第四章 数学规划问题(中文)
- 格式:ppt
- 大小:593.50 KB
- 文档页数:48
第4章 整数规划判断:用分枝定界法求解一个极大化的整数规划问题,任何一个可行解的目标函数值是该问题目标函数值的下界;指派问题数学模型的形式同运输问题十分相似,故也可以用表上作用法求解;效率矩阵的任一行(或列)减去(或加上)任一常数,指派问题最优解不会受到影响; 匈牙利法只能用于平衡分配问题;对于极大化问题,匈牙利法不能直接求解。
整数规划问题解的目标函数值优于其相应的线性规划问题的解的目标函数。
用割平面法求解整数规划问题,构造的割平面有可能切去一些不属于最优解的整数解。
用分枝定界法求解一个极大化的整数规划问题时,当得到多于一个可行解时,通常可任取其中一个作为下界值,在进行比较剪枝。
分配问题的每个元素都加上同一个常数k ,并不会影响最优分配方案。
分配问题的每个元素都乘上同一个常数k ,并不会影响最优分配方案。
分配问题域运输问题的数学模型结构形式十分相似,故也可以用表上作业法求解。
隐枚举法也可以用来求解分配问题简答试述分枝定界法求解问题的主要思想。
试述隐枚举法的步骤。
试讲述割平面方法的基本原理. 试例举三种应该剪枝的情况。
计算题分枝定界法用分枝定界法求解下列整数规划问题12max Z x x =+1212129511414123,x x x x x x +≤-+≤≥0且为整数用分枝定界法求解下列整数规划问题12max 32Z x x =+121212231429,x x x x x x +≤+≤≥0且为整数用分枝定界法求解下列整数规划问题12max 2010Z x x =+1232312312324434323,,x x x x x x x x x x x ++≤≤+≤≥---0且为整数用分枝定界法求解下列整数规划问题12max 79Z x x =+121212136735,x x x x x x x +≤+≤≥-0,且为整数用分枝定界法求解下列整数规划问题123max 33Z x x x =++123231231231324432323,,,x x x x x x x x x x x x x ++≤≤+≤≥---0,且为整数用分枝定界法解下列整数规划问题:1212121212232478188..3219,0MaxZ x x x x x x s t x x x x =+-+≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩且为整数用分枝定界法解下列整数规划问题1212121212250..6221,0MaxZ x x x x x x s t x x x x =++≤⎧⎪-+≤⎪⎨+≤⎪⎪≥⎩且为整数用分枝定界法解下列整数规划问题12312121225231050..7228,0,MaxZ x x x x x s t x x x x x =-+-+≤⎧⎪-≤⎨⎪≥⎩为整数用分枝定界法解下列整数规划问题12312341234345272222..0,1,2,3,4,5,j MaxZ x x x x x x x x x x x s t x j x x =-+-⎧-+-+=⎪⎪⎪-++=⎨⎪≥=⎪⎪⎩为整数用分枝定界法求解下列整数规划模型12max 23z x x =+121257354936x x x x +≤+≤12,0x x ≥且为整数有如下整数规划问题12max z x x =+12129511414123x x x x +≤-+≤12,0x x ≥且为整数试用分枝定界法求其最优解。
第4章 数学规划模型在上一章中我们看到,建立优化模型要确定优化的目标和寻求的决策。
用x 表示决策变量,)(x f 表示目标函数。
实际问题一般对决策变量x 的取值范围有限制,不妨记作x ∈Ω,Ω称为可行域。
优化问题的数学模型可表示为∈x x f Max Min ),()(或Ω在第3章x 通常是1维或2维变量,Ω通常是1维或2维的非负域。
实际中的优化问题通常有多个决策变量,用n 维向量T n x x x x ),,,(21 =表示,目标函数)(x f 是多元函数,可行域Ω比较复杂,常用一组不等式(也可以有等式))(x g i ≤0 (i =1,2, …,m )来界定,称为约束条件。
一般地,这类模型可表述成如下形式=z Min x)(x f s.t.)(x g i ≤m i ,,2,1,0 =这里的s. t. (subject to)是“受约束于”的意思。
显然,上述模型属于多元函数的条件极值问题的范围,然而许多实际问题归结出的这种形式的优化模型,其决策变量个数n 和约束条件个数m 一般较大,并且最优解往往在可行域的边界上取得,这样就不能简单地用微分法求解,数学规划是解决这类问题的有效方法。
需要指出的是,本章无意涉及数学规划(或运筹学)的具体计算方法,仍然着重于从数学建模的角度,介绍如何建立若干实际优化问题的模型,并且在用现成的数学软件求解后,对结果作一些分析。
4.1 奶制品的生产和销售企业内部的生产计划有各种不同的情况。
从空间层次来看,在工厂级要根据外部需求和内部设备、人力、原料等条件,以最大利润为目标制订产品的生产计划,在车间级则要根据产品生产计划、工艺流程、资源约束及费用参数等,以最小成本为目标制订生产批量计划。
从时间层次看,若在短时间内认为外部需求和内部资源等不随时间变化,可制订单阶段生产计划,否则就要制订多阶段生产计划。
本节选择几个单阶段生产计划的实例,说明如何建立这类问题的数学规划模型,并利用软件求解的输出对结果作一些分析。
第四章 整数规划4.1 某工厂生产甲、乙两种设备,已知生产这两种设备需要消耗材料A 、材料B,有关数据如下,问这两种设备各生产多少使工厂利润最大?(只建模不求解)解:设生产甲、乙这两种设备的数量分别为x 1、x 2,由于是设备台数,则其变量都要求为整数,建立模型如下:2123max x x z +=⎪⎪⎩⎪⎪⎨⎧≥≤+≤+为整数21212121,0,5.45.01432x x x x x x x x4.2 2197max x x z +=⎪⎩⎪⎨⎧≥≤+≤+-且为整数0,35763.212121x x x x x x t s 割平面法求解。
(下表为最优表)线性规划的最优解为:63max ,0,2/7,2/94321=====z x x x x由最终表中得:27221227432=++x x x ﻩ④ 将系数和常数项分解成整数和非负真分式之和,上式化为;2132********+=++x x x移项后得:①②③④①②③即:21221227212212274343-≤--→≥+x x x x 只要把增加的约束条件加到B 问题的最优单纯形表中。
表4-4由x1行得:7327171541=-+x x x 将系数和常数项分解成整数和非负真分数之和:74476715541+=+-+x x x x得到新的约束条件: 74767154-≤--x x747671654-=+--x x x 在的最优单纯形表中加上此约束,用对偶单纯形法求解:则最优解为3,421==x x ,最优目标函数值为z *=55。
4.3 m ax z =4x1+3x 2+2x 3⎪⎪⎩⎪⎪⎨⎧=≥+≥++≤+-10,,13344352.32132321321或x x x x x x x x x x x t s 隐枚举法解:(1)先用试探的方法找出一个初始可行解,如x 1=x2=0,x 3=1。
满足约束条件,选其作为初始可行解,目标函数z 0=2。