初等数论试题库
- 格式:doc
- 大小:416.50 KB
- 文档页数:19
初等数论试卷一一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( )A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解.9、设f(x)=10nn a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,nn i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________; 24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30.()48ϕ=_________________________________。
初等数论期末试题及答案1. 选择题1.1 以下哪个数是质数?A. 10B. 17C. 26D. 35答案:B. 171.2 下列哪个数不是完全平方数?A. 16B. 25C. 36D. 49答案:C. 361.3 对于任意正整数n,下列哪个数一定是n的倍数?A. n^2B. n^3C. n+1D. n-1答案:A. n^22. 填空题2.1 求下列数的最大公约数:a) 24和36b) 45和75答案:a) 12b) 152.2 求下列数的最小公倍数:a) 6和9b) 12和18答案:a) 18b) 363. 计算题3.1 求1到100之间所有奇数的和。
解答:观察可知,1到100之间的奇数是等差数列,公差为2。
根据等差数列的求和公式,我们可以得到:(100 - 1) / 2 + 1 = 50 个奇数所以,奇数的和为:50 * (1 + 99) / 2 = 25003.2 求1到100之间所有能被3整除的数的和。
解答:观察可知,1到100之间能被3整除的数是等差数列,首项为3,公差为3。
根据等差数列的求和公式,我们可以得到:(99 - 3) / 3 + 1 = 33 个数所以,能被3整除的数的和为:33 * (3 + 99) / 2 = 16834. 证明题4.1 证明:如果一个数是平方数,那么它一定有奇数个正因数。
证明:设n是一个平方数,即n = m^2,其中m是一个正整数。
我们知道,一个数的因数总是成对出现的,即如果a是n的因数,那么n/a也是n的因数。
对于一个平方数n来说,它的因数可以分成两类:1) 当因数a小于等于m时,对应的商n/a必然大于等于m,因此这样的因数对有m对;2) 当因数a大于m时,对应的商n/a必然小于等于m,因此这样的因数对有(m - 1)对。
所以,在m > 1的情况下,平方数n有2m - 1个正因数,由于m是正整数,因此2m - 1一定是奇数。
而当m = 1时,平方数1只有一个因数,也满足奇数个正因数的条件。
初等数论模拟试题及答案一、选择题(每题2分,共20分)1. 以下哪个数是素数?A. 4B. 9C. 13D. 162. 一个数的最小素因子是它本身,这个数是什么?A. 0B. 1C. 质数D. 合数3. 欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数。
若n=12,φ(12)的值是多少?A. 4B. 6C. 8D. 124. 一个数如果只有1和它本身两个因数,这个数是什么?A. 0B. 1C. 质数D. 合数5. 以下哪个数是完全数?A. 6B. 12C. 28D. 4966. 一个数的约数个数是奇数,这个数是什么?A. 质数B. 合数C. 完全数D. 素数7. 模n的逆元是指一个整数a,使得a×x ≡ 1 (mod n),以下哪个数在模5下没有逆元?A. 1B. 2C. 3D. 48. 费马小定理指出,如果p是一个质数,那么对于任意整数a,a^(p-1) ≡ 1 (mod p)。
以下哪个选项是错误的?A. a^4 ≡ 1 (mod 5)B. a^3 ≡ 1 (mod 7)C. a^2 ≡ 1 (mod 4)D. a^2 ≡ 1 (mod 3)9. 哥德巴赫猜想是指每一个大于2的偶数都可以表示为两个质数之和。
以下哪个数不能被表示为两个质数之和?A. 4B. 6C. 8D. 1010. 以下哪个数是梅森素数?A. 3B. 7C. 2^7 - 1D. 2^3 - 1二、填空题(每题2分,共20分)11. 素数是指只有________和它本身两个因数的自然数。
12. 如果a和b互质,那么它们的最大公约数是________。
13. 一个数的约数个数是偶数,这个数至少有________个约数。
14. 欧拉函数φ(1)的值是________。
15. 模n的剩余类集合记为Z/nZ,它包含________个元素。
16. 费马小定理中,如果a和p互质,那么a^(p-1) ≡ ________ (mod p)。
初等数论期末考试模拟试卷(含答案)一、填空题(每题5分,共25分)1. 若两个正整数a和b的最大公约数为1,则称a和b互质。
若a和b互质,则a+b与a-b也互质。
()2. 设m和n是正整数,且m、n互质。
若存在正整数k,使得km+1与kn+1互质,则k的最小值为()。
答案:13. 已知p和q是不同的质数,且p+q=17,则p^2+q^2的最小值为()。
答案:974. 设F(n)表示斐波那契数列的第n项,且F(n+1)=F(n)+F(n-1),F(1)=1,F(2)=1。
若F(n)能被3整除,则n的最小值为()。
答案:85. 已知正整数a、b、c满足a^2+b^2=c^2,则称a、b、c 为勾股数。
勾股数中,a、b、c都是奇数的三元组称为奇素勾股数。
已知最小的奇素勾股数是(3,4,5),则第二小的奇素勾股数是()。
答案:(15,8,17)二、选择题(每题5分,共25分)6. 以下关于最大公约数和最小公倍数的说法,错误的是()。
A. 两个正整数的最大公约数是它们的公共因子中最大的一个B. 两个正整数的最大公约数等于它们的乘积除以最小公倍数C. 两个正整数的最大公约数和最小公倍数的乘积等于这两个数的乘积D. 两个正整数的最大公约数和最小公倍数一定互质答案:D7. 设p是质数,且p>2,则以下说法正确的是()。
A. p的平方能被3整除B. p的立方能被3整除C. p的平方加1能被3整除D. p的平方减1能被3整除答案:D8. 以下关于斐波那契数列的说法,错误的是()。
A. 斐波那契数列中的任意两个相邻项互质B. 斐波那契数列中的任意两个非相邻项互质C. 斐波那契数列中的任意三个连续项构成勾股数D. 斐波那契数列中的任意两个相邻项之比越来越接近黄金比例答案:C9. 设a、b、c是勾股数,且a是最小的质数。
以下说法正确的是()。
A. b和c一定互质B. b和c一定不互质C. b和c中至少有一个是质数D. b和c中至少有一个不是质数答案:D10. 以下关于同余的说法,错误的是()。
《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30. ()48ϕ=_________________________________。
初等数论考试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是质数?A. 23B. 45C. 68D. 89答案:A2. 两个连续的自然数的乘积一定是:A. 偶数B. 奇数C. 质数D. 合数答案:A3. 求下列哪个数的因数个数最多?A. 12B. 18C. 24D. 30答案:C4. 一个数如果被6整除,那么它一定能被:A. 2整除B. 3整除C. 2和3同时整除D. 以上都不是答案:C5. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A6. 一个数的最小素因子是2,那么这个数一定是:A. 偶数B. 奇数C. 质数D. 合数答案:A7. 求下列哪个数的各位数字之和最大?A. 123B. 456C. 789D. 135答案:C8. 一个数的各位数字之和是9,那么这个数除以9的余数是:A. 0B. 1C. 2D. 3答案:A9. 一个数的各位数字之和是3的倍数,那么这个数一定是:A. 3的倍数B. 9的倍数C. 27的倍数D. 不一定是3的倍数答案:A10. 一个数的各位数字之和是5的倍数,那么这个数一定是:A. 5的倍数B. 25的倍数C. 125的倍数D. 不一定是5的倍数答案:D二、填空题(每题4分,共20分)1. 一个数如果只有1和它本身两个因数,那么这个数叫做__质数__。
2. 如果两个数的最大公约数是1,那么这两个数叫做__互质数__。
3. 一个数如果除了1和它本身外,还有其他因数,那么这个数叫做__合数__。
4. 一个数如果能够被2整除,那么这个数叫做__偶数__。
5. 一个数如果能够被3整除,那么这个数的各位数字之和也一定能被3整除。
三、解答题(每题10分,共50分)1. 证明:如果一个数n能被4整除,那么2n也能被4整除。
证明:设n能被4整除,则存在整数k使得n=4k。
则2n=2×4k=8k,显然8k能被4整除,因此2n也能被4整除。
2. 证明:如果一个数n能被9整除,那么它的各位数字之和也能被9整除。
自考初等数论试题及答案一、选择题(每题2分,共10分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 一个数的最小素因子是3,那么这个数的最小公倍数是:A. 3B. 6C. 9D. 12答案:C3. 计算 \((2^3) \div 2^2\) 的结果是:A. 2B. 4C. 8D. 16答案:A4. 一个数的质因数分解是 \(2^2 \times 3^3\),那么这个数的约数个数是:A. 5B. 6C. 7D. 8答案:D5. 如果 \(p\) 是一个素数,那么 \(p^2 - 1\) 可以分解为:A. \((p-1)(p+1)\)B. \(p(p-1)\)C. \((p+1)(p-1)\)D. \(p^2 - 1\)答案:C二、填空题(每题3分,共15分)1. 如果一个数 \(n\) 能被3整除,那么 \(n\) 的各位数字之和也能被____整除。
答案:32. 一个数 \(a\) 与 \(b\) 的最大公约数(GCD)是 \(d\),那么\(a \times b\) 的最大公约数是______。
答案:d3. 一个数 \(n\) 能被9整除,那么 \(n\) 的各位数字之和也能被______整除。
答案:94. 一个数 \(n\) 能被11整除,那么 \(n\) 的奇数位数字之和与偶数位数字之和的差是______的倍数。
答案:115. 一个数 \(n\) 能被7整除,那么 \(2n + 4\) 能被______整除。
答案:7三、解答题(每题10分,共20分)1. 求 \(2^{16} - 1\) 的所有素因子。
答案:\(2^{16} - 1 = (2^8 + 1)(2^8 - 1) = (2^4 + 1)(2^4 -1)(2^8 + 1) = (2^2 + 1)(2^2 - 1)(2^4 + 1)(2^4 - 1)(2^8 + 1) = 3 \times 15 \times 17 \times 15 \times 255\),所以素因子为3, 5, 17, 255。
初等数论试题及答案高一一、选择题(每题3分,共30分)1. 以下哪个数是质数?A. 2B. 4C. 6D. 8答案:A2. 一个数的因数包括它自己吗?A. 是B. 否答案:A3. 一个数的倍数包括它自己吗?A. 是B. 否答案:A4. 两个连续整数的乘积一定是合数吗?A. 是B. 否答案:B5. 一个数的最小倍数是多少?A. 它自己B. 2C. 1D. 0答案:A6. 一个数的最大因数是多少?A. 它自己B. 2C. 1D. 0答案:A7. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A8. 一个数的质因数分解中,质因数的个数至少有几个?A. 1B. 2C. 3D. 0答案:A9. 以下哪个数是素数?A. 1B. 2C. 9D. 10答案:B10. 一个数的因数个数是奇数还是偶数?A. 奇数B. 偶数答案:B二、填空题(每题4分,共20分)1. 一个数的最小质因数是______。
答案:22. 一个数的最小非零因数是______。
答案:13. 一个数的最大因数是______。
答案:它自己4. 一个数的最小倍数是______。
答案:它自己5. 一个数的倍数个数是______。
答案:无限三、解答题(每题10分,共50分)1. 证明:对于任意的正整数n,2n总是偶数。
证明:假设n为任意正整数,那么2n = 2 * n。
因为2是偶数,所以2n也是偶数。
2. 证明:对于任意的正整数n,n^2 - 1是奇数。
证明:假设n为任意正整数,那么n^2 - 1 = (n - 1)(n + 1)。
因为n - 1和n + 1是连续的整数,所以它们中必有一个偶数和一个奇数。
因此,它们的乘积是奇数。
3. 找出100以内的所有质数。
答案:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 974. 证明:如果p是质数,那么p^2 - 1是合数。
初等数论试卷,最全⾯的答案,包括截图初等数论考试试卷⼀、单项选择题:(1分/题X 20题=20分)1 ?设x为实数,lx ]为x的整数部分,则(A )A.[xl X ::: lx ; E. [x I ::: x Ixl ? 1 ;C. lx I x lx A:;1 ;D. lx I ::: X ::: Ix.l ? 1 .2.下列命题中不正确的是(B )A.整数a i,a2,||(,a n的公因数中最⼤的称为最⼤公因数;C.整数a与它的绝对值有相同的倍数D.整数a与它的绝对值有相同的约数3 .设⼆元⼀次不定⽅程ax?by=c (其中a,b,c是整数,且a,b不全为零)有⼀整数解x o,y°,d⼆a,b,则此⽅程的⼀切解可表为(C )a bA.x =x°t, y ⼆y°t,t =0, _1,_2」H;d da bB.x = X o t, y ⼆y o t,t = 0, —1, _2」H;d db ac. x =X o t, y =y°t,t =0, _1,_2,川;d db aD. x =x°t, y ⼆y o t,t =0, ⼀1,_2,|";d d4. 下列各组数中不构成勾股数的是(D )A. 5, 12, 13;B. 7, 24, 25;C.3, 4, 5;D. 8, 16, 175. 下列推导中不正确的是(D )A.? 三b modm ,a2 三d modm = y a?三b b2modm ;B.Q= b mod m ,a2 = b2 modm = Qa? = bb 2mod m ;c. Q= b mod m = 时2 = ba 2modm ;2 2C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.a1= b1 modm = Q=b modm .6 .模10的⼀个简化剩余系是(D )A. 0,1,2,川,9;B. 1,2,3川1,10;7. a三b modm的充分必要条件是(A )A. ma —b;B. a —b m;C.m a +b;D. a +b m.&设f x =x42x38x 9,同余式f x三0 mod5的所有解为(C )A. x =1 或-1;B. x =1 或4;C. x 三1 或-1 mod5 ;D.⽆解.9、设f(x)= a n X n JlUII a1x ? a°其中a i是奇数,若x = x0mod p 为f(x) = 0 mod p 的⼀个解, 则:(?)A. 了.三/.: mod p ⼚定为f (x)三0(mod p勺,1的⼀个解B. '三I mod p「,::1,⼀定为f (x)三0 mod p :的⼀个解D. 若x三x° mod p -为f (x)三0 mod p -的⼀个解,则有x :三x° mod p10.设f (x)⼆a n x n|川|) ax a0,其中a i为奇数,a n丞Omodp,n p,则同余式f (x) =0 mod p 的解数:( )A.有时⼤于p但不⼤于n; B .不超过pC.等于p D .等于n11.若2为模p的平⽅剩余,则p只能为下列质数中的:( D )A. 3 B . 11 C . 13 D . 2312.若雅可⽐符号->1,则(C )Im⼃2A. 同余式x三a modm ⼀定有解,B. 当a,m =1时,同余式x2=a mod p有解;C. 当m = p(奇数)时,同余式x2三a mod p有解;D. 当a⼆p(奇数)时,同余式x2三a mod p有解.13.若同余式x2三a mod2‘,〉-3, 2, a =1有解,则解数等于(A )C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.18. 若x 对模m 的指数是ab , a >0, ab >0,则a 对模m 的指数是(B )A. a B . b C . ab D.⽆法确定19. f a , g a 均为可乘函数,则(A ) A. f a g a 为可乘函数; B . f ag (a )C. f a g a 为可乘函数; D . f a - g a 为可乘函数20. 设丄[a 为茂陛乌斯函数,则有(B )不成⽴A ⼆ J 1 =1B .空-1 =1C .⼆■-2 = -1D .⼆=9 =0⼆. 填空题:(每⼩题1分,共10分)21.3在45!中的最⾼次n = ________ 21 ___ ; 22. 多元⼀次不定⽅程:a 1x 1 a 2x 2 ?⼁II a n x^ N ,其中a 1 , a 2,…,a n , N 均为整数,n _ 2 ,有整数解的充分必要条件是 _ ( a 1 , a 2 ,…,a n ,) I N_a23.有理数⼀,0cavb , (a,b )=1,能表成纯循环⼩数的充分必要条件是_ (10, b ) =1__; b- _ 24. 设x 三冷 mod m 为⼀次同余式ax 三b modm , a = 0 mod m 的⼀个解,则它的所有解 A . 414. A . 15. A . B . 3 C 模12的所有可能的指数为:( 1, 2, 4 B . 1, 2, 4, 6, 若模m 的原根存在,下列数中,2 B .3 C 16. 对于模5,下列式⼦成⽴的是.2 A )12 C . 1, 2, m不可能等于:( D . 12 B ) 3, D 4, 6,12 D ?⽆法确定 )A. in d 32 =2ind 3^=3 C. in d 35 =0ind 310 ⼆ ind 32 ind 35 17. A. 下列函数中不是可乘函数的是:茂陛鸟斯(mobius )函数w(a ); B. 欧拉函数■- a ;C. 不超过x 的质数的个数⼆x ;25. ____________________________ 威尔⽣(wilson )定理: _______________ (P —1)! +1 三0(modp ), p 为素数 _____________ ;26. 勒让德符号'^03 |= 1 ;訂013⼃27. 若a, p [=1,则a 是模p 的平⽅剩余的充分必要条件是 a 2三1 mod p (欧拉判别条件; 28.在模m 的简化剩余系中,原根的个数是 _讥営m __; 29.设。
初等数论一、填空1、d (1000)= 。
φ(1000)= 。
(10174)=______ 。
2、ax+bY=c 有解的充要条件是 。
3、20022002被3除后余数为 。
4、[X]=3,[Y]=4,[Z]=2,则[X —2Y+3Z]可能的值为 。
5、φ(1)+φ(P )+…φ(nP )= 。
6、高斯互反律是 。
7、两个素数的和为31,则这两个素数是 。
8、带余除法定理是 。
9、d (37)= 。
σ(37)= 。
10、φ(1)+φ(P )+…φ(nP )= 。
11、不能表示成5X+3Y (X 、Y 非负)的最大整数为 。
12、7在2004!中的最高幂指数是 。
13、(1501 ,300)= 。
14、)(mod m b ax ≡有解的充要条件是 。
15、威尔逊定理是 。
16、写出6的一个绝对值最小的简化系 。
17、50506666688888⨯被7除后的余数为 。
18、d (31)= 。
σ(3600)= 。
19、四位数13AA 被9整除,则A= 。
20、17X+2Y=3通解为 。
21、费尔马大定理是 。
22、写出12的一个简化系,要求每项都是5的倍数 。
23、{}4.2-= 。
24、128574.0 化为分数是 。
25、15!的标准分解是 。
26、1000到2003的所有整数中13的倍数有 个。
27、 σ(29)= .28、不能表示成y x 45+(y x ,为非负整数)的最大整数为 .29、7在2008!的标准分解式中的最高幂指数是 . 30、2005和2006的最小公倍数是 . 31、威尔逊定理是 .32、设1>x 为整数且被4、5、7除后的余数都为3,则最小的x 是 . 33、已知(a ,b )=1,则(5a+3b ,13a+8b )=__________.34、1,4,9,16,…10000这100个平方数中是3的倍数的平方数有 个. 35、若今天是星期日, 则1010天后的那一天是星期__________.36、20053的末二位数是________. 37、d (1200)= 。
38、梅森数n M 是素数,则n 是 。
39、不能表示成7X+6Y (X 、Y 非负)的最大整数为 。
40、1×3×5×7……×1999×2001的标准分解中13的幂指数是 。
41、(13a+21b ,34a+55b )= 。
已知(a ,b )=1。
42、费尔马猜想是 。
43、写出12的一个简化系,要求每项都是7的倍数 。
44、aX≡b (mod m )有解的充要条件是 。
45、20022002被3除后余数为 。
46、[X]=3,[Y]=4,[Z]=2,则[X —2Y+Z]可能的值为 。
47、d (1000)= 。
σ(1000)= 。
φ(1000)= 。
48、n 1〉, 若)(mod 01)!1(n n ≡+-则n 为 。
49、不能表示成5X+3Y (X 、Y 非负)的最大整数为 。
50、7在2003!中的最高幂指数是 。
51、(1515 ,600)= 。
52、)(mod m b ax ≡有解的充要条件是 。
53、威尔逊定理是 。
54、写出6的一个简化系,要求每项都是5的倍数 。
55、20032的末位数是 。
56、[-2.3]= 。
57、φ(1)+φ(P )+…φ(nP )= 。
58、1>x 且能被4、5、7整除,则最小的x 是 。
69、两个素数的和为31,则这两个素数是 。
60、带余除法定理是 。
61、d (1001)= 。
σ(2002)=62、c x a x a x a n n =++....2211有解的充要条件是 。
63、不能表示成5X+6Y (X 、Y 非负)的最大整数为 。
64、2003!中末尾连续有 个零。
65、(21a+4,14a+3)= 。
66、两个素数的和是39,这两个素数是 。
67、从1001到2000的所有整数中,13的倍数有 。
68、p,q 是小于是100的素数,pq- 1=x 为奇数,则x 的最大值是 。
69、n>1,若)(mod 01)!1(n n ≡+-则n 为 。
70、7在2003!中的最高幂指数是 。
71、(1515 ,600)= 。
72、)(mod m b ax ≡有解时有 个解。
73、23.0 化为分数是 。
74、[-0.3]= 。
4> 75、5088888被7除后的余数为 。
答案1、16.2340,12、(a ,b )|c3、14、3,4,5,6,7,8,9,10,115、 np6、 ,p ,q 为奇素数7、2,298、a ,b 是两个整数,b>0,则存在两个惟一的整数q ,r 使得 b r r bq a <≤+=0, 9、2,3810、 np 11、7 12、331 13、114、 b |),(m a15、P 为素数, )(mod 01)!1(p p ≡+- 16、1,5 17、518、2, 12493 19、720、Z t t y t x ∈--=+=,172,2121、)3(≥=+n z y x n n n 无正整数解 22、5,25,35,55 23、0.6 24、25、 1311753223611⋅⋅⋅⋅⋅ 26、78 27、30 28、11 29、335 30、402203031、P 为素数, 则有 )(mod 01)!1(p p ≡+-32、143 33、1 34、33)()1()(2121q p p q q p ---=7335、四 36、43 37、24, 38、素数 39、29 40、83 41、1 42、 无正整数解43、7,35,49,7744、 45、146、-5,-4,-3,-2 47、16,2340,9360 48、素数 49、7 50、331 51、1552、53、 54、5,25 55、8 56、-357、 58、140 59、2,2960、a ,b 是两个整数,b>0,则存在两个惟一的整数q ,r 使得 b r r bq a <≤+=0, 61、6,403262、c a a a n |),...,(2163、19 64、499 65、166、2,37 67、77 68、193 69、素数 70、31 71、15 72、 ),(m a)3(≥=+n z y x n n n b |),(m a b |),(m a )(mod 01)!1(p p ≡+-n p73、74、-1 75、4二、解同余方程组1 、 2、 33、 4、5、6、 7、 答案(1)解:因为(12,10)|6-(-2),(10,15)|6-1,(12,15)|1-(-2) 所以同余式组有解原方程等价于方程 ⎪⎪⎪⎩⎪⎪⎪⎨⎧)5(mod 1)3(mod 1)5(mod 6)2(mod 6)3(mod 2)4(mod 2≡≡≡≡-≡-≡x x x x x x即 ⎪⎩⎪⎨⎧)5(mod 1)3(mod 2)4(mod 2≡-≡-≡x x x 由孙子定理得 )60(mod 46≡x(2)解:因为5,7,8两两互素,所以可以利用孙子定理. 280,40,35,56321====m M M M .⎪⎩⎪⎨⎧≡≡-≡)15(mod 1)10(mod 6)12(mod 2x x x ⎪⎩⎪⎨⎧≡≡≡)9(mod 3)8(mod 2)7(mod 1x x x ⎪⎩⎪⎨⎧≡≡≡)7(mod 1)8(mod 3)5(mod 2x x x ⎪⎩⎪⎨⎧≡≡≡)7(mod 6)5(mod 2)4(mod 3x x x ⎪⎩⎪⎨⎧≡-≡-≡)7(mod 1)8(mod 5)5(mod 3x x x ⎪⎩⎪⎨⎧≡+≡≡)7mod 25)5(mod 1)4(mod 1x x x ⎪⎩⎪⎨⎧-≡≡≡)9(mod 6)8(mod 3)5(mod 2x x x 9029解同余式)5(mod 156,1≡M , )8(mod 135,2≡M , )7(mod 140,3≡M , 得到 3,3,13,2,,1===M M M .于是所求的解为)280(mod 267 )140(mod 134033352156≡⨯⨯+⨯⨯+⨯⨯≡x 所以 ).280(mod 267≡x(3)证:因为4,5,7两两互素,所以可以利用孙子定理求解. 140,20,28,35321====m M M M . 解同余式)4(mod 135,1≡M , )5(m od 128,2≡M , )7(mod 120,3≡M , 得到 1,2,13,2,,1-==-=M M M . 于是所求的解为)140(m od 97 )140(m od 6)1(2022283)1(35≡⨯-⨯+⨯⨯+⨯-⨯≡x(4)解: 因为5, 8, 7两两互素,所以有解利用孙子定理求得 40,35,56321===M M M . 280=m解同余方程)5(mod 156,1≡M ,)8(mod 135,2≡M ,)7(mod 140,3≡M ,得到 3,3,13,2,,1===M M M .于是所求的解为)280(mod 1340)5(335)3(156⨯⨯+-⨯⨯+-⨯⨯≡x 得 ).280(mod 267≡x(5)解 因为7,8,9两两互素,所以可以利用孙子定理.494,56,63,72321====m M M M 解同余式)7(m od 172,1≡M , )8(mod 163,2≡M , )9(mod 156,3≡M , 得到 4,1,43,2,,1-=-==M M M .于是所求的解为(6)解:因为4,5,7两两互素,所以可以利用孙子定理求解原方程即为 ⎪⎩⎪⎨⎧-≡≡≡)7mod 3)5(mod 1)4(mod 1x x x140,20,28,35321====m M M M .解同余式)4(mod 135,1≡M , )5(m od 128,2≡M , )7(mod 120,3≡M ,得到 1,2,13,2,,1-==-=M M M . 于是所求的解为)280(mod 81 )140)(mod 3()1(2012281)1(35≡-⨯-⨯+⨯⨯+⨯-⨯≡x所以 ).140(mod 81≡x(7)解: 因为5, 8, 9两两互素,所以有解 利用孙子定理求得 40,45,72321===M M M . 360=m解同余方程 )5(mod 172,1≡M , )8(m od 145,2≡M ,)9(mod 140,3≡M ,得到 2,5,33,2,,1-===M M M .于是所求的解为)360)(mod 6()2(4053452372-⨯-⨯+⨯⨯+⨯⨯≡x 得 ).360(mod 147≡x 三、证明(1)A 、叙述威尔逊定理。