02.3.应力·拉(压)杆内的应力解析
- 格式:ppt
- 大小:2.78 MB
- 文档页数:24
第一章 绪论及基本概念§1−1 材料力学的任务要想使结构物或机械正常地工作,必须保证每一构件在荷载作用下能够安全、正常地工作。
因此,在力学上对构件有一定的要求:1. 强度,即材料或构件抵抗破坏的能力; 2. 刚度,即抵抗变性的能力;3. 稳定性,承受荷载时,构件在其原有形态下的平衡应保持为稳定平衡§1−2 可变性固体的性质及基本假设可变性固体:理学弹性体、小变性 基本假设:1. 连续、均匀性; 2. 各项同性假设。
§1−3 内力、截面法、应力⎪⎪⎩⎪⎪⎨⎧===∑∑000z y x F F F ⎪⎪⎩⎪⎪⎨⎧===∑∑000z y xM M M§1−4 位移和应变的概念x u x x ∆∆=→∆0limε称为K 点处沿x 方向的线应变 直角的改变量γ称为切应变。
§1−5 杆件变性的基本形式1.轴向拉伸或轴向压缩2.剪切3.扭转4.弯曲第二章 轴向拉伸和压缩§2−1 轴向拉伸和压缩的概念F(图2−1)则为轴向拉伸,此时杆被2−1虚线);若作用力F 压缩杆件(图(图2−2工程中许多构件,(图2−3)、各类(图2−4)等,这类结构的构2−1和图2−2。
§ 2−2 内力·截面法·轴力及轴力图一、横截面上的内力——轴力图2−5a 所示的杆件求解横截面m−m 的内力。
按截面法求解步骤有:可在此截面处假想将杆截断,保留左部分或右部分为脱离体,移去部分对保留部分的作用,用内力来代替,其合力F N ,如图2−5b 或图2−5c 所示。
对于留下部分Ⅰ来说,截面m −m 上的内力F N 就成为外力。
由于原直杆处于平衡状态,故截开后各部分仍应维持平衡。
根据保留部分的平衡条件得 mF N F N (a )(b ) (c )图2−5Ⅱ图2−1图2−2图2-4F F F F Fx==-=∑N N ,0,0(2−1)式中,F N 为杆件任一截面m −m 上的内力,其作用线也与杆的轴线重合,即垂直于横截面并通过其形心,故称这种内力为轴力,用符号F N 表示。