过程控制与自动化仪表.
- 格式:ppt
- 大小:4.56 MB
- 文档页数:78
过程控制与自动化仪表课程设计前言过程控制与自动化仪表课程是工程领域中非常重要的基础课程之一,它涉及到工程研发、生产运营以及企业管理等多个方面。
本文将介绍一种基于实践的课程设计方法,旨在让学生深入掌握过程控制与自动化仪表的基础知识。
设计目标•确定学生对过程控制与自动化仪表的基本概念和技术掌握程度。
•培养学生的设计和实验能力,让他们能够运用所学知识分别设计并完成过程控制实验和自动化仪表实验。
•提高学生的团队合作和沟通能力,通过设计项目的过程,激发学生的创新潜力。
设计内容过程控制实验设计实验一:温度控制系统设计在该实验中,学生需要设计一个基于PID控制算法的温度控制系统。
通过调整控制器的参数,让温度快速稳定在设定值附近,并且能够在温度变化时快速响应和自适应调整。
实验二:流量控制系统设计在该实验中,学生需要设计一个基于比例控制算法的流量控制系统。
通过调整控制器的参数,让流量在设定值附近稳定,并且能够在流量变化时快速响应和自适应调整。
自动化仪表实验设计实验三:温度传感器的实现在该实验中,学生需要实现一个基于热电偶的温度传感器。
通过校准测试,让学生了解测量误差来源和校准方法。
实验四:流量计的实现在该实验中,学生需要实现一个流量计,通过实验测试让学生了解其特性和测量误差来源。
设计方法阶段一:学习基础概念和技术在本阶段,学生需要学习过程控制和自动化仪表的基础概念和技术,包括控制系统、PID控制器、量程、精度等方面的知识。
阶段二:组建设计小组在本阶段,每个小组需要选择一个相对复杂的课程设计内容,进行深入的研究和讨论,拟定初步设计方案。
阶段三:设计与实现在本阶段,学生需要分成小组,负责具体的实验设计与实现。
在设计的过程中,需要充分考虑过程控制和自动化仪表的基本原理和设计要求。
在实现的过程中,需要用到软件工具和实验平台。
阶段四:实验测试与评价在本阶段,学生需要对实验设计进行测试,并记录数据处理结果。
测试过程中需要考虑实验中的各种随机与不确定因素。
第1章(P15)1、基本练习题(1)简述过程控制的特点。
Q:1)系统由被控过程与系列化生产的自动化仪表组成;2)被控过程复杂多样,通用控制系统难以设计;3)控制方案丰富多彩,控制要求越来越高;4)控制过程大多属于慢变过程与参量控制;5)定值控制是过程控制的主要形式。
(2)什么是过程控制系统?试用框图表示其一般组成。
Q:1)过程控制是生产过程自动化的简称。
它泛指石油、化工、电力、冶金、轻工、建材、核能等工业生产中连续的或按一定周期程序进行的生产过程自动控制,是自动化技术的重要组成部分。
过程控制通常是对生产过程中的温度、压力、流量、液位、成分和物性等工艺参数进行控制,使其保持为定值或按一定规律变化,以确保产品质量和生产安全,并使生产过程按最优化目标自动进行。
2)组成框图:(3))单元组合式仪表的统一信号是如何规定的?Q:各个单元模块之间用统一的标准信号进行联络。
1)模拟仪表的信号:气动0.02~0.1MPa、电动Ⅲ型:4~20mADC或1~5V DC。
2)数字式仪表的信号:无统一标准。
(4)试将图1-2加热炉控制系统流程图用框图表示。
Q:是串级控制系统。
方块图:(5)过程控制系统的单项性能指标有哪些?各自是如何定义的?Q:1)最大偏差、超调量、衰减比、余差、调节时间、峰值时间、振荡周期和频率。
2)略(8)通常过程控制系统可分为哪几种类型?试举例说明。
Q:1)按结构不同,分为反馈控制系统、前馈控制系统、前馈-反馈复合控制系统;按设定值不同,分为定值控制系统、随动控制系统、顺序控制系统。
2)略(10)只要是防爆仪表就可以用于有爆炸危险的场所吗?为什么?Q:1)不是这样。
2)比如对安全火花型防爆仪表,还有安全等级方面的考虑等。
(11)构成安全火花型防爆系统的仪表都是安全火花型的吗?为什么?Q:1)是。
2)这是构成安全火花型防爆系统的一个条件。
2、综合练习题(1)简述图1-11所示系统的工作原理,画出控制系统的框图并写明每一框图的输入/输出变量名称和所用仪表的名称。
前言+第一章1、自动化仪表:是实现工业生产过程自动化的重要工具,它被广泛地应用于石油、化工等各工业部门。
在自动控制系统中,自动化仪表将被控变量转换成电信号或气压信号后,除了送至显示仪表进行指示和记录外,还需送到控制仪表进行自动控制,从而实现生产过程的自动化,使被控变量达到预期的要求。
2、过程控制仪表包括:检测仪表、调节仪表(也叫控制器)、执行器,以及可编程调节器等各种新型控制仪表及装置。
3、过程控制系统的主要任务是:对生产过程中的重要参数(温度、压力、流量、物位、成分、湿度等)进行控制,使其保持恒定或按一定规律变化。
4、标准信号制度:国际电工委员会规定:过程控制系统的模拟标准信号为直流电流4-20mA,直流电压1-5V。
我国DDZ型仪表采用的标准信号:DDZ-Ⅰ型和DDZ-Ⅱ型仪表:0-10mA。
DDZ-Ⅲ型仪表:4-20mA。
5、我国的DDZ型仪表采用的是直流电流信号作为标准信号。
6、采用电流信号的优点:电流不受传输线及负载电阻变化的影响,适于远距离传输。
动单元组合仪表很多是采用力平衡原理构成,使用电流信号可直接与磁场作用产生正比于信号的机械力。
对于要求电压输入的受信仪表和元件,只要在回路中串联电阻便可得到电压信号。
7、采用直流信号的优点:a.直流信号传输过程中易于和交流感应干扰相区别,且不存在移相问题;b.直流信号不受传输线中电感、电容和负载性质的限制。
8、热电偶是以热电效应为原理的测温元件,能将温度信号转换成电势信号(mV)。
特点:结构简单、测温准确可靠、信号便于远传。
一般用于测量500~1600℃之间的温度。
9、热电偶的测温原理:将两种不同的导体或半导体连接成闭合回路,若两个连接点温度不同,回路中会产生电势。
此电势称为热电势,并产生电流。
10、对于确定的热电偶,热电势只与热端和冷端温度有关。
11、热电偶的基本定律:均质导体定律、中间导体定律、中间温度定律。
12、热电阻:对于500℃以下的中、低温,热电偶输出的热电势很小,容易受到干扰而测不准。
过程控制与自动化仪表教学设计背景介绍过程控制与自动化仪表主要用于工业领域中的自动化生产控制过程中,通过仪表测量和控制来实现生产自动化管理。
因此该领域的人才非常稀缺,且在目前的技术变革中,亟需培养更多实践操作的专业人才。
据此,我们开始进行过程控制与自动化仪表课程设计。
教学目标•理解过程控制的基本概念和原理;•掌握自动化仪表的结构和原理;•学习使用自动化仪表的技术方法和步骤;•培养学生自我学习和实践操作的能力。
课程内容•过程控制基础知识介绍:包括过程控制定义、分类、控制对象、控制系统、反馈控制等基础知识;•仪表基础知识介绍:包括仪表的分类、特点、结构、使用说明以及校验方法等基础知识;•传感器与执行机构:包括传感器原理、类型、特点以及执行机构原理、构造和使用等;•仪表信号处理技术:涵盖传感器输出信号处理、信号调理与放大、数字化技术原理以及信号调制和变换等;•自动化控制:详细介绍闭环控制、开环控制、PID控制、自适应控制等方法和工业控制的核心技术。
教学方式本课程采取“理论学习+实验操作”相结合的教学方式,前期讲授理论知识,后期进行实验操作。
特别是在实验操作中,通过让学生使用仪器设备进行实际工作,提高学生的实践操作能力、分析问题的能力和创新思维。
课程评估方式•实验报告,记录实验操作过程中发现的问题和解决方案;•课堂小测验,测试学生对理论知识的掌握程度;•过程考核,考核学生对自动化仪表的掌握程度;•期末成绩,由理论考试和实验操作综合评估得出。
总结过程控制与自动化仪表已经成为现代工业生产的重要组成部分,通过本课程培养出高素质、应用型人才至关重要。
因此我们将不断完善课程内容和教学方法,全面提升学生成为实践操作的掌握者和优秀的自动化生产专业人才。
过程控制与自动化仪表1. 引言过程控制与自动化仪表是现代工业生产中不可缺少的一部分,它们在监测、控制和优化工业过程中起着重要的作用。
过程控制与自动化仪表技术的应用可以提高工业生产的效率、质量和安全性,减少人力资源的消耗,实现工业自动化。
本文将介绍过程控制与自动化仪表的基本概念、发展历程以及在工业生产中的应用。
同时还会讨论一些常见的过程控制与自动化仪表的类型和工作原理,以及它们在不同行业中的具体应用案例。
2. 过程控制与自动化仪表基本概念过程控制与自动化仪表是指一系列用于监测、控制和调节工业过程的设备和系统。
它们可以通过测量和分析过程变量,控制工艺参数并实现自动化控制。
通过使用合适的传感器、执行器和控制算法,可以实现对工业过程的精密控制和优化。
过程控制与自动化仪表主要由以下几个组成部分构成:•传感器:用于测量各种物理量,如温度、压力、流量等;•控制器:根据传感器测量值和设定值进行逻辑运算,生成控制信号;•执行器:接收控制信号,并执行相应的动作,如开关、阀门等;•监控系统:用于监视和记录工业过程中的各种参数和状态;•人机界面:提供工业过程的可视化显示和人机交互界面。
3. 过程控制与自动化仪表的发展历程过程控制与自动化仪表的发展可以追溯到工业革命时期。
在工业革命之前,工业生产主要依靠人工操作,效率低下且易出错。
随着机械设备和工业化的发展,工业生产越来越复杂,对自动化控制的需求也越来越迫切。
20世纪初,工程师们开始研究和开发过程控制与自动化仪表技术。
最早的控制系统是基于机械和电气设备的。
随着电子技术的发展,电子仪表逐渐取代了机械仪表,实现了对工业过程更加精确的控制。
到了20世纪中叶,随着计算机技术的进一步发展,数字化控制系统开始应用于工业生产。
数字化控制系统通过采集和处理大量数据,实现了对工业过程的智能化控制,并提高了系统的可靠性和稳定性。
近年来,随着互联网和物联网技术的快速发展,过程控制与自动化仪表也越来越趋向于网络化和智能化。
自动化仪表与过程控制第六版答案0-1自动化仪表是指哪一类仪表?什么叫单元组合式仪表?自动化仪表:是由若干自动化元件构成的,具有较完善功能的自动化技术工具单元组合式调节仪表:由具有不同功能的若干单元仪表按调节系统具体要求组合而成的自动调节仪表0-2 DDZ-I型与DDZ-I型仪表的电压,电流信号输出标准是什么?在现场与控制室之间采用直流电流传输信号有什么好处?P5第二段0-3什么叫两线制变送器?它与传统的四线制变送器相比有什么优点?试举例画出两线制变送器的基本结构,说明其必要的组成部分?P5~60-4什么是仪表的精确度﹖试问一台量程为-100~100C,精确度为0.5级的测量仪表,在量程范围内的最大误差为多少?一般选用相对误差评定,看相对百分比,相对误差越小精度越高x/(100+100)=0.5% x=1摄氏度1-1试述热电偶的测温原理,工业上常用的测温热电偶有哪几种?什么叫热电偶的分度号?在什么情况下要使用补偿导线?答:a、当两种不同的导体或半导体连接成闭合回路时,若两个接点温度不同,回路中就会出现热电动势,并产生电流。
b、铂极其合金,镍铬-镍硅,镍铬-康铜,铜-康铜。
c、分度号是用来反应温度传感器在测量温度范围内温度变化为传感器电压或电阻值变化的标准数列。
d、在电路中引入一个随冷端温度变化的附加电动势时,自动补偿冷端温度变化,以保证测量精度,为了节约,作为热偶丝在低温区的替代品。
1-2热电阻测温有什么特点?为什么热电阻要用三线接法?答: a、在-200到+500摄氏度范围内精度高,性能稳定可靠,不需要冷端温度补偿,测温范围比热电偶低,存在非线性。
b、连接导线为铜线,环境温度变化,则阻值变,若采用平衡电桥三线连接,连线R使桥路电阻变化相同,则桥路的输出不变,即确保检流计的输出为被测温度的输出。
1-3说明热电偶温度变送器的基本结构,工作原理以及实现冷端温度补偿的方法。
在什么情况下要做零点迁移?答:a、结构:其核心是一个直流低电平电压-电流变换器,大体上都可分为输入电路、放大电路及反馈电路三部分。
1, 测量温度的方法:接触式,非接触式。
2, 热电偶:当两种不同导体货半导体连接成闭合回路时,若两个节点温度不同,回路中就会出现热电动势并产生电流。
3, 第三导体定律:除热电偶A, B两种导体外,又插入第三种导体C组合成闭合回路,只要插入的第三种导体的两个接点温度相等,它的接入对回路毫无影响。
4, 测量某一点压力及大气压力之差,当这点的压力高于大气压力时,此差值称为表压。
5, 利用弹性元件受压产生变形可以测量压力。
常用的弹性测压元件有:弹簧管(常用), 水纹管及膜片三类。
6, 流量检测仪表:节流式流量计(在管道中放入肯定的节流元件,依据节流元件的推力或在节流元件前后形成的压差测量)分为:压差, 靶式, 转子流量计。
7, 热导式气体分析仪是一种物理式的气体分析仪。
依据不同气体具有不同的热传导实力这一特性,通过测定混合气体的导热系数,推算出其中某些成分含量。
(0度时H2为7.150,He为7.150)8, 调整器的作用:把测量值和给定值进行比较,依据偏差大小,按肯定的调整规律产生输出信号,推动执行器,对生产过程进行自动调整。
9, 调整规律:他的输出量及输入量(偏差信号)之间具有什么样的函数关系。
10, 比例调整特点:对干扰有及时而有力的抑制作用,但存在静态误差,是一种静差调整。
11, 积分调整特点:能够消退静差,即当有偏差存在时积分输出将随时间变化,当偏差消逝时输出能保持在某一值上不变。
但动作过于缓慢,过渡过程时间长,易造成系统不稳定。
12, 微分调整器:能在偏差信号出现或变化瞬间,马上依据变化趋势,产生调整作用,是偏差尽快的消退于萌芽状态之中。
但对静态片差毫无抑制实力,不能单独运用。
13, 在PID三作用调整器中,微分作用主要爱用来加快系统动作速度,削减超调,克服震荡。
积分作用主要用来消退静态误差。
将比例, 积分, 微分三种调整规律结合在一起,即可达到快速灵敏,又可达到平稳精确,只要协作得当便可得到满足的调整效果。
过程控制与自动化仪表第三版课程设计一、设计背景与意义随着现代工业的飞速发展,过程控制与自动化仪表的应用在工业生产中变得越来越普遍,技术的更新换代也要求掌握这方面的知识是现代化生产必不可少的一部分。
因此,针对这一需求,我们决定设计一门《过程控制与自动化仪表》的课程,以培养具备相关专业知识和技能的工程技术人才。
二、课程设计思路本课程设计以国内外先进课程为基础,紧密结合国内过程控制与自动化仪表行业的需求,和学生们的实际情况,制定一套科学系统的教学计划,通过理论讲解、案例分析和实践操作等形式,培养学生的实际操作能力和分析问题的能力,让学生们逐步了解和掌握过程控制和自动化仪表的原理和设计方法,推动他们在今后的学习和工作中不断提高。
三、课程教学内容1. 过程控制基础通过本章节的学习,学生们将了解控制系统的概念,基本组成部分和基本控制原理,学习一些过程控制的基本概念,如静态误差、动态响应等,同时引入PID控制,让学生们初步了解和掌握PID调节器。
2. 自动化仪表本章节主要介绍自动化仪表的原理和设计方法,包括温度测量、压力测量、流量测量等,让学生们通过理论学习和实验操作来了解仪表参数和调整方法,同时也重点讲解了仪表的灵敏度和稳定性等相关问题。
3. 控制器的选型通过本章节的学习,学生们将了解到不同的控制器类型和特点,如PID控制器、模糊控制器、自适应控制器等,让学生们了解如何根据实际情况选择合适的控制器。
4. 控制系统的设计在本章节中,我们将介绍控制系统的设计流程,包括控制系统的选型,系统参数的确定和控制策略的选择等,同时也通过实例讲解如何设计一个完整的控制系统,让学生们学以致用。
四、教学方法与考核本课程采用理论授课和实验实践相结合的教学方法,采用小组讨论、案例分析和实验操作等方式进行教学。
期末考核由理论考核和实验实践考核两部分组成,其中理论考核占40分,实验实践考核占60分。
五、师资队伍本课程的教学团队由多位有丰富教学经验、掌握核心技术的工程师和教授组成,他们将会为学生们提供最专业的指导,让学生们掌握更多新的知识。
过程控制与自动化仪表介绍1. 引言过程控制是指在工业生产中,通过监测和调整工艺参数,以实现对生产过程的控制和优化。
自动化仪表则是过程控制的重要工具,用于测量、传输和处理工艺参数,为控制系统提供准确的反馈信息。
本文将详细介绍过程控制与自动化仪表的基本概念、原理和应用。
2. 过程控制的基本概念过程控制是指通过监测和调整工艺参数,使生产过程达到预期目标的过程。
这里的工艺参数可以是温度、压力、流量、液位等物理量,也可以是其他关键的过程指标。
过程控制分为反馈控制和前馈控制两种方法。
反馈控制是根据测量到的实际过程参数值与预期目标值之间的差异,通过调整控制器输出信号来纠正偏差,使过程参数保持在合理范围内。
前馈控制则是根据已知的过程变化规律,提前调整控制器输出信号,以使过程参数能够在预期的变化中保持稳定。
3. 自动化仪表的基本原理自动化仪表是过程控制的关键设备,可以完成对工艺参数的测量、传输和处理。
常见的自动化仪表包括温度传感器、压力传感器、流量计、液位计等。
3.1 温度传感器温度传感器用于测量和监控物体或环境的温度。
常见的温度传感器有热电偶、热电阻和红外线传感器。
热电偶利用两种不同金属的电动势差来测量温度,热电阻则利用电阻与温度呈线性关系的特性来测量温度。
3.2 压力传感器压力传感器用于测量和监控气体或液体的压力。
常见的压力传感器有压阻式传感器和压电式传感器。
压阻式传感器通过测量电阻的变化来间接测量压力,而压电式传感器则是利用压电晶体的压电效应来直接测量压力。
3.3 流量计流量计用于测量和监控液体或气体的流量。
常见的流量计有浮子流量计、涡轮流量计和电磁流量计等。
浮子流量计通过测量浮子位置的变化来间接测量流量,涡轮流量计则是利用涡轮的旋转速度与流体的流速成正比关系来测量流量。
3.4 液位计液位计用于测量和监控液体的液位高度。
常见的液位计有浮子液位计、压力液位计和超声波液位计等。
浮子液位计通过测量浮子的位置变化来间接测量液体的液位,而超声波液位计利用超声波的传播时间来直接测量液位的高度。
过程控制与自动化仪表简介过程控制是指通过测量与调节技术来实现对工业过程的控制,以达到预定的工艺要求。
而自动化仪表则是过程控制中不可或缺的一部分,它用来测量、记录和控制各种过程变量,为过程控制提供准确的数据与反馈信息。
本文将对过程控制与自动化仪表进行详细介绍。
过程控制过程控制是指对工业过程进行监测与调节,以实现所需的工艺要求。
过程控制可以分为两种类型:开环控制和闭环控制。
开环控制开环控制是一种基本的控制方式,它仅通过设置一组固定的控制参数来实现对工业过程的控制。
开环控制没有反馈机制,因此无法对过程中的变化进行实时调节。
这种控制方式适用于对过程中变化不大的情况,例如温度或压力稳定的控制。
闭环控制闭环控制是一种更为高级的控制方式,它通过测量过程变量并与设定值进行比较,然后根据比较结果进行调整。
闭环控制能够实时监测过程中的变化,并通过反馈机制来调整控制参数,使得过程保持稳定。
这种控制方式适用于对过程变化较大的情况,例如温度、液位或流量等。
自动化仪表自动化仪表是过程控制中的核心设备,用于测量、记录和控制各种过程变量。
自动化仪表通常由传感器、执行器和控制器组成。
传感器传感器是自动化仪表中最基本的部件,用于将物理量转换为电信号。
常见的传感器包括温度传感器、压力传感器、液位传感器等。
传感器的选择需要根据需要测量的物理量和工艺要求来确定。
执行器执行器是用于控制过程变量的设备,它根据控制器的指令进行动作。
常见的执行器包括电动阀、电动调节阀、气动执行器等。
执行器的选择需要考虑控制要求、工作环境和应用场景等因素。
控制器控制器是自动化仪表的核心,用于接收传感器的信号并根据设定值进行控制。
常见的控制器有PID控制器、PLC控制器等。
控制器的选择需要根据控制要求和控制策略来确定。
过程控制与自动化仪表的应用领域过程控制与自动化仪表广泛应用于各个工业领域,包括石化、制药、电力、冶金等。
以下是一些典型的应用领域:石化工业在石化工业中,过程控制与自动化仪表用于监测与控制各个工艺单元,例如蒸馏塔、反应器、炉窑等。