局密度,可以使大轴获得更好的支撑和平衡力,减少大轴的弯曲和振动。
3.采用弹性轴承技术。
弹性轴承能够在汽轮机运行时对大轴进行主动的弹性支撑和平衡,减少大轴的受力变形和振动。
三、减少外界载荷技术外界载荷是导致汽轮机大轴弯曲的另一个重要原因。
在减少外界载荷方面,可以采取以下几种措施:1.降低大轴的受力工况。
在汽轮机的设计和运行过程中,要合理设计叶轮和传动装置,减少大轴的受力过程,降低大轴的弯曲风险。
2.加强大轴的支撑和固定力。
通过加强大轴的支撑和固定力,增加大轴的刚度,提高大轴抵抗外界载荷变形的能力。
3.优化汽轮机的结构和布局。
防止汽轮机大轴弯曲技术汽轮机大轴弯曲是汽轮机运行中常见的故障之一,一旦发生大轴弯曲,会导致轴承失衡,加速轴承磨损,甚至造成机械故障,严重影响汽轮机的安全运行。
为了防止汽轮机大轴弯曲,需要采取一系列的技术措施。
首先,需要保证汽轮机大轴的设计和制造质量。
大轴的设计应考虑到运行时的受力情况,合理选择材料和工艺,确保大轴具有足够的强度和刚度。
在制造过程中,需要保证轴的加工工艺精度,避免制造过程中引入的缺陷,如裂纹、非金属夹杂物等,影响轴的强度和刚性。
其次,要控制汽轮机运行中的振动和动态平衡。
振动会对大轴产生很大的冲击力,容易引起大轴弯曲。
因此,需要对汽轮机进行严格的振动监测和控制。
可以采用振动测量技术,监测和记录汽轮机运行过程中的振动情况,及时发现异常振动,并进行相应的调整和修复。
另外,在汽轮机装配和调试阶段,要对轴进行动态平衡,保证轴的平衡性能达到要求,减小轴的振动。
第三,要加强汽轮机的润滑和冷却。
润滑油在汽轮机运行中起到很重要的作用,能够减小轴承的摩擦、降低轴承的温度,并提供充足的润滑膜,减小轴承的磨损。
因此,要定期检查和更换润滑油,并保证油品的质量符合要求。
另外,要加强汽轮机的冷却,保持适当的运行温度,避免轴过热引起大轴弯曲。
最后,要加强汽轮机的运行和维修管理。
汽轮机的运行状态和维修记录应有详细的记录,定期进行轴的检查和保养,及时发现和解决潜在问题。
对于已经出现大轴弯曲的情况,要做好相关的维修和处理,采取适当的措施对轴进行修复,确保轴的强度和刚性。
综上所述,防止汽轮机大轴弯曲需要从设计、制造、运行和维修等多个方面进行全面的管理和控制。
只有全面加强汽轮机的管理和维护工作,做到各个环节的合理控制,才能有效地防止汽轮机大轴弯曲的发生,保证汽轮机的安全运行。
防止汽轮机大轴弯曲技术(二)在汽轮机运行过程中,由于各种因素的影响,特别是过载等工况下,很容易导致汽轮机大轴的弯曲。
而大轴的弯曲不仅会降低汽轮机的效率,还可能导致零部件的卡住、磨损等问题,严重影响汽轮机的安全运行。
防止汽轮机组大轴弯曲的技术措施引言汽轮机组是工业生产中常见的动力设备之一,主要包括汽轮机和发电机两部分组成。
其中,汽轮机是由高温高压的蒸汽驱动,通过转子带动发电机输出电能。
汽轮机组大轴是汽轮机组的关键部件,负责带动发电机旋转,因此其性能稳定性和安全性对整个系统的运行非常重要。
但是,由于其工作环境恶劣,大轴受到的各种外力和自身疲劳等因素容易导致其弯曲,从而影响整个汽轮机组的正常运行。
本文将探讨防止汽轮机组大轴弯曲的技术措施。
技术措施1. 选用材料优良的大轴选用材料优良的大轴可提高其抗拉强度和韧性,从而增强其承载能力和抗疲劳性。
目前,常用作汽轮机组大轴的材料主要有采用合金结构钢、锻钢等。
在选用材料的过程中,还需考虑到其热膨胀系数和热传导系数等物理性能。
热膨胀系数较大的材料将在高温环境中变形,从而使大轴弯曲;而热传导系数低的材料则容易导致冷却不均衡,从而在高温状态下轴温过高,进一步影响大轴的强度和耐久度。
2. 合理设计汽轮机组大轴大轴的设计应根据其运行环境和负荷情况来确定。
首先,需要确定大轴的几何形状和结构布局。
合理的几何形状和结构布局可提高大轴的受力均匀性和抗疲劳性。
其次,还应对大轴的镟制和加工进行控制,避免过度加工或过度镟制等造成不必要的变形。
此外,除了考虑大轴自身的设计以外,还应根据实际情况选择适当的大轴轴承和轴承座,以提高其受力均匀性和稳定性。
3. 适时的检测和维护适时的检测和维护是防止汽轮机组大轴弯曲的重要保障。
检测和维护可及时发现大轴的损伤和缺陷,避免其扩大化。
在检测和维护过程中,需要注意以下几个方面:•应定期检测大轴的状态变化,例如轴温、轴径、轴承温度等。
•发现大轴存在问题时,应立即停机处理,避免问题进一步扩大。
•检测工具要选择准确、可靠的设备,避免误差。
4. 加强工人培训和安全意识工人在维修和操作汽轮机组时需要深入了解大轴的构成和作用,并遵循操作规程,保证正确操作。
另外,加强安全意识的培养也是防止大轴弯曲的关键。
文件编号:TP-AR-L4950
In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.
(示范文本)
编订:_______________
审核:_______________
单位:_______________
防止汽轮机大轴弯曲技
术(正式版)
防止汽轮机大轴弯曲技术(正式版)
使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。
材料内容可根据实际情况作相应修改,请在使用时认真阅读。
1机组在启动前检查偏心、蒸汽参数、盘车时间等各启动条件必须符合《集控运行技术标准》的规定,否则严禁启动。
机组在600rpm以下时,用打偏心表的方法来监视偏心。
2锅炉点火到机组并列期间,以及机组解列到高压首级金属温度或中压持环温度降到150℃期间,应详细进行启、停机记录,发现异常情况及时汇报处理。
3启动前必须确认振动跳闸保护好用,否则不得启动。
4严格按《集控运行技术标准》投入轴封汽源,
轴封供汽温度在规定范围内,轴封系统应充分暖管,疏水,保证轴封供汽不低于14℃的过热度。
5热态启动前应检查停机记录,并与正常停机记录比较,发现异常情况及时汇报处理。
6启动过程中严格按《集控运行技术标准》开、关各高、中压疏水,经常监视缸体上、下温差,发现异常及时汇报、分析、处理。
7启动过程中严密监视振动情况,如有异常应立即停止升速,查明原因处理,严禁硬闯临界转速或降速暖机。
8启动过程中,中速暖机结束后,必须按运行规程中规定确认高、中压缸膨胀达到要求后方可继续升速。
9机组因振动大而跳闸时,应立即破坏真空,紧急停机,同时进行停机各参数的记录。
10机组因振动大跳闸后再次启动时,必须查明原因,并经全面检查确认机组已符合启动条件,偏心恢复到原始值,再连续盘车不小于4小时后,方可再次启动,严禁盲目再次启动。
11启、停机过程中,当主蒸汽过热度较低时,主汽门、调速汽门大幅度的摆动,有可能使汽轮机产生一定程度的水冲击,此时应严密监视机组的振动、差胀、轴向位移等,超过极限应立即紧急停机。
12机组在启停机变工况运行时,严格按《集控运行技术标准》规定的速率控制汽温、汽压的变化,避免汽温大幅度直线变化。
当对照其它测点后确认主、再热汽温直线下降65℃时,应立即打闸停机。
13低负荷和启、停机过程中不得投入主、再热蒸汽的减温水。
14转子静止后,应立即投入连续盘车,并严密
监视盘车电流和转子偏心,当盘车电流较大摆动、盘车有异音时,应及时分析、汇报、处理,如汽缸内有明显的金属磨擦声,应立即停止连续盘车,改为定期盘车180°,如动静磨擦严重,盘车不动时,不得用任何手段进行强制盘车。
15因故停止连续盘车时,应每30分钟定期手动盘车180°,如手动盘车也不能进行时,立即记录盘车停止时间,盘车能投入时先手动盘车180°,并停留相同的时间,待转子热弯曲基本消失后再进行连续盘车。
16停机后也应认真监视凝汽器、除氧器的水位,防止满水进入汽轮机造成转子冷却不均产生弯曲。
17汽轮机热态时一般情况下禁止锅炉水压试验,如必须进行试验,应检查水压堵板关闭严密情
况,在主蒸汽疏水管处加一温度监测点或通过观察主汽门前汽温变化,打水压时在主汽疏水门后割开一监测点,监视有无漏水现象,确保汽缸无进水的可能方可进行水压试验。
18对除氧器、高加、低加的水位严加监控,保证水位高保护正常投入。
19机组启动时,必须按《集控运行技术标准》规定保证56℃以上的过热度。
20当汽轮机出现进水预兆时,应严格按《集控运行技术标准》果断处理,防止事故扩大。
此处输入对应的公司或组织名字
Enter The Corresponding Company Or Organization Name Here。