三年级数学竞赛班9讲-第8讲行程问题之相遇问题
- 格式:doc
- 大小:453.50 KB
- 文档页数:3
基本慨念:行程问题是研究物体运动的,它研究的是物体运动的速度、时间、行程三者的关系。
一、基本公式:路程用字母s表示;速度用字母v表示;时间用字母t表示。
有如下公式:关键问题,确定行程过程中路程、速度、时间。
(一)相遇问题基本公式相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和相遇问题(直线)甲的路程+乙的路程=总路程相遇问题(环形)甲的路程+乙的路程=环形周长(二)相离问题两个运动物体由于背向运动而相离,就是相离问题。
解答相离问题的关键是求出两个运动物体共同结果的距离(速度和时间)基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间(三)追及问题基本公式追及时间=路程差÷速度差速度差=路程差÷追及时间路程差=追及时间×速度差追及问题(直线)距离差=追者路程-被追者路程=速度差×追及时间追及问题(环形)快的路程-慢的路程=曲线的周长(四)流水问题基本公式顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2例题应用详解:1. 电子游戏--龟兔对跑:屏幕上有一直线,直线上有A、B、C、D四点。
AD=31厘米,BC=3.2厘米。
兔子和乌龟分别从A、D两点同时出发,相向而行。
兔子每秒跑7.5厘米,乌龟每秒爬1.5厘米。
当兔子跑到C点时,乌龟恰好爬到B点。
AB相距多少厘米?CD相距多少厘米?本题解法有几种,可设未知数,也可不设未知数。
解法一:设AB=X,CD=Y联立方程式:x+y+3.2=31(x+3.2)÷7.5=(y+3.2)÷1.5最后x=25.3 y=2.5解法二:当兔子到达C点时,龟兔共走路程为:AC+BD=AD+BC=31+3.2=34.2龟兔速度和为:7.5+1.5=9则:兔子到达C点是用时t=34.2÷9=3.8秒所以AC距离是:3.8×7.5=28.5厘米AB=AC-BC=28.5-3.2=25.3厘米CD=AD-AC=31-28.5=2.5厘米思考:解法二似乎比解法一复杂,其实对于没学过二元一次方程组的小学阶段学生来说,解法二更适用,而且从不同角度思考数学问题的解法,正是数学的魅力所在。
知识概述1、行程问题中的时间(t)、速度(v)和路程(s)三个基本量,它们关系如下:(1)路程=速度×时间简记为:s = v×t(2)时间=路程÷速度简记为:t = s÷v(3)速度=路程÷时间简记为:v = s÷t2、相遇问题的意义:两个运动物体(人)分别以一定的速度,从两地同时出发,相向(面对面)而行,经过一段时间后在途中相遇,这类行程问题叫做“相遇问题”。
它的特点是两个运动物体(人)在相遇时间内共同走完的路程等于它们原来相距的路程。
3、相遇问题的基本量:速度和:两个运动物体(人)在单位时间(秒、分、时)所走的路程和;相遇时间:两个运动物体(人)同时出发到相遇所用的时间;总路程:两个运动物体(人)同时出发到相遇所走的路程;4、解答相遇问题通用公式:。
路程和=速度和×相遇时间速度和=路程和÷相遇时间相遇时间=路程和÷速度和行程问题是反映物体匀速运动的应用题。
由于变化较多,而且又纷繁复杂,所以对于学习者而言,相对比较难以掌握。
在解决行程问题时,要关注几个要素:时间、地点、方向、移动物体的个数和路线。
但是归纳起来,不管是怎样的行程问题,在找清楚对应量后,最终的数量关系还是:速度×时间=路程。
名师点题行程问题(一)例1甲、乙两辆客车同时从东城开往西城,甲客车每小时行60千米,4小时到达西城,乙客车比甲客车迟1小时到达。
问:(1)乙客车的速度是多少?(2)如果要使乙客车比甲客车提前1小时到达西城,那么乙客车的速度应是多少?【解析】(1)显然甲和乙走的路程都一样,而要求乙的速度,就必须知道路程和乙的时间,路程=甲的速度×时间=60×4=240乙的时间=甲的时间+1=5小时那么:乙的速度=240÷5=48(千米/小时)(2)现在乙要比甲快1小时。
也就是3小时达到。
那么:乙的速度=240÷3=80(千米/小时)例2龟兔赛跑,乌龟每分钟爬20米,兔子每分钟跑300米,全程1500米。
相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。
同时也是小学奥数专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。
(一)典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。
相遇问题追及问题(二)多次相遇追及通过图示介绍直线上的相遇和追及的规律这部分内容涉及以下几个方面:1求相遇次数2求相遇地点3由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。
举个例子:假设A、B两地相距6000米,甲从A地出发在AB间往返运动,速度为6千米/小时,乙从B出发,在AB间往返运动,速度为4千米/小时。
我们可以依次求出甲、乙每次到达A点或B点的时间。
为了说明甲、乙在AB间相遇的规律,我们可以用“折线示意图”来表示。
第四次相遇第五次相遇第六次相遇第二次相遇第三次相遇第一次相遇折线示意图能将整个行程过程比较清晰的呈现出来:例如AD表示的是,甲从A地出发运动到B地的过程,其中D点对应的时间为1小时,表示甲第一次到达B点的时间为1小时,BF表示乙从B地出发到达A地的过程,F点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD与BF相交于C点,对应甲、乙的第一次相遇事件,同样的G点对应是甲、乙的第二次相遇事件。
行程问题是反映物体匀速运动的应用题。
由于变化较多,而且又纷繁复杂,所以对于学习者而掌握涉及基本数量关系的追及行程问题,理解较复杂数量关系的追及行程问题;通过追及问题的学习掌握简单追及问题的解题思路和方法,培养学生分析解决问题的能力,提高思维能力;通过行程中追及问题的学习,培养学生学以致用的应用意识。
名师点题行程问题(二)知识概述1、追及问题的意义:两个物体同方向运动,在后面的速度较快的物体赶上前面速度较慢的物体称为追及。
2、追及问题的特点:① 追及者的速度比被追及者的速度要快;② 两人同时出发时,从出发到追上,两人所经历的时间相同; ③ 从开始追到追上,两人所行路程差等于他们追及发生时相距的路程。
3、追及问题的基本量:速度差:两个运动物体在单位时间(秒、分、时)所走的路程差(快速-慢速); 追及时间:速度快的运动物体从开始追到追上速度慢的物体所用的时间; 追及路程(路程差):速度快的运动物体开始追时和速度慢的物体相距的距离。
4、 追及问题的基本数量关系:追及路程(路程差)=速度差×追及时间小红在小明前面100米,两人同时出发朝相同的方向行走。
(试着画一画)(1)小明要想追上小红,必须具备什么条件?(2)当小明追上小红时,他们两人所走的路程有什么关系?时间呢?【解析】(1)小明要追上小红,必须比小红的速度快,并且同向行驶在同一路线上。
(2)画线段图:发现追上小红时,他们各自走的路程,小明比小红多了100米,而时间必须在同一时间同时开始行程才可。
这样追上小红后,他们所走的时间相等。
甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?【解析】追及时间=路程差÷速度差=150÷(75-60)=150÷15=10(分钟)甲、乙两人练习跑步,如果甲让乙先跑10米,那么甲跑5秒钟可以追上乙。
已知甲的速度是6米/秒,求乙的速度?【解析】乙的速度=甲的速度-速度差速度差=路程差÷追及时间=10÷5=2米/秒乙的速度=5-2=3米/秒【巩固拓展】例3例2例11、姐姐放学回家,以每分钟80米的速度步行回家,12分钟后妹妹骑车以每分钟240米的速度从学校往家中骑,经过几分钟妹妹可以追上姐姐?【解析】先求出路程差。
行程问题解题技巧行程问题在行车、走路等类似运动时,已知其中的两种量,按照速度、路程和时间三者之间的相互关系,求第三种量的问题,叫做“行程问题”。
此类问题一般分为四类:一、相遇问题;二、追及问题;三、相离问题;四、过桥问题等。
行程问题中的相遇问题和追及问题主要的变化是在人(或事物)的数量和运动方向上。
相遇(相离)问题和追及问题当中参与者必须是两个人(或事物)以上;如果它们的运动方向相反,则为相遇(相离)问题,如果他们的运动方向相同,则为追及问题。
相遇问题两个运动物体作相向运动,或在环形道口作背向运动,随着时间的延续、发展,必然面对面地相遇。
这类问题即为相遇问题。
相遇问题的模型为:甲从A地到B地,乙从B地到A地,然后甲,乙在途中相遇,实质上是两人共同走了A、B之间这段路程,如果两人同时出发,那么:A,B两地的路程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间二次相遇问题的模型为:甲从A地出发,乙从B地出发相向而行,两人在C地相遇,相遇后甲继续走到B地后返回,乙继续走到A地后返回,第二次在D地相遇。
则有:第二次相遇时走的路程是第一次相遇时走的路程的两倍。
相遇问题的核心是“速度和”问题。
利用速度和与速度差可以迅速找到问题的突破口,从而保证了迅速解题。
相离问题两个运动着的动体,从同一地点相背而行。
若干时间后,间隔一定的距离,求这段距离的问题,叫做相离问题。
它与相遇问题类似,只是运动的方向有所改变。
解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。
基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间相遇(相离)问题的基本数量关系:速度和×相遇(相离)时间=相遇(相离)路程在相遇(相离)问题和追及问题中,必须很好的理解各数量的含义及其在数学运算中是如何给出的,这样才能够提高解题速度和能力。
五年级秋季培优第十讲相遇问题行程问题是小学阶段接触最多、难度比较大的一类应用题,行程问题有其基本的解答规律。
本讲重点学习相遇问题。
相遇问题基本关系式:速度和×相遇时间=相遇路程相遇路程÷相遇时间=速度和相遇路程÷速度和=相遇时间两物体在两地间往返运动,第一次相遇走一个全程,以后每次再相遇都共走两个全程。
解答相遇问题的应用题,一般情况下要从相遇时间、速度和及总路程这三者之间的关系去分析,但有时要具体情况具体分析。
典例精讲例1 甲城到乙城的公路长470千米,快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每小时行44千米,两车经过多长时间相遇?【思路点拨】这是一道基本的相遇问题,根据“相遇路程÷速度和=相遇时间”可直接求出两车相遇时间。
【详细解答】例2 甲、乙两车同时分别从两地相向而行。
甲车每小时行72千米,乙车每小时行64千米。
两车相遇时距全程的中点20千米。
两地之间相距多少千米?【思路点拨】在相同的时间内,甲的速度快,行的路程多,比全程的一半多20千米,而乙则比全程的一半少20千米,所以甲应该比乙多行20×2=40(千米)。
而甲1小时比乙多行72-64=8(千米),多少小时甲比乙多行40千米呢?40÷8=5(小时),这就是他们行驶的时间,即相遇时间。
【详细解答】例3 海模比赛中,甲、乙两船同时从池塘的东西两岸相对开出。
第一次在距东岸15米处相遇。
相遇后继续前进,到达对岸后立即返回,第二次相遇在离西岸8米处。
如果两船在行驶中速度不变,求池塘东西两岸的距离。
【思路点拨】本题中没有行驶的速度和时间,不能用一般思路分析,首先,画图理解。
第一次相遇两船共行驶1个全程,甲船行了15米,第二次相遇两船共行3个全程,甲船就应该行15×3=45(米),而到第二次相遇时甲船行驶的路程比1个全程多8米,所以再用45-8得全程是37米。
【详细解答】例4 甲、乙、丙三人行走的速度每分钟分别是30米、40米和50米。
小学数学知识点:行程问题公式:1. 行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。
2.常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。
3.常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。
4.行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。
3)静水速度=(顺水速度+逆水速度)/24)水流速度=(顺水速度–逆水速度)/25.基本数量关系是火车速度×时间=车长+桥长1)超车问题(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差2)错车问题(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和3)过人(人看作是车身长度是0的火车)4)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)例题:例1:已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。
分析:本题关键在求得火车行驶120秒和80秒所对应的距离。
解答:设火车长为L米,则火车从开始上桥到完全下桥行驶的距离为(1000+L)米,火车完全在桥上的行驶距离为(1000-L)米,设火车行进速度为u米/秒,则:由此知200×u=2000,从而u=10,L=200,即火车长为200米,速度为10米/秒。
评注:行程问题中的路程、速度、时间一定要对应才能计算,另外,注意速度、时间、路程的单位也要对应。
例2:甲、乙各走了一段路,甲走的路程比乙少1/5,乙用的时间比甲多了1/8,问甲、乙两人的速度之比是多少?分析:速度比可以通过路程比和时间比直接求得。
解答:设甲走了S米,用时T秒,则乙走了S÷(1-1/5)=5/4 S(米),用时为:T×(1+1/8)=9/8 T(秒),甲的速度为:S/T,乙速度为:5/4 S÷ 9/8 T=10S/9T,甲乙速度比为S/T :10S/9T=9:10评注:甲、乙路程比4/5,时间比8/9,速度比可直接用:4/5 ÷ 8/9=9/10,即9:10。
三年级数学竞赛班
行程问题之相遇问题
(★★)
一共有1000个包子,大胃王和大胃黄一起吃,大胃王一分钟可以吃10个包子,大胃黄一分钟可以吃15个包子,那么他俩什么时候可以把包子吃完?
【拓展1】
有一条1000米的街道,王大爷和黄大爷在散步,他们从街道的两端出发,王大爷一分钟走10米,黄大爷一分钟走15米,他俩什么时候相遇?
【拓展2】
有一条1000米的街道,王大爷和黄大爷在散步,他们从街道的两端出发,王大爷一分钟走20米,他俩20分钟就可以相遇,黄大爷的速度是多少?
【拓展3】
有一条街道,王大爷和黄大爷在散步,他们从街道的两端出发,王大爷一分钟走15米,黄大爷一分钟走25米,他俩30分钟相遇,那么这条街道有多长?
一条长度为1000米的街道,甲和乙分别从街道的两端出发,甲提前乙5分钟出发,甲每分钟走20米,乙每分钟走10米,乙出发多长时间之后和甲相遇?
甲乙俩人分别从相距360千米的A,B两地出发,甲走完全程需要4小时,乙走完全程需要12小时,那么甲乙相遇需要多长时间?
小花花的家距离学校3000米,爸爸从家去学校,小花花从学校回家,他们同时出发,爸爸每分钟比小花花多走24米,50分钟之后两人相遇,那么小花花的速度是多少?
【拓展】
小新和小刚同时从两地相向而行,小新每小时行18千米,小刚每小时行16千米,两人相遇时距离全程中点3千米,全程多少千米?
哼哼,哈哈,嘿嘿,吼吼四个好朋友分别位于A,B,C,D四个地方,如图所示,距离O 点的距离已经标在了图中,四个朋友约定在某处见面(不一定是O点),每个人走路的速度都是45米/分钟,那么最快需要多长时间相遇?
(★★★) (★★★) (★★★★) (★★★)。