高中数学选择题训练(含答案)
- 格式:doc
- 大小:1.98 MB
- 文档页数:17
(完整版)高中数学试题及答案一、选择题1. 下列哪个数是实数?A. 2B. 3C. 4D. 52. 下列哪个图形是圆形?A. 正方形B. 长方形C. 三角形D. 圆形3. 下列哪个式子是等式?A. 2 + 3 = 5B. 2 + 3 = 6C. 2 + 3 = 7D. 2 + 3 = 84. 下列哪个图形是三角形?A. 正方形B. 长方形C. 三角形D. 圆形5. 下列哪个数是整数?B. 3.5C. 4.5D. 5.5二、填空题6. 2 + 3 = ________7. 3 × 4 = ________8. 5 2 = ________9. 6 ÷ 2 = ________10. 7 + 8 = ________三、解答题11. 解方程:2x + 3 = 712. 解方程:3x 2 = 513. 解方程:4x + 5 = 914. 解方程:5x 6 = 815. 解方程:6x + 7 = 10答案:一、选择题1. A2. D3. A4. C5. D二、填空题7. 128. 39. 310. 15三、解答题11. x = 212. x = 313. x = 114. x = 215. x = 1(完整版)高中数学试题及答案一、选择题1. 下列哪个数是实数?A. 2B. 3C. 4D. 52. 下列哪个图形是圆形?A. 正方形B. 长方形C. 三角形D. 圆形3. 下列哪个式子是等式?A. 2 + 3 = 5B. 2 + 3 = 6C. 2 + 3 = 7D. 2 + 3 = 84. 下列哪个图形是三角形?A. 正方形B. 长方形C. 三角形D. 圆形5. 下列哪个数是整数?A. 2.5B. 3.5C. 4.5D. 5.5二、填空题6. 2 + 3 = ________7. 3 × 4 = ________8. 5 2 = ________9. 6 ÷ 2 = ________10. 7 + 8 = ________三、解答题11. 解方程:2x + 3 = 712. 解方程:3x 2 = 513. 解方程:4x + 5 = 914. 解方程:5x 6 = 815. 解方程:6x + 7 = 10答案:一、选择题1. A2. D3. A4. C5. D二、填空题6. 57. 128. 39. 310. 15三、解答题11. x = 212. x = 313. x = 114. x = 215. x = 1四、应用题16. 小明有5个苹果,小红有3个苹果,他们一共有多少个苹果?答案:小明和小红一共有8个苹果。
一、选择题(每小题5分,共60分)1、线段AB 在平面α内,则直线AB 与平面α的位置关系是A 、AB α⊂ B 、AB α⊄C 、由线段AB 的长短而定D 、以上都不对2、下列说法正确的是A 、三点确定一个平面B 、四边形一定是平面图形C 、梯形一定是平面图形D 、平面α和平面β有不同在一条直线上的三个交点3、垂直于同一条直线的两条直线一定A 、平行B 、相交C 、异面D 、以上都有可能4、在正方体1111ABCD A B C D -中,下列几种说法正确的是A 、11AC AD ⊥B 、11DC AB ⊥ C 、1AC 与DC 成45角D 、11AC 与1B C 成60角5、若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是A 、l ∥aB 、l 与a 异面C 、l 与a 相交D 、l 与a 没有公共点6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有A 、1B 、2C 、3D 、47、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、能相交于点P ,那么A 、点必P 在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面ABC 内D 、点P 必在平面ABC 外8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M ,a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有A 、0个B 、1个C 、2个D 、3个9、一个棱柱是正四棱柱的条件是A 、底面是正方形,有两个侧面是矩形B 、底面是正方形,有两个侧面垂直于底面C 、底面是菱形,且有一个顶点处的三条棱两两垂直D 、每个侧面都是全等矩形的四棱柱10、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是A 、23B 、76C 、45D 、56B 1C 1A 1D 1BA CD 11、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB的距离为4,那么tan θ的值等于A 、34B 、35C 、7D 、7 12、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为 A 、2V B 、3V C 、4V D 、5V 二、填空题(每小题4分,共16分) 13、等体积的球和正方体,它们的表面积的大小关系是S 球_____S 正方体(填”大于、小于或等于”). 14、正方体1111ABCD A B C D -中,平面11AB D 和平面1BC D 的位置关系为 15、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 .16、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.) 答案:一、选择题(每小题5分,共60分)ACDDD BCBDD DB二、填空题(每小题4分,共16分)13、小于 14、平行 15、菱形 16、1111AC B D 对角线与互相垂直一、选择题:1.若直线a 和b 没有公共点,则a 与b 的位置关系是( )A .相交B .平行C .异面D .平行或异面2.平行六面体ABCD -A 1B 1C 1D 1中,既与AB 共面也与CC 1共面的棱的条数为( )A .3B .4C .5D .63.已知平面α和直线l ,则α内至少有一条直线与l ( )A .平行B .相交C .垂直D .异面4.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( )A .30°B .45°C .60°D .90°5.对两条不相交的空间直线a 与b ,必存在平面α,使得( )A .a ⊂α,b ⊂αB .a ⊂α,b ∥αC .a ⊥α,b ⊥αD .a ⊂α,b ⊥α6.下面四个命题:①若直线a ,b 异面,b ,c 异面,则a ,c 异面;②若直线a ,b 相交,b ,c 相交,则a ,c 相交;③若a ∥b ,则a ,b 与c 所成的角相等;④若a ⊥b ,b ⊥c ,则a ∥c .其中真命题的个数为( )QP C'B'A'C B AA .4B .3C .2D .17.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段A 1B 1,B 1C 1上的不与端点重合的动点,如果A 1E =B 1F ,有下面四个结论:①EF ⊥AA 1;②EF ∥AC ;③EF 与AC 异面;④EF ∥平面ABCD .其中一定正确的有( )A .①②B .②③C .②④D .①④8.设a ,b 为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A .若a ,b 与α所成的角相等,则a ∥bB .若a ∥α,b ∥β,α∥β,则a ∥bC .若a ⊂α,b ⊂β,a ∥b ,则α∥βD .若a ⊥α,b ⊥β,α⊥β,则a ⊥b9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,n ∥β,则下列四种位置关系中,不一定成立的是( )A .AB ∥m B .AC ⊥mC .AB ∥βD .AC ⊥β10.(2012·大纲版数学(文科))已知正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为BB 1、CC 1的中点,那么直线AE 与D 1F 所成角的余弦值为( )A .-45 B. .35C .34D .-3511.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的余弦值为( )A.33B.13 C .0 D .-1212.如图所示,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD ,PA =AB ,则PB 与AC 所成的角是( )A .90°B .60°C .45°D .30°二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)13.下列图形可用符号表示为________.14.正方体ABCD -A 1B 1C 1D 1中,二面角C 1-AB -C 的平面角等于________.15.设平面α∥平面β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则SD =________.16.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________.答案1.D 2.C 3.C 4. D 5.B 6. D 7. D 8. D 9. C 10. B11. C 12. B13. α∩β=AB 14. 45° 15. 916. ①②④一、选择题1.设α,β为两个不同的平面,l,m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若 α∥β,则l∥m;②若l⊥m,则 α⊥β.那么().A.①是真命题,②是假命题B.①是假命题,②是真命题C.①②都是真命题D.①②都是假命题2.如图,ABCD-A1B1C1D1为正方体,下面结论错误..的是().A.BD∥平面CB1D1B.AC1⊥BDC.AC1⊥平面CB1D1D.异面直线AD与CB1角为60°(第2题) 3.关于直线m,n与平面 α,β,有下列四个命题:①m∥α,n∥β 且 α∥β,则m∥n;②m⊥α,n⊥β 且 α⊥β,则m⊥n;③m⊥α,n∥β 且 α∥β,则m⊥n;④m∥α,n⊥β 且 α⊥β,则m∥n.其中真命题的序号是().A.①②B.③④C.①④D.②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线其中假.命题的个数是().A.1 B.2 C.3 D.45.下列命题中正确的个数是().①若直线l上有无数个点不在平面 α 内,则l∥α②若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都没有公共点A.0个B.1个C.2个D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面().A.不存在B.有唯一的一个C.有无数个D.只有两个7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为().A.90°B.60°C.45°D.30°8.下列说法中不正确的....是().A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直9.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面③如果两条直线都平行于一个平面,那么这两条直线互相平行④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直其中真命题的个数是().A.4 B.3 C.2 D.110.异面直线a,b所成的角60°,直线a⊥c,则直线b与c所成的角的范围为().A.[30°,90°]B.[60°,90°]C.[30°,60°]D.[30°,120°]二、填空题11.已知三棱锥P-ABC的三条侧棱P A,PB,PC两两相互垂直,且三个侧面的面积分别为S1,S2,S3,则这个三棱锥的体积为.12.P是△ABC所在平面 α 外一点,过P作PO⊥平面 α,垂足是O,连P A,PB,PC.(1)若P A =PB =PC ,则O 为△ABC 的 心;(2)P A ⊥PB ,P A ⊥PC ,PC ⊥PB ,则O 是△ABC 的 心;(3)若点P 到三边AB ,BC ,CA 的距离相等,则O 是△ABC 的 心;(4)若P A =PB =PC ,∠C =90º,则O 是AB 边的 点;(5)若P A =PB =PC ,AB =AC ,则点O 在△ABC 的 线上.13.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点,将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为 .14.直线l 与平面 α 所成角为30°,l ∩α=A ,直线m ∈α,则m 与l 所成角的取值范围 是 .15.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为d 1,d 2,d 3,d 4,则d 1+d 2+d 3+d 4的值为 .16.直二面角 α-l -β 的棱上有一点A ,在平面 α,β 内各有一条射线AB ,AC 与l 成45°,AB ⊂α,AC ⊂β,则∠BAC = .答案1.D解析:命题②有反例,如图中平面 α∩平面 β=直线n ,l ⊂α,m ⊂β,且l ∥n ,m ⊥n ,则m ⊥l ,显然平面 α 不垂直平面 β, (第1题)故②是假命题;命题①显然也是假命题,2.D解析:异面直线AD 与CB 1角为45°.3.D解析:在①、④的条件下,m ,n 的位置关系不确定.4.D解析:利用特殊图形正方体我们不难发现①②③④均不正确,故选择答案D . J(第13题)5.B解析:学会用长方体模型分析问题,A 1A 有无数点在平面ABCD 外,但AA 1与平面ABCD 相交,①不正确;A 1B 1∥平面ABCD ,显然A 1B 1不平行于BD ,②不正确;A 1B 1∥AB ,A 1B 1∥平面ABCD ,但AB ⊂平面ABCD 内,③不正确;l 与平面α平行,则l 与 α 无公共点,l 与平面 α 内的所有直线都没有公共点,④正确,应选B . (第5题)6.B解析:设平面 α 过l 1,且 l 2∥α,则 l 1上一定点 P 与 l 2 确定一平面 β ,β 与 α 的交线l 3∥l 2,且 l 3 过点 P . 又过点 P 与 l 2 平行的直线只有一条,即 l 3 有唯一性,所以经过 l 1 和 l 3 的平面是唯一的,即过 l 1 且平行于 l 2 的平面是唯一的.7.C解析:当三棱锥D -ABC 体积最大时,平面DAC ⊥ABC ,取AC 的中点O ,则△DBO 是等腰直角三角形,即∠DBO =45°.8.D解析:A .一组对边平行就决定了共面;B .同一平面的两条垂线互相平行,因而共面;C .这些直线都在同一个平面内即直线的垂面;D .把书本的书脊垂直放在桌上就明确了.9.B解析:因为①②④正确,故选B .10.A解析:异面直线a ,b 所成的角为60°,直线c ⊥a ,过空间任一点 P ,作直线 a ’∥a , b ’∥b , c ’∥c . 若a ’,b ’,c ’ 共面则 b ’ 与 c ’ 成 30° 角,否则 b ’ 与 c ’ 所成的角的范围为(30°,90°],所以直线b 与c 所成角的范围为[30°,90°] .二、填空题11.313212S S S .解析:设三条侧棱长为 a ,b ,c .则21ab =S 1,21bc =S 2,21ca =S 3 三式相乘: ∴ 81a 2 b 2 c 2=S 1S 2S 3,∴ abc =23212S S S .∵ 三侧棱两两垂直,∴ V =31abc ·21=313212S S S .12.外,垂,内,中,BC 边的垂直平分.解析:(1)由三角形全等可证得 O 为△ABC 的外心;(2)由直线和平面垂直的判定定理可证得,O 为△ABC 的垂心;(3)由直线和平面垂直的判定定理可证得,O 为△ABC 的内心;(4)由三角形全等可证得,O 为 AB 边的中点;(5)由(1)知,O 在 BC 边的垂直平分线上,或说 O 在∠BAC 的平分线上. 13.60°.解析:将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为60°.14.[30°,90°].解析:直线l 与平面 α 所成的30°的角为m 与l 所成角的最小值,当m 在 α 内适当旋转就可以得到l ⊥m ,即m 与l 所成角的的最大值为90°.15.36. 解析:作等积变换:4331⨯×(d 1+d 2+d 3+d 4)=4331⨯·h ,而h =36. 16.60°或120°.解析:不妨固定AB ,则AC 有两种可能.。
p))tan(pp5p4p2p 3333 333B CA1B111.已知全集=I {Îx x |R },集合=A {x x |<1或x >3},集合=B {1|+<<k x k x ,Îk R },且Æ=B A C I )(,则实数k 的取值范围是的取值范围是 A.0<k 或3>k B.32<<k C.30<<k D.31<<-k12.已知函数îíì=xx x f 3log )(2)0()0(£>x x ,则)]41([f f 的值是的值是 A.9 B.91 C.-9 D.-91 13.设函数1)(22+++-=x x n x x x f (Îx R ,且21-¹n x ,Îx N *),)(x f 的最小值为n a ,最大值为n b ,记)1)(1(n n n b a c --=,则数列}{n cA.是公差不为0的等差数列的等差数列B.是公比不为1的等比数列的等比数列C.是常数列是常数列D.不是等差数列,也不是等比数列不是等差数列,也不是等比数列 14.若p p 43<<x ,则2cos 12cos 1xx -++等于等于 A.)24cos(2x -p B.)24cos(2x --p C.)24sin(2x -p D.)24sin(2x --p15.下面五个命题:⑴所有的单位向量相等;⑵长度不等且方向相反的两个向量不一定是共线向量;⑶若b a ,满足||||b a >且b a ,同向,则b a >;⑷由于零向量的方向不确定,故0与任何向量不平行;⑸对于任何向量b a ,,必有||b a +≤||||b a +.其中正确命题的序号为命题的序号为 A.⑴,⑵,⑶⑴,⑵,⑶ B.⑸ C.⑶,⑸⑶,⑸ D.⑴,⑸⑴,⑸16.下列不等式中,与不等式xxx --223≥0同解的是同解的是 A.)2)(3(x x --≥0 B.0)2)(3(>--x x C.32--x x≥0 D.)2lg(-x ≤0 17.曲线214y x =+-与直线:(2)4l y k x =-+有两个不同的交点,则实数k 的取值范围是的取值范围是A.(512,+∞)∞) B.(512,3]4 C.(0,512) D.(13,3]418.双曲线22148x y -=的两条渐进线的夹角是的两条渐进线的夹角是A.arctan 2B.arctan 22C.2arctan2D.2arctan419(A).如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为所在曲线的形状为A B PA1B 1OA B PA1B 1A B PA1B 1O A B PA1B 1O ABC DP A1B 1C 1D 1A. B. C. D. (第9(A)题图) 19(B).已四知四棱棱锥P -ABCD 的底面为行平行四四形边形,,设x =2P A 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,则x ,y 之间的关系为之间的关系为A.x >yB.x =yC.x <yD.不能确定不能确定 20.从0,1,2,…,9这10个数字中,选出3个数字组成三位数,其中偶数个数为个数字组成三位数,其中偶数个数为 A.328 B.360 C.600 D.720 pABACADBAB11411222aCD}+ab ab22233333ax -1[]1111那么异面直线所成角的大小是所成角的大小是 22221 D D 1 B 1 51.等比数列}{n a 的公比为q ,则“01>a ,且1>q ”是“对于任意正自然数n ,都有n n a a >+1”的 A.充分非必要条件充分非必要条件 B.必要非充分条件必要非充分条件 C.充要条件充要条件 D.既非充分又非必要条件既非充分又非必要条件52.已知函数)(x f 是定义在R 上的奇函数,当0<x 时,xx f )31()(=,那么)9(1--f 的值为的值为 (A )2 (B )-2 (C )3 (D )-3 53.已知数列}{n a 中,31=a ,62=a ,n n n a a a -=++12,则2003a 等于等于(A )6 (B )-6 (C )3 (D )-3 54.在(0,p 2)内,使x x x tan sin cos >>成立的x 的取值范围是的取值范围是(A )(4p ,43p )(B )(45p ,23p )(C )(23p ,p 2) (D )(23p ,47p ) 55.设21,l l 是基底向量,已知向量2121213,2,l l CD l l CB kl l AB -=+=-=,若A ,B ,D 三点共线,则k 的值是的值是(A )2 (B )3 (C )-2 (D )-3 56.使ax x <-+-|3||4|有实数解的a 的取值范围是的取值范围是 (A )7>a (B )71<<a (C )1>a (D )a ≥1 57.直线(1)(1)0x a y b +++=与圆222x y +=的位置关系是的位置关系是 (A )相交)相交 (B )相切)相切 (C )相离)相离 (D )相交或相切交或相切58.设O 是椭圆3cos2sinx yj j==ìí=î的中心,P 是椭圆上对应于6p j =的点,那么直线OP 的斜率为的斜率为 (A )33(B )3 (C )332 (D )239959(A).正方体ABCD -A 1B 1C 1D 1中,M 为BC 中点,N 为D 1C 1的中点,则NB 1与A 1M所成的角等于所成的角等于(A )300 (B )450 (C )600 (D )90059(B).如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为度的最小值为(A )61cm (B )157cm (C )1021cm (D )1037cm 60.对2×2数表定义平方运算如下:数表定义平方运算如下:222a b a b a b a bc ab bd c d c d c d ac cd bc d æö++æöæöæö==ç÷ç÷ç÷ç÷++èøèøèøèø . 则21201-æöç÷èø为 (A )1011æöç÷èø (B )1001æöç÷èø (C )1101æöç÷èø(D )0110æöç÷èø61.集合=P {x ,1},=Q {y ,1,2},其中Îy x ,{1,2,…,9}且Q P Ì,把满足上述条件的一对有序整数(y x ,)作为一个点,这样的点的个数是)作为一个点,这样的点的个数是 A.9 B.14 C.15 D.21 62.已知函数3)(x x x f --=,1x ,2x ,Î3x R ,且021>+x x ,032>+x x ,013>+x x ,则,则)()()(321x f x f x f ++的值的值(A )一定大于零(B )一定小于零)一定小于零 (C )等于零)等于零 (D )正负都有可能)正负都有可能63.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则||n m -等于等于(A )1 (B )43 (C )21 (D )8364.设b a ,是一个钝角三角形的两个锐角,则下列四个不等式中不正确的是是一个钝角三角形的两个锐角,则下列四个不等式中不正确的是 (A )1tan tan <b a (B )2sin sin <+b a (C )1cos cos >+b a (D )2tan )tan(21ba b a +<+ 65.在四边形ABCD 中,0=×BC AB ,AD BC =,则四边形ABCD 是(A )直角梯形)直角梯形 (B )菱形)菱形 (C )矩形)矩形 (D )正方形)正方形 66.0>a ,0>b 且1=+b a ,则下列四个不等式中不成立的是成立的是 (A )ab ≤41 (B )b a 11+≥4 (C )22b a +≥21 (D )a ≥1 67.直线210x a y ++=与直线2(1)30a x by +-+=互相垂直,a b Î,R ,则||ab 的最小值是的最小值是 (A )1 (B )2 (C )4 (D )5 68.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2,3)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为成等差数列,则椭圆方程为(A )22186x y += (B )221166x y +=(C )22184x y += (D )221164x y += 69(A).已知球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,则此球的体积为此球的体积为 (A )33312cm p (B )33316cm p (C )3316cm p (D )3332cm p 69(B).有三个平面a ,β,γ,下列命题中正确的是,下列命题中正确的是(A )若a ,β,γ两两相交,则有三条交线两两相交,则有三条交线(B )若a ⊥β,a ⊥γ,则β∥γ(C )若a ⊥γ,β∩a =a ,β∩γ=b ,则a ⊥b(D )若a ∥β,β∩γ=Æ,则a ∩γ=Æ 70.n xx 2)1(-展开式中,常数项是展开式中,常数项是(A )n n n C 2)1(- (B )12)1(--n n n C (C )121)1(++-n n n C (D )n n C 223x [)p p )p p[p p ]p p)p )p )p )p2223)3)3ABD1B 1PQPQRR SPPQQRRS)pBAC1Ap p )p )sin(p )p43343322)2)2( 323x111c c b b a a 的值为的值为 OB OA OC )p 3333322(1)(2)11x y -+-ABCDpp p 33xy O11-p21b+33223222--22123)}11p p)(p6p p p pA BCMαβ3 p p p2pABAPp p p2156305533AB CA11C1E)参考答案题号1 2 3 4 5 6 7 8 9(A) 9(B) 10 答案A A A D D C C C A C B 题号11 12 13 14 15 16 17 18 19(A) 19(B) 20 答案A B C C B D B B C D A 题号21 22 23 24 25 26 27 28 29(A) 29(B) 30 答案B C D B D C C D B A A 题号31 32 33 34 35 36 37 38 39(A) 39(B) 40 答案C D D D A A D B A A B 题号41 42 43 44 45 46 47 48 49(A) 49(B) 50 答案A C A C D B D D C C D 题号51 52 53 54 55 56 57 58 59(A) 59(B) 60 答案A A B C A C D D D A B 题号61 62 63 64 65 66 67 68 69(A) 69(B) 70 答案B B C D C D B A D D A 题号71 72 73 74 75 76 77 78 79(A) 79(B) 80 答案C A C D C D A C A D C 题号81 82 83 84 85 86 87 88 89(A) 89(B) 90 答案A A D B B C A C B A A 题号91 92 93 94 95 96 97 98 99(A) 99(B) 100 答案B B C D B C C A D C D 题号101 102 103 104 105 106 107 108 109(A) 109(B) 110 答案D C B C C C A D C B B 题号111 112 113 114 115 116 117 118 119(A) 119(B) 120 答案D B B B C C A D D D C 题号121 122 123 124 125 126 127 128 129(A) 129(B) 130 答案C A A C B C A C C C C 题号131 132 133 134 135 136 137 138 139(A) 139(B) 140 答案A C C A D D D C B C B 题号141 142 143 144 145 146 147 148 149(A) 149(B) 150 答案C C A D C C B D A B D 。
一、等差数列选择题1.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1 B .2C .3D .4解析:B 【分析】 由题意可得221114n na a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,得221114n na a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,所以2114(1)43nn n a =+-=-,因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14n b ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题2.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18 B .19C .20D .21解析:B 【分析】由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得10a .【详解】()122n n a a n --=≥,且11a =,∴数列{}n a 是以1为首项,以2为公差的等差数列,通项公式为()12121n a n n =+-=-,10210119a ∴=⨯-=,故选:B.3.设等差数列{}n a 的前n 和为n S ,若()*111,m m a a a m m N +-<<->∈,则必有( )A .0m S <且10m S +>B .0m S >且10m S +>C .0m S <且10m S +<D .0m S >且10m S +<解析:D 【分析】由等差数列前n 项和公式即可得解. 【详解】由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()02m m m a a S ++++=<. 故选:D.4.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103 B .107C .109D .105解析:B 【分析】根据题意可知正整数能被21整除余2,即可写出通项,求出答案. 【详解】根据题意可知正整数能被21整除余2,21+2n a n ∴=, 5215+2107a ∴=⨯=.故选:B.5.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12 B .20C .40D .100解析:B 【分析】由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:1011045100S a d =+=,12920a d ∴+=, 4712920a a a d ∴+=+=.故选:B.6.冬春季节是流感多发期,某地医院近30天每天入院治疗流感的人数依次构成数列{}n a ,已知11a =,22a=,且满足()211+-=+-nn n a a (n *∈N ),则该医院30天入院治疗流感的共有( )人A .225B .255C .365D .465解析:B 【分析】直接利用分类讨论思想的应用求出数列的通项公式,进一步利用分组法求出数列的和 【详解】解:当n 为奇数时,2n n a a +=, 当n 为偶数时,22n n a a +-=, 所以13291a a a ==⋅⋅⋅==,2430,,,a a a ⋅⋅⋅是以2为首项,2为公差的等差数列,所以30132924301514()()1515222552S a a a a a a ⨯=++⋅⋅⋅++++⋅⋅⋅+=+⨯+⨯=, 故选:B7.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( ) A .9 B .12C .15D .18解析:A 【分析】在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】在等差数列{a n }中,a 5=3,a 9=6,所以95132a a a =+,所以139522639a a a =-=⨯-=, 故选:A8.已知数列{}n a 的前项和221n S n =+,n *∈N ,则5a =( )A .20B .17C .18D .19解析:C 【分析】根据题中条件,由554a S S =-,即可得出结果. 【详解】因为数列{}n a 的前项和2*21,n S n n N =+∈, 所以22554(251)(241)18a S S =-=⨯+-⨯+=. 故选:C .9.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则612SS =( ) A .177B .83 C .143D .103解析:D 【分析】由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列, 所以()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =.又()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而126103S S =. 故选:D 【点睛】 思路点睛:(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,(2)()()633962S S S S S ⋅-=+-,且936S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =.10.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC . 6SD . 7S解析:B 【分析】根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】依题意556475600000a a a a a a a d >⎧>⎧⎪⇒<⎨⎨+=+<⎩⎪<⎩,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S .11.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8 B .13C .26D .162解析:B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.12.已知n S 为等差数列{}n a 的前n 项和,3518a S +=,633a a =+,则n a =( ) A .1n - B .nC .21n -D .2n解析:B 【分析】根据条件列出关于首项和公差的方程组,求解出首项和公差,则等差数列{}n a 的通项公式可求. 【详解】因为3518a S +=,633a a =+,所以11161218523a d a d a d +=⎧⎨+=++⎩,所以111a d =⎧⎨=⎩,所以()111n a n n =+-⨯=,故选:B.13.设等差数列{}n a 的前n 项和为n S ,公差1d =,且6210S S ,则34a a +=( )A .2B .3C .4D .5解析:B 【分析】根据等差数列的性质,由题中条件,可直接得出结果. 【详解】因为n S 为等差数列{}n a 的前n 项和,公差1d =,6210S S , 所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B.14.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10- B .8C .12D .14解析:D 【分析】利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】147446=32a a a a a ++=∴=,则()177477142a a S a +=== 故选:D15.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10C .12D .14解析:C 【分析】利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C二、等差数列多选题16.(多选)在数列{}n a 中,若221(2,,n n a a p n n N p *--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .(){}1n- 是等方差数列C .{}2n是等方差数列.D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 解析:BD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}na 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n∴-是等方差数列,故B 正确; 对于C ,数列{}2n中,()()22221112234nn n nn aa----=-=⨯不是常数,{}2n∴不是等方差数列,故C 错误; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BD. 【点睛】关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.17.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解.【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.18.题目文件丢失!19.已知数列{}n a 满足0n a >,121n n n a na a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )A .11a =B .121a a =C .201920202019S a =D .201920202019S a >解析:BC 【分析】根据递推公式,得到11n n nn n a a a +-=-,令1n =,得到121a a =,可判断A 错,B 正确;根据求和公式,得到1n n nS a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】由121n n n a n a a n +=+-可知2111n n n n n a n n n a a a a ++--==+,即11n n nn n a a a +-=-, 当1n =时,则121a a =,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=+++=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:由递推公式求通项公式的常用方法:(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解; (2)累乘法,形如()1n na f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通项时,常需要构造成等比数列求解;(4)已知n a 与n S 的关系求通项时,一般可根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解.20.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( )A .12d =B .12d =-C .918S =D .936S =解析:BD 【分析】由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】因为1937538a a a a +=+=+=, 所以()1999983622a a S +⨯===. 因为35a =,73a =,所以公差731732a a d -==--. 故选:BD21.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n = 解析:BCD 【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解. 【详解】设等差数列{}n a 的公差为d ,由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2211168642n n n a n d n n n S -=+=-+=--+,所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈, 所以使得0n S >的最大整数15n =,故D 正确. 故选:BCD.22.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+解析:AC 【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-.故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.23.(多选题)等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则下列命题正确的是( )A .若59S S =,则必有14S =0B .若59S S =,则必有7S 是n S 中最大的项C .若67S S >,则必有78S S >D .若67S S >,则必有56S S > 解析:ABC 【分析】根据等差数列性质依次分析即可得答案. 【详解】解:对于A.,若59S S =,则67890a a a a +++=,所以781140a a a a +=+=,所以()114141402a a S +==,故A 选项正确; 对于B 选项,若59S S =,则780+=a a ,由于10a >,公差0d ≠,故0d <,故780,0a a ><,所以7S 是n S 中最大的项;故B 选项正确;C. 若67S S >,则70a <,由于10a >,公差0d ≠,故0d <,故80a <,6a 的符号不定,故必有78S S >,56S S >无法确定;故C 正确,D 错误. 故选:ABC .【点睛】本题考查数列的前n 项和的最值问题与等差数列的性质,是中档题.24.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列B .数列{}n na 是递增数列C .数列{}n a n是递增数列 D .数列{}3n a nd +是递增数列解析:AD【分析】根据等差数列的性质,对四个选项逐一判断,即可得正确选项.【详解】0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,()()2111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d-<时,数列{}n na 不是递增数列,故②不正确,1n a a d d n n -=+,当10a d -<时,{}n a n不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确, 故选:AD【点睛】本题主要考查了等差数列的性质,属于基础题.25.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a =B .当9n =或10时,n S 取最大值C .911a a <D .613S S =解析:AD【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误.【详解】解:1385a a S +=,111110875108,90,02d a a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误. 9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误. 61656+5415392d S a d d d ⨯==-+=-, 131131213+11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.。
高中数学集合练习与答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .42.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞ 3.已知集合,,则( )A .B .C .D .4.已知全集,集合为A .B .C .D .5. 若命题p 为:为A .B .C .D .6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行; ③两两相交的三条直线最多可以确定三个平面; ④如果两个平面有三个公共点,则这两个平面重合. A .0 B .1 C .2 D .37.设集合, ,则( )A .B .C .D . 8. 已知,则( )A .B .C .D .9. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题10. 设集合,集合,则集合( ) A .B .C .D .11 已知集合,,则=( ) A .B .C .D .12. 【河北省衡水中学2018届高三高考押题(一)理数试题试卷】在等比数列中,“是方程的两根”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a <14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题 15. 设集合,,则( )A .B .C .D .16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥ C {13}x x ≤≤. D.{2}x x ≥-17.已知全集U=R ,则A .B .C .D .18.集合,,,若,则的取值范围是( )A .B .C .D . 19. 设集合{|1},{|1}A x x B x x =>-=≥,则“x A ∈且x B ∉”成立的充要条件是( )A .11x -<≤B .1x ≤C .1x >-D .11x -<<20.下列命题中的假命题是( )A .B .C .D .21. 已知全集,集合和的关系的韦恳(V enn )图如图所示,则阴影部分所示的集合的元素共有( )A .1个B .2个C .3个D .无穷个22. 设,,a b c R ∈,则“1abc =”是a b c a b c≤+=”的 A .充分条件但不是必要条件, B .必要条件但不是充分条件 C .充分必要条件 D .既不充分也不必要的条件23. 已知集合{|1}A x x =<,{|1x B x e =< },则( ) A .{|1}A B x x ⋂=< B .()R A C B R ⋃=C .{|}A B x x e ⋃=<D .(){|01}R C A B x x ⋂=<< 二、填空题 1.已知下列命题:①命题“2,35x R x x ∀∈+<”的否定是“2,35x R x x ∃∈+<”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝⌝∧为真命题”;③“2015a >”是“2017a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题 其中,所有真命题的序号是__________.答案一、选择题1. 已知集合{}6A x N x =∈<,{}2,xB y y x A ==∈,则A B 中元素的个数是( )A .1B .2C .3D .4【答案】C【解析】∵{}6A x N x =∈<, ∴{}0,1,2,3,4,5A =, 又{}2,xB y y x A ==∈, ∴{}1,2,4,8,16,32B =, ∴{}1,2,4AB =,有3个元素,故选:C .2.已知集合(){}|10A x x x =-≤,(){}|ln B x y x a ==-,若A B A =,则实数a 的取值范围为( ) A .(),0-∞ B .(],0-∞C .()1,+∞D .[)1,+∞【答案】A【解析】(){}|1001A x x x x =-≤⇒≤≤(){}|ln B x y x a x a ==-⇒>A B A A B ⋂=⇒⊆所以0a < 故答案选A 3.已知集合,,则( )A .B .C .D .【答案】A 【解析】集合集合,则,故选A.4. 已知全集,集合为A .B .C .D .【解析】因为,所以或.所以.故选B.5.若命题p为:为A.B.C.D.【答案】C【解析】根据的构成方法得,为.故选C.6.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.3【答案】C分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.7.设集合,,则()A.B.C.D.【答案】B【解析】A={x|y=log2(2﹣x)}={x|x<2},B={x|x2﹣3x+2<0}={x|1<x<2},则∁A B={x|x≤1},故选:B.8.已知,则()A.B.C.D.【解析】试题分析:因为,,所以,.选.9.下列有关命题的说法正确的是()A.命题“若,则”的否命题为“若,则”B.命题“若,则,互为相反数”的逆命题是真命题C.命题“,使得”的否定是“,都有”D.命题“若,则”的逆否命题为真命题【答案】B【解析】“若,则”的否命题为“若,则”,错误;逆命题是“若则,互为相反数,”,正确;“,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.10.设集合,集合,则集合()A.B.C.D.【答案】C【解析】由题意得,,∴,∴.故选C.11已知集合,,则=()A.B.C.D.【答案】B【解析】由题知,,则故本题答案选.12.在等比数列中,“是方程的两根”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】D【解析】由韦达定理知,则,则等比数列中,则.在常数列或中,不是所给方程的两根.则在等比数列中,“,是方程的两根”是“”的充分不必要条件.故本题答案选.13. 设集合{|2}A x x =<, {}B x x a =,全集U R =,若UA B ⊆,则有( )A .0a =B .2a ≤C .2a ≥D .2a < 【答案】C【解析】(){}2,2,U A C B x a =-=≤,所以2a ≤,故选C.14. 下列有关命题的说法正确的是( )A .命题“若,则”的否命题为“若,则”B .命题“若,则,互为相反数”的逆命题是真命题C .命题“,使得”的否定是“,都有”D .命题“若,则”的逆否命题为真命题【答案】B 【解析】 “若,则”的否命题为“若,则”,错误;逆命题是 “若则,互为相反数,”,正确; “,使得”的否定是“,都有”,错误;“若,则”为假命题,所以其逆否命题也为假命题,错误,故选B.15. 设集合,,则( )A .B .C .D .【答案】B【解析】由题意可得:,则集合=.本题选择B 选项.16. 已知集合2{6}A x y x x ==-++,集合{1}B x x =≥,则A B =A.{23}x x -≤≤ B {1}x x ≥C {13}x x ≤≤. D.{2}x x ≥-【答案】C【解析】由题意知集合2{|60}{|23}A x x x x x =--≤=-≤≤,所以{|13}AB x x =≤≤ ,故选C 。
高中数学试卷(含答案)高中数学试卷(含答案)第一部分:选择题(共50分)1. 若实数a满足a² - 3a + k = 0有两个相等的实根,则k的取值范围是()A. k < 0B. k = 0C. k > 0D. k ≠ 3/2答案:C解析:对于二次方程a² - 3a + k = 0,判别式Δ = (-3)² - 4 × 1 × k需要满足Δ = 0。
解得k = 9/4,因此k > 0。
2. 已知三阶行列式的展开式为|A| = a₁₂a₂₃a₃₁ + a₁₃a₂₁a₃₂ - a₁₁a₂₃a₃₂ - a₁₂a₂₁a₃₃ + a₁₃a₂₂a₃₁ - a₁₃a₂₂a₃₃,则|A|的值为()A. 0B. 1C. -1D. 2解析:根据行列式的展开式可得|A| = a₁₂a₂₃a₃₁ + a₁₃a₂₁a₃₂- a₁₁a₂₃a₃₂ - a₁₂a₂₁a₃₃ + a₁₃a₂₂a₃₁ - a₁₃a₂₂a₃₃。
由于这是一个三阶行列式,对于任意的i,aᵢᵢ出现了两次,所以|A| = 0。
3. 已知二次函数f(x) = ax² + bx + c的图像过点(2,1),且在x轴上有一个零点。
下列说法正确的是()A. a > 0且c > 0B. a < 0且c < 0C. a > 0且c < 0D. a < 0且c > 0答案:C解析:由已知条件得到方程f(2) = a(2)² + b(2) + c = 1,化简得4a +2b + c = 1。
又由于在x轴上有一个零点,即方程ax² + bx + c = 0有实根,所以b² - 4ac ≥ 0。
联立两个方程,解得a > 0且c < 0。
4. 若a + b = 2c,则下列选项中一定为正数的是()A. a + 2b - 3cB. 3a + 4b - 5cC. a - 4b + 3cD. 2a + 3b - 4c解析:利用已知条件a + b = 2c,可以将选项中的式子用a和b表示。
一、数列多选题1.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2-B .1-C .1D .2答案:ABC 【分析】根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减解析:ABC 【分析】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n-<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】根据不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立, 由12+n 递减,且1223n<+≤, 所以2a -≤,即2a ≥-, 当n 为偶数时有:12a n<-恒成立, 由12n -第增,且31222n ≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC . 【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.2.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .65答案:ABC 【分析】利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列满足,,依次取代入计算得, ,,,,因此继续下去会循环解析:ABC 【分析】利用数列{}n a 满足的递推关系及135a =,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,,,5555. 故选:ABC. 【点睛】本题考查了数列的递推公式的应用和周期数列,属于基础题.3.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .135********a a a a a +++⋅⋅⋅+=D .22212201920202019a a a a a ++⋅⋅⋅⋅⋅⋅+= 答案:ABCD 【分析】由题意可得数列满足递推关系,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,可得:.故是斐波那契数列中的第解析:ABCD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.对D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;故选:ABCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换. 4.设等差数列{}n a 的前n 项和为n S .若30S =,46a =,则( ) A .23n S n n =- B .2392-=n n nSC .36n a n =-D .2n a n =答案:BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前项和公式 【详解】解:设等差数列的公差为, 因为,, 所以,解得, 所以, , 故选:BC解析:BC 【分析】由已知条件列方程组,求出公差和首项,从而可求出通项公式和前n 项和公式 【详解】解:设等差数列{}n a 的公差为d , 因为30S =,46a =,所以113230236a d a d ⨯⎧+=⎪⎨⎪+=⎩,解得133a d =-⎧⎨=⎩, 所以1(1)33(1)36n a a n d n n =+-=-+-=-,21(1)3(1)393222n n n n n n nS na d n ---=+=-+=, 故选:BC5.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值答案:ABD 【分析】由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD. 【详解】根据等差数列定义可得,所以数列单调递减,A 正确; 由数列单调递减,可知数列有最大值a1,故B 正解析:ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.6.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <答案:AD 【分析】由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误. 【详解】 由已知得:,结合等差数列的性质可知,,该等差解析:AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.7.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S =,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为22答案:AD运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22. 故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.8.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21答案:BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D . 【详解】由公差,可得,即,① 由a7是a【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭*n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.9.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0B .10S 最小C .712S S =D .190S =答案:ACD 【分析】由得,故正确;当时,根据二次函数知识可知无最小值,故错误;根据等差数列的性质计算可知,故正确;根据等差数列前项和公式以及等差数列的性质可得,故正确. 【详解】因为,所以,所以,即解析:ACD 【分析】由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确. 【详解】因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;当0d <时,1(1)(1)922n n n n n S na d dn d --=+=-+2(19)2dn n =-无最小值,故B 错误;因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a+⨯===,故D 正确.故选:ACD. 【点睛】本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题. 10.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >答案:ABD 【分析】先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确. 【详解】根据题意可知数列为递增解析:ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确;()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.故选:ABD.【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
高中数学向量专项练习一、选择题1. 已知向量若则()A. B. C. 2 D. 42. 化简+ + + 的结果是()A. B. C. D.3.已知向量, 若与垂直, 则()A. -3B. 3C. -8D. 84.已知向量, , 若, 则()A. B. C. D.5.设向量, , 若向量与平行, 则A. B. C. D.6.在菱形中, 对角线, 为的中点, 则()A. 8B. 10C. 12D. 147.在△ABC中, 若点D满足, 则()A. B. C. D.8.在中, 已知, , 若点在斜边上, , 则的值为().A. 6B. 12C. 24D. 489.已知向量若, 则()A. B. C. D.10.已知向量, , 若向量, 则实数的值为A. B. C. D.11.已知向量, 则A. B. C. D.12.已知向量, 则A. B. C. D.13.的外接圆圆心为, 半径为, , 且, 则在方向上的投影为A. 1B. 2C.D. 314.已知向量, 向量, 且, 则实数等于()A. B. C. D.15.已知平面向量, 且, 则实数的值为()A. 1B. 4C.D.16.是边长为的等边三角形, 已知向量、满足, , 则下列结论正确的是()A. B. C. D.17.已知菱形的边长为, , 则()A. B. C. D.18.已知向量, 满足, , 则夹角的余弦值为( )A. B. C. D.19.已知向量=(1, 3), =(-2, -6), | |= , 若(+ )·=5, 则与的夹角为()A. 30° B. 45° C. 60° D. 120°20.已知向量, 则的值为A. -1B. 7C. 13D. 1121.如图, 平行四边形中, , 则()A. B. C. D.22.若向量 , , 则 =( )A. B. C. D.23.在△ 中, 角 为钝角, , 为 边上的高, 已知 , 则 的取值范围为(A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424. 已知平面向量 , , 则向量 ( )A. B. C. D.25.已知向量 , , 则A. (5,7)B. (5,9)C. (3,7)D.(3,9) 26.已知向量 , 且 , 则实数 =( )A. -1B. 2或-1C. 2D. -227.在 中, 若 点 满足 , 则 ( )A. B. C. D.28.已知点 和向量 , 若 , 则点 的坐标为( )A. B. C. D.29.在矩形ABCD 中, 则 ( )A. 12B. 6C.D.30. 已知向量 , ,则 ( ).A. B. C. D.31.若向量 与 共线且方向相同, 则 ( )A. B. C. D.32.设 是单位向量, 且 则 的最小值是( )A. B. C. D.33.如图所示, 是 的边 上的中点, 记 , , 则向量 ( )A. B. C. D.34.如图, 在 是边BC 上的高, 则 的值等于 ( )ADCB35.已知平面向量的夹角为, ()A. B. C. D.36.已知向量且与共线, 则()A. B. C. D.二、填空题37. 在△ABC中, AB=2, AC=1, D为BC的中点, 则=_____________.38.设, , 若, 则实数的值为()A. B. C. D.39.空间四边形中, , , 则()A. B. C. D.40. 已知向量, , 满足, , 若, 则的最大值是 .41. 化简: = .42. 在中, 的对边分别为, 且, , 则的面积为 .43. 已知向量=(1, 2), •=10, | + |=5 , 则| |= .44.如图, 在中, 是中点, , 则.45. 若| |=1, | |=2, = + , 且⊥, 则与的夹角为________。
高中数学试题一、选择题:本大题共12小题,每小题3分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知集合;,则中所含元素的个数为( )2、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学。
初中。
高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A。
简单随机抽样 B。
按性别分层抽样 C。
按学段分层抽样 D。
系统抽样3、设函数,的定义域都为R,且是奇函数,是偶函数,则下列结论中正确的是()(A)是偶函数(B)是奇函数(C)是奇函数(D)是奇函数4、直线L过点P(-1,2),且与以A(-2,-3),B(4,0)为端点的线段相交,则L的斜率的取值范围是()A。
错误! B。
错误!∪(0,5]C。
错误!∪[5,+∞) D。
错误!∪错误!5、如果执行右边的程序框图,输入正整数和实数,输出,则()为的和为的算术平均数和分别是中最大的数和最小的数和分别是中最小的数和最大的数6、设等差数列的前项和为,则()A。
3 B.4 C。
5 D.67.若直线y=kx+1与圆x2+y2+kx+my-4=0交于M,N两点,且M,N关于直线x+2y=0对称,则实数k+m= ()A。
—1 B。
1 C。
0 D.28、某几何体的三视图如图所示,则该几何体的体积为 ( )A. B.C. D.(第8题)(第9题)9、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )A. B。
C. D。
10、如图的矩形长为5、宽为2,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为138颗,则我们可以估计出阴影部分的面积为( )A。
错误! B。
错误! C。
10 D.不能估计11、已知函数,若||≥,则的取值范围是( )A. B. C. D.12、阅读下列一段材料,然后解答问题:对于任意实数x,符号[x]表示“不超过x的最大整数”,在数轴上,当x是整数,[x]就是x,当x不是整数时,[x]是点x左侧的第一个整数点,这个函数叫做“取整函数",也叫高斯(Gauss)函数如[—2]=—2,[—1.5]=— 2,[2。
数学高考选择题训练一1.给定集合=M {4|πθθk =,∈k Z },}02cos |{==x x N ,}12sin |{==a a P ,则下列关系式中,成立的是A.M N P ⊂⊂B.M N P ⊂=C.M N P =⊂D.M N P == 2.关于函数21)32(sin )(||2+-=x x x f ,有下面四个结论:(1))(x f 是奇函数; (2)当2003>x 时,21)(>x f 恒成立;(3))(x f 的最大值是23; (4))(x f 的最小值是21-.其中正确结论的个数是A.1个B.2个C.3个D.4个3.过圆01022=-+x y x 内一点P (5,3)的k 条弦的长度组成等差数列,且最小弦长为数列的首项1a ,最大弦长为数列的末项k a ,若公差∈d [31,21],则k 的取值不可能是A.4B.5C.6D.7 4.下列坐标所表示的点不是函数)62tan(π-=x y 的图象的对称中心的是(A )(3π,0) B.(35π-,0) C.(34π,0) D.(32π,0)5.与向量=l (1,3)的夹角为o 30的单位向量是A.21(1,3)B.21(3,1)C.(0,1)D.(0,1)或21(3,1)6.设实数y x ,满足10<<xy 且xy y x +<+<10,那么y x ,的取值范围是A.1>x 且1>yB.10<<x 且1<yC.10<<x 且10<<yD.1>x 且10<<y7.已知0ab ≠,点()M a b ,是圆222x y r +=内一点,直线m 是以点M 为中点的弦所在的直线,直线l 的方程是2ax by r +=,则下列结论正确的是A.//m l ,且l 与圆相交B.l m ⊥,且l 与圆相切C.//m l ,且l 与圆相离D.l m ⊥,且l 与圆相离8.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是 A.216y x = B.28x y =- C.216y x =或28x y =- D.216y x =或28x y = 9(A).如图,三棱柱ABC -A 1B 1C 1的侧面A 1B ⊥BC ,且A 1C 与底面成600角,AB=BC =2,则该棱柱体积的最小值为A.34B.33C.4D.3ACA 1B 11(第9(A)题图)9(B).在正方体ABCD -A 1B 1C 1D 1中与AD 1成600角的面对角线的条数是 A.4条 B.6条 C.8条 D.10条10.某班级英语兴趣小组有5名男生和5名女生,现要从中选4名学生参加英语演讲比赛,要求男生、女生都有,则不同的选法有A.210种B.200种C.120种D.100种11.已知全集=I {∈x x |R },集合=A {x x |<1或x >3},集合=B {1|+<<k x k x ,∈k R },且∅=B A C I )(,则实数k 的取值范围是A.0<k 或3>kB.32<<kC.30<<kD.31<<-k12.已知函数⎩⎨⎧=xx x f 3log )(2)0()0(≤>x x ,则)]41([f f 的值是 A.9 B.91 C.-9 D.-9113.设函数1)(22+++-=x x n x x x f (∈x R ,且21-≠n x ,∈x N *),)(x f 的最小值为n a ,最大值为n b ,记)1)(1(n n n b a c --=,则数列}{n cA.是公差不为0的等差数列B.是公比不为1的等比数列C.是常数列D.不是等差数列,也不是等比数列 14.若ππ43<<x ,则2cos 12cos 1xx -++等于 A.)24cos(2x -π B.)24cos(2x --π C.)24sin(2x -πD.)24sin(2x--π15.下面五个命题:⑴所有的单位向量相等;⑵长度不等且方向相反的两个向量不一定是共线向量;⑶若b a ,满足||||b a >且b a ,同向,则b a >;⑷由于零向量的方向不确定,故0与任何向量不平行;⑸对于任何向量b a ,,必有||b a +≤||||b a +.其中正确命题的序号为A.⑴,⑵,⑶B.⑸C.⑶,⑸D.⑴,⑸16.下列不等式中,与不等式xx --23≥0同解的是 A.)2)(3(x x --≥0 B.0)2)(3(>--x x C.32--x x ≥0 D.)2lg(-x ≤0 17.曲线1y =:(2)4l y k x =-+有两个不同的交点,则实数k 的取值范围是 A.(512,+∞) B.(512,3]4 C.(0,512) D.(13,3]418.双曲线22148xy-=的两条渐进线的夹角是A.arctanB.arctanC.D.19(A).如图所示,在正方体ABCD -A 1B 1C 1D 1的侧面AB 1内有一动点P 到直线AB 与直线B 1C 1的距离相等,则动点P 所在曲线的形状为1111A. B. C. D. (第9(A)题图) 19(B).已知四棱锥P -ABCD 的底面为平行四边形,设x =2P A 2+2PC 2-AC 2,y =2PB 2+2PD 2-BD 2,则x ,y 之间的关系为A.x >yB.x =yC.x <yD.不能确定 20.从0,1,2,…,9这10个数字中,选出3个数字组成三位数,其中偶数个数为 A.328 B.360 C.600 D.72021.已知集合}01211|{2<--=x x x A ,集合=B {)13(2|+=n x x ,∈n Z },则B A 等于 A.{2} B.{2,8} C.{4,10} D.{2,4,8,10} 22.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为A.0B.-1C.1D.223.首项为-24的等差数列,从第10项开始为正,则公差d 的取值范围是 A.38>d B.3<d C.38≤3<d D.d <38≤324.为了使函数)0(sin >=ωωx y 在区间[0,1]上至少出现50次最大值,则ω的最小值是 A.π98 B.π2197 C.π2199 D.π10025.下列命题中,错误的命题是A.在四边形ABCD 中,若+=,则ABCD 为平行四边形B.已知b a b a +,,为非零向量,且b a +平分a 与b 的夹角,则||||b a =C.已知a 与b 不共线,则b a +与b a -不共线D 对实数1λ,2λ,3λ,则三向量1λ-a 2λb ,2λ-b 3λc ,3λ-c 1λa 不一定在同一平面上26.四个条件:a b >>0;b a >>0;b a >>0;0>>b a 中,能使b a 11<成立的充分条件的个数是 A.1 B.2 C.3 D.4 27.点M (2,0),N 是圆221x y +=上任意一点,则线段MN 中点的轨迹是 A.椭圆 B.直线 C.圆 D.抛物线28.设椭圆22221x y a b +=的焦点在y 轴上,a ∈{1,2,3,4,5},b ∈{1,2,3,4,5,6,7},这样的椭圆共有A.35个B.25个C.21个D.20个29(A).如图,直三棱柱ABC -A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和CC 1上,AP=C 1Q ,则四棱锥B -APQC 的体积为A.2V B.3V C.4V D.5VAC PQA 1B 1C 1(第9(A)题图)29(B).设长方体的三条棱长分别为a ,b ,c ,若长方体所有棱的长度之和为24,一条对角线长度为5,体积为2,则=++cba111A.411 B.114 C.211 D.11230.用10元、5元和1元面值的钞票来购买20元的商品,不同的支付方法有 A.9种 B.8种 C.7种 D.6种31.如果命题“⌝(p 或q )”为假命题,则A.p ,q 均为真命题B.p ,q 均为假命题C.p ,q 中至少有一个为真命题D.p ,q 中至多有一个为真命题 32.设ax x f x++=)110lg()(是偶函数,xx bx g 24)(-=是奇函数,那么b a +的值为(A )1 (B )-1 (C )21- (D )21 33.已知1是2a 与2b 的等比中项,又是a1与b1的等差中项,则22b a b a ++的值是(A )1或21 (B )1或21- (C )1或31 (D )1或31-34.以下命题正确的是(A )βα,都是第一象限角,若βαcos cos >,则βαsin sin > (B )βα,都是第二象限角,若βαsin sin >,则βαtan tan > (C )βα,都是第三象限角,若βαcos cos >,则βαsin sin > (D )βα,都是第四象限角,若βαsin sin >,则βαtan tan >35.已知BE AD ,分别是ABC ∆的边AC BC ,上的中线,且=a ,=b ,则是(A )b a 3234+ (B )b a 3432+ (C )b a 3234- (D )b a 3432- 36.若10<<a ,则下列不等式中正确的是(A )2131)1()1(a a ->- (B )0)1(log )1(>+-a a (C )23)1()1(a a +>- (D )1)1(1>-+a a37.圆221:40C x y x +-=与圆222:610160C x y x y ++++=的公切线有(A )1条 (B )2条 (C )3条 (D )4条 38.已知圆22670x y x +--=与抛物线22(0)y px p =>的准线相切,则p 为 (A )1 (B )2 (C )3 (D )439(A).如图,已知面ABC ⊥面BCD ,AB ⊥BC ,BC ⊥CD ,且AB=BC=CD ,设AD 与面AB C 所成角为α,AB 与面ACD 所成角为β,则α与β的大小关系为ABCD(第9(A)题图)(A )α<β (B )α=β (C )α>β (D )无法确定39(B).在空间四边形ABCD 各边上分别取E 、F 、G 、H 四点,如果EF 和GH 能相交于点P ,那么(A )点P 必在直线AC 上 (B )点P 必在直线BD 上 (C )点P 必在平面ABC 内 (D )点P 必在平面上ABC 外40.用1,3,5,7,9五个数字中的三个替换直线方程Ax+By+C =0中的A 、B 、C ,若A 、B 、C 的值互不相同,则不同的直线共有(A )25条 (B )60条 (C )80条 (D )181条41.已知0>>b a ,全集=I R ,集合}2|{b a x b x M +<<=,}|{a x ab x N <<=,=P {x b x <|≤ab},则P 与N M ,的关系为A.)(N C M p I =B.N M C p I )(=C.N M P =D.N M P = 42.函数x x f a log )(= 满足2)9(=f ,则)2log (91--f 的值是 (A )2 (B )2(C )22 (D )2log 343.在ABC ∆中,A tan 是以-4为第3项,4为第7项的等差数列的公差;B tan 是以31为第3项,9为第6项的等比数列的公比,则该三角形是(A )锐角三角形(B )直角三角形(C )钝角三角形(D )等腰三角形44.某人朝正东方走x km 后,向左转1500,然后朝新方向走3km ,结果它离出发点恰好3km ,那么x 等于(A )3 (B )32 (C )3或 32 (D )3 45.已知b a ,为非零向量,则||||b a b a -=+成立的充要条件是(A )b a // (B )a 与b 有共同的起点 (C )||||b a = (D )b a ⊥ 46.不等式a x ax >-|1|的解集为M ,且M ∉2,则a 的取值范围为(A )(41,+∞) (B )41[,+∞) (C )(0,21)(D )(0,]21 47.过点(1,2)总可作两条直线与圆2222150x y kx y k ++++-=相切,则实数k 的取值范围是(A )2k >(B )32k -<< (C )3k <-或2k > (D )都不对 48.共轭双曲线的离心率分别为1e 和2e ,则1e 和2e 关系为(A )1e =2e (B )121e e⋅=(C )12111e e += (D )2212111e e += 49(A).棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为(A )33a(B )43a(C )63a(D )123a49(B).如图,长方体ABCD -A 1B 1C 1D 1中,∠DAD 1=45°,∠CDC 1=30°, 那么异面直线AD 1与DC 1所成角的大小是A.arcsin4B. 2arcsin 4C. arccos 4D. 2arccos450.某展览会一周(七天)内要接待三所学校学生参观,每天只安排一所学校,其中甲学校要连续参观两天,其余学校均参观一天,则不同的安排方法的种数有(A )210 (B )50 (C )60 (D )120A A 1BCDD1B 1C 1(9 B 图)51.等比数列}{n a 的公比为q ,则“01>a ,且1>q ”是“对于任意正自然数n ,都有n n a a >+1”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件52.已知函数)(x f 是定义在R 上的奇函数,当0<x 时,x x f )31()(=,那么)9(1--f 的值为(A )2 (B )-2 (C )3 (D )-3 53.已知数列}{n a 中,31=a ,62=a ,n n n a a a -=++12,则2003a 等于(A )6 (B )-6 (C )3 (D )-3 54.在(0,π2)内,使x x x tan sin cos >>成立的x 的取值范围是 (A )(4π,43π)(B )(45π,23π)(C )(23π,π2) (D )(23π,47π)55.设21,l l 是基底向量,已知向量2121213,2,l l l l kl l -=+=-=,若A ,B ,D 三点共线,则k 的值是(A )2 (B )3 (C )-2 (D )-3 56.使a x x <-+-|3||4|有实数解的a 的取值范围是(A )7>a (B )71<<a (C )1>a (D )a ≥1 57.直线(1)(1)0x a y b +++=与圆222x y +=的位置关系是(A )相交 (B )相切 (C )相离 (D )相交或相切58.设O 是椭圆3cos 2sin x y ϕϕ=⎧⎨=⎩的中心,P 是椭圆上对应于6πϕ=的点,那么直线OP 的斜率为(A )(B(C (D59(A).正方体ABCD -A 1B 1C 1D 1中,M 为BC 中点,N 为D 1C 1的中点,则NB 1与A 1M所成的角等于(A )300 (B )450 (C )600 (D )90059(B).如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为(A )61cm (B )157cm (C )1021cm (D )1037cm60.对2×2数表定义平方运算如下:222a b a b a b a bc ab bd c d c d c d ac cd bc d ⎛⎫++⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭. 则21201-⎛⎫ ⎪⎝⎭为 (A )1011⎛⎫ ⎪⎝⎭ (B )1001⎛⎫ ⎪⎝⎭ (C )1101⎛⎫⎪⎝⎭(D )0110⎛⎫⎪⎝⎭61.集合=P {x ,1},=Q {y ,1,2},其中∈y x ,{1,2,…,9}且Q P ⊂,把满足上述条件的一对有序整数(y x ,)作为一个点,这样的点的个数是 A.9 B.14 C.15 D.2162.已知函数3)(x x x f --=,1x ,2x ,∈3x R ,且021>+x x ,032>+x x ,013>+x x ,则)()()(321x f x f x f ++的值(A )一定大于零(B )一定小于零 (C )等于零 (D )正负都有可能63.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的等差数列,则||n m -等于(A )1 (B )43 (C )21 (D )8364.设βα,是一个钝角三角形的两个锐角,则下列四个不等式中不正确的是 (A )1tan tan <βα (B )2sin sin <+βα (C )1cos cos >+βα(D )2tan )tan(21βαβα+<+65.在四边形ABCD 中,0=⋅,=,则四边形ABCD 是(A )直角梯形 (B )菱形 (C )矩形 (D )正方形 66.0>a ,0>b 且1=+b a ,则下列四个不等式中不成立的是(A )ab ≤41 (B )ba 11+≥4 (C )22b a +≥21 (D )a ≥1 67.直线210x a y ++=与直线2(1)30a x by +-+=互相垂直,a b ∈,R ,则||ab 的最小值是(A )1 (B )2 (C )4 (D )568.一个椭圆中心在原点,焦点12F F 、在x 轴上,P (2,)是椭圆上一点,且1122||||||PF F F PF 、、成等差数列,则椭圆方程为(A )22186x y+=(B )221166x y +=(C )22184x y +=(D )221164x y +=69(A).已知球的内接三棱锥的三条侧棱两两垂直,长度分别为3cm ,2cm 和3cm ,则此球的体积为 (A )33312cm π(B )33316cm π(C )3316cm π (D )3332cm π69(B).有三个平面α,β,γ,下列命题中正确的是(A )若α,β,γ两两相交,则有三条交线(B )若α⊥β,α⊥γ,则β∥γ(C )若α⊥γ,β∩α=a ,β∩γ=b ,则a ⊥b(D )若α∥β,β∩γ=∅,则α∩γ=∅ 70.n xx 2)1(-展开式中,常数项是(A )n n n C 2)1(- (B )12)1(--n n n C (C )121)1(++-n n n C (D )n n C 271.设集合=M {1|-x ≤<x 2},=N {x x |≤a },若∅≠N M ,则a 的取值范围是 A.(-∞,2)B.(-1,+∞) C.[-1,+∞) D. [-1,1]72.设点P 是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为α,则α的取值范围是(A )[0,32[)2ππ ,)π(B )[0,65[)2ππ ,)π(C )32[π,)π(D )2(π,]65π73.一个项数是偶数的等比数列,它的偶数项的和是奇数项和的2倍,又它的首项为1,且中间两项的和为24,则此等比数列的项数为(A )12 (B )10 (C )8 (D )674.若把一个函数的图象按=a (3π-,-2)平移后得到函数x y cos =的图象,则原图象的函数解析式是(A )2)3cos(-+=πx y (B )2)3cos(--=πx y (C )2)3cos(++=πx y (D )2)3cos(+-=πx y75.设b a ,为非零向量,则下列命题中:①a b a b a ⇔-=+||||与b 有相等的模;②a b a b a ⇔+=+||||||与b 的方向相同;③a b a b a ⇔-<+||||||与b 的夹角为锐角;④||||||||a b a b a ⇔-=+≥||b 且a 与b 方向相反.真命题的个数是(A )0 (B )1 (C )2 (D )3 76.若y x 22log log +≥4,则y x +的最小值为(A )8 (B )24 (C )2 (D )4 77.如果直线2y ax =+与直线3y x b =-关于直线y x =对称,那么a b ,的值分别是 (A )13,6 (B )13,-6 (C )3,-2 (D )3,678.已知抛物线21:2C y x =的图象与抛物线2C 的图象关于直线y x =-对称,则抛物线2C 的准线方程是(A )18x =- (B )12x = (C )18x = (D )12x =-79(A).在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,P ,Q 是对角线A 1C 上的点,且PQ =2a ,则三棱锥P -BDQ 的体积为(A )3363a(B )3183a(C )3243a (D )无法确定ABC DA 1B 1C 1D 1PQ(第9(A)题图)79(B).下列各图是正方体或正四面体,P ,Q ,R ,S 分别是所在棱的中点,这四个点中不共面...的一个图是PQQRR S SP PPQQRR SSPPPQQQR RSSSPP QQRRSSS(A ) (B ) (C ) (D )80.某博物馆要在20天内接待8所学校的学生参观,每天至多安排一所学校,其中一所人数较多的学校要连续参观3天,其余学校均只参观1天,则在这20天内不同的安排方法数是(A )77320A C (B )820A (C )717118A C (D )1818A81.若集合1A ,2A 满足A A A =21 ,则称(1A ,2A )为集合A 的一个分拆,并规定:当且仅当1A =2A 时,(1A ,2A )与(2A ,1A )为集合A 的同一种分拆,则集合=A {1a ,2a ,3a }的不同分拆种数是A.27B.26C.9D.8 82.已知函数x x f 2log )(=,2)(y x y x F +=,,则F ()41(f ,1)等于(A )-1 (B )5 (C )-8 (D )383.一套共7册的书计划每2年出一册,若各册书的出版年份数之和为13979,则出齐这套书的年份是(A )1997 (B )1999 (C )2001 (D )200384.将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是(A )x cos (B )x cos 2 (C )x sin (D )x sin 285.下列命题是真命题的是:①⇔b a //存在唯一的实数λ,使=a λb ;②⇔b a //存在不全为零的实数μλ,,使λ+a μ0=b ;③a 与b 不共线⇔若存在实数μλ,,使λa μ+b =0,则0==μλ;④a 与b 不共线⇔不存在实数μλ,,使λ+a μ0=b .(A )①和 (B )②和③ (C )①和② (D )③和④ 86.若02log )1(log 2<<+a a a a ,则a 的取值范围是(A )(0,1)(B )(0,21)(C )(21,1)(D )(0,1)∪(1,+∞) 87.已知⊙221:9C x y +=,⊙222:(4)(6)1C x y -+-=,两圆的内公切线交于1P 点,外公切线交于2P 点,则1C 分12PP的比为(A )12- (B )13- (C )13 (D )916-88.双曲线2216436x y-=上一点P 到它的左焦点的距离是8,那么P 到它的右准线的距离是(A )325 (B )645 (C )965 (D )128589(A).已知正方形ABCD ,沿对角线AC 将△ADC 折起,设AD 与平面ABC 所成的角为β,当β取最大值时,二面角B ―AC ―D 等于(A )1200 (B )900 (C )600 (D )45089(B).如图,在斜三棱柱A 1B 1C 1-ABC 中,∠BAC =900,BC 1⊥AC ,则C 1在底面ABC 上的射影H 必在(A )直线AB 上 (B )直线BC 上 (C )直线AC 上 (D )△ABC 内部ABA 1B 1C 1(第9(B)题图)90.25人排成5×5方阵,从中选出3人,要求其中任意3人不同行也不同列,则不同的选出方法种数为(A )600 (B )300 (C )100 (D )6091.已知集合=M {1,3},=N {03|2<-x x x ,∈x Z },又N M P =,那么集合P 的真子集共有 A.3个 B.7个 C.8个 D.9个92.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t 分钟注水22t 升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供 (A )3人洗澡 (B )4人洗澡(C )5人洗澡 (D )6人洗澡93.已知等差数列}{n a 中,0≠n a ,若1>m ,且0211=-++-m m m a a a ,3812=-m S ,则m 等于 (A )38 (B )20 (C )10 (D )994.给出四个函数,则同时具有以下两个性质的函数是:①最小正周期是π;②图象关于点(6π,0)对称(A ))62cos(π-=x y (B ))62sin(π+=x y (C ))62sin(π+=x y (D ))3tan(π+=x y95.若1==||||b a ,b a ⊥且⊥+)(b a 32(k b a 4-),则实数k 的值为(A )-6 (B )6 (C )3 (D )-396.若)(x f 是R 上的减函数,且)(x f 的图象经过点A (0,4)和点B (3,-2),则当不等式3|1)(|<-+t x f 的解集为(-1,2)时,t 的值为(A )0 (B )-1 (C )1 (D )2 97.已知圆22:1C x y +=,点A (-2,0)及点B (2,a ),从A 点观察B 点,要使视线不被圆C 挡住,则a 的取值范围是 (A )(-∞,-1)∪(-1,+∞)(B )(-∞,-2)∪(2,+∞) (C )(-∞,,+∞)(D )(-∞,-4)∪(4,+∞)98.设12F F 、是双曲线2214xy -=的两个焦点,点P 在双曲线上,且120PF PF ⋅= ,则12||||PF PF ⋅的值等于(A )2 (B )(C )4 (D )899(A).用一个平面去截正方体,所得的截面不可能...是 (A )六边形 (B )菱形 (C )梯形 (D )直角三角形99(B).已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积与球体积之比是(A )2∶π (B )1∶2π (C )1∶π (D )4∶3π 100.在8)2(-x 的展开式中,x 的指数为正偶数的所有项的系数和为(A )3281 (B )-3281 (C )-3025 (D )3025101.已知集合=A {2|-x ≤x ≤7},}121|{-<<+=m x m x B ,且∅≠B ,若A B A = ,则A.-3≤m ≤4B.-3<<m 4C.42<<mD.m <2≤4102.定义在R 上的偶函数)(x f 在(-∞,0]上单调递增,若21x x >,021>+x x ,则 (A ))()(21x f x f > (B ))()(21x f x f >-(C ))()(21x f x f -< (D ))(1x f ,)(2x f 的大小与1x ,2x 的取值有关 103.设n S n n 1)1(4321--++-+-= ,则32124++++m m m S S S (∈m N *)的值为 (A )0 (B )3 (C )4 (D )随m 的变化而变化 104.已知向量=a (αcos 2,αsin 2),=b (βcos 3,βsin 3),a 与b 的夹角为60o ,则直线021sin cos =+-ααy x 与圆21)sin ()cos (22=++-ββy x 的位置关系是(A )相切 (B )相交 (C )相离 (D )随βα,的值而定105. 方程12221log 2x x x +=+的解所在的区间是A. 1(0,)3B. 11(,)32C. 1(2D.106.已知不等式052>+-b x ax 的解集是}23|{-<<-x x ,则不等式052>+-a x bx 的解是(A )3-<x 或2->x (B )21-<x 或31->x (C )3121-<<-x (D )23-<<-x 107.已知直线1:23l y x =+和直线23l l ,.若1l 与2l 关于直线y x =-对称,且32ll ⊥,则3l 的斜率为(A )-2 (B )12- (C )12(D )2108.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 (A )(0,+∞)(B )(0,2) (C )(1,+∞)(D )(0,1)109(A).长方体的三个相邻面的面积分别为2,3,6,这个长方体的顶点都在同一个球面上,则这个球的面积为(A )π27 (B )π56 (C )π14 (D )π64109(B).二面角α―AB ―β的平面角是锐角,C 是面α内的一点(它不在棱AB 上),点D 是点C 在面β上的射影,点E 是棱AB 上满足∠CEB 为锐角的任意一点,那么(A )∠CEB =∠DEB (B )∠CEB >∠DEB(C )∠CEB <∠DEB (D )∠CEB 与∠DEB 的大小关系不能确定 110.在1003)23(+x 展开式所得的x 的多项式中,系数为有理数的项有 (A )50项 (B )17项 (C )16项 (D )15项111.1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式01121>++c x b x a 和02222>++c x b x a 的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“N M =”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 112.定义在R 上的函数)1(+=x f y 的图象如图1所示,它在定义域上是 减函数,给出如下命题:①)0(f =1;②1)1(=-f ;③若0>x ,则 0)(<x f ;④若0<x ,则0)(>x f ,其中正确的是 (A )②③ (B )①④(C )②④ (D )①③图1 113.在等差数列}{n a 中,公差1=d ,8174=+a a ,则20642a a a +++ (A )40 (B )45 (C )50 (D )55114.已知θ是三角形的一个内角,且21cos sin =+θθ,则方程1cos sin 22=-θθy x 表示(A )焦点在x 轴上的椭圆 (B )焦点在y 轴上的椭圆 (C )焦点在x 轴上的双曲线 (D )焦点在y 轴上的双曲线 115.平面直角坐标系中,O 为坐标原点,已知两点A (2,-1),B (-1,3),若点C满足OB OA OC βα+=其中0≤βα,≤1,且1=+βα,则点C 的轨迹方程为 (A )0432=-+y x (B )25)1()21(22=-+-y x (C )0534=-+y x (-1≤x ≤2)(D )083=+-y x (-1≤x ≤2)116.z y x >>且2=++z y x ,则下列不等式中恒成立的是(A )yz xy > (B )yz xz > (C )xz xy > (D )|||||y z y x > 117.已知直线1l 的方程为y x =,直线2l 的方程为0ax y -=(a 为实数).当直线1l 与直线2l 的夹角在(0,12π)之间变动时,a 的取值范围是(A ),1)∪(1)(B ))(C )(0,1) (D )(1)118. 已知动点(,)M x y 3411x y =+-,则点M 的轨迹是A. 椭园B. 双曲线C. 抛物线D. 两条相交直线119(A).如图所示,在多面体ABCDEF 中,已知ABCD 是边长为3的正方形,EF ∥AB ,EF =23,EF 与面AC 的距离为2,则该多面体的体积为(A )29(B )5 (C )6(D )215ABCDEF(第9(A)题图)119(B).已知边长为a 的菱形ABCD ,∠A =3π,将菱形ABCD 沿对角线折成二面角θ,已知θ∈[3π,32π],则两对角线距离的最大值是(A )a 23 (B )a 43 (C )a 23 (D )a 43120.登山运动员共10人,要平均分为两组,其中熟悉道路的4人,每组都需要分配2人,那么不同的分组方法种数为(A )240 (B )120 (C )60 (D )30121.四个条件:a b >>0,b a >>0,b a >>0,0>>b a 中,能使ba11<成立的充分条件的个数是A.1B.2C.3D.3122.如果函数px nx y ++=21的图象关于点A (1,2)对称,那么(A )=p -2,=n 4 (B )=p 2,=n -4 (C )=p -2,=n -4 (D )=p 2,=n 4123.已知}{n a 的前n 项和142+-=n n S n ,则||||||1021a a a +++ 的值为(A )67 (B )65 (C )61 (D )56124.在ABC ∆中,2π>C ,若函数)(x f y =在[0,1]上为单调递减函数,则下列命题正确的是(A ))(cos )(cos B f A f > (B ))(sin )(sin B f A f > (C ))(cos )(sin B f A f > (D ))(cos )(sin B f A f <125.下列命题中,正确的是(A )||||||b a b a ⋅=⋅ (B )若)(c b a -⊥,则c a b a ⋅=⋅ (C )2a ≥||a (D )c b a c b a ⋅⋅=⋅⋅)()(126.设a ≥0,b ≥0,且1222=+b a ,则21b a +的最大值为(A )43 (B )42(C )423(D )23127.已知点A (3cos α,3sin α),B (2cos β,2sin β),则||AB 的最大值是 (A )5 (B )3 (C )2 (D )1128.椭圆22221x y a b +=(0a b >>)的半焦距为c ,若直线2y x =与椭圆的一个交点的横坐标恰为c ,则椭圆的离心率为(A )(B (C 1 (D 1129(A).斜棱柱底面和侧面中矩形的个数最多可有(A )2个 B )3个 (C )4个 (D )6个129(B).二面角βα--l 是直二面角,βα∈∈B A ,,设直线AB 与βα、所成的角分别为∠1和∠2,则(A )∠1+∠2=900 (B )∠1+∠2≥900 (C )∠1+∠2≤900 (D )∠1+∠2<900130.从10种不同的作物种子中选出6种分别放入6个不同的瓶子中展出,如果甲、乙两种种子都不许放入第一号瓶子内,那么不同的放法共有(A )48210A C 种(B )5919A C 种 (C )5918A C 种 (D )5819C C 种131.已知集合}1log |{2>==x x y y A ,,}1)21(|{>==x y y B x ,,则B A 等于A.}210|{<<y y B.}10|{<<y y C.}121|{<<y y D.∅132.设二次函数c bx ax x f ++=2)(,如果))(()(2121x x x f x f ≠=,则)(21x x f +等于 (A )ab 2-(B )ab - (C )c (D )ab ac 442-133.在等比数列}{n a 中,首项01<a ,则}{n a 是递增数列的充要条件是公比 (A )1>q (B )1<q (C )10<<q (D )0<q134.函数)0(tan )(>=ωωx x f 图象的相邻两支截直线4π=y 所得线段长为4π,则)4(πf 的值是(A )0 (B )1 (C )-1 (D ) 2135.已知n m ,是夹角为o 60的单位向量,则n m a +=2和n m b 23+-=的夹角是 (A )o 30 (B )o 60 (C )o 90 (D )o 120136.设∈c b a ,,(0,+∞),则三个数b a 1+,c b 1+,ac 1+的值 (A )都大于2(B )都小于2(C )至少有一个不大于2(D )至少有一个不小于2137.若直线240mx ny +-=(m n ∈、R )始终平分圆224240x y x y +---=的周长,则mn 的取值范围是(A )(]1,0 (B )(0,1)(C )(-∞,1) (D )(]1,∞-138.已知点P (3,4)在椭圆22221x y a b+=上,则以点P 为顶点的椭圆的内接矩形PABC 的面积是(A )12 (B )24 (C )48 (D )与a b 、的值有关139(A).在直二面角βα--MN 中,等腰直角三角形ABC 的斜边α⊂BC ,一直角边β⊂AC ,BC 与β所成角的正弦值为46,则AB 与β所成的角是(A )6π (B )3π (C )4π (D )2πABCMNαβ(第9(A)题图)139(B).已知三棱锥D -ABC 的三个侧面与底面全等,且AB=AC=3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的大小是 (A )4π (B )3π (C )2π (D )32π140.现从8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的方案,那么男、女同学分别有(A )男生5人,女生3人 (B )男生3人,女生5人 (C )男生6人,女生2人 (D )男生2人,女生6人141.设全集=U {1,2,3,4,5,7},集合=A {1,3,5,7},集合=B {3,5},则 A.B A U = B.B A C U U )(= C.)(B C A U U = D.)()(B C A C U U 142.若函数)(x f y =存在反函数,则方程c x f =)((c 为常数)(A )有且只有一个实根 (B )至少有一个实根 (C )至多有一个实根 (D )没有实根143.下列四个数中,哪一个时数列{)1(+n n }中的一项 (A )380 (B )39 (C )35 (D )23144.若点)sin sin (tan ααα,-P 在第三象限,则角α的终边必在 (A )第一象限 (B )第二象限(C )第三象限 (D )第四象限145.已知平面上有三点A (1,1),B (-2,4),C(-1,2),P 在直线AB 上,使||31||=,连结PC ,Q 是PC 的中点,则点Q 的坐标是 (A )(21-,2)( B )(21,1)(C )(21-,2)或 (21,1)(D )(21-,2)或(-1,2)146.若c b a >>,则下列不等式中正确的是(A )||||c b c a > (B )ac ab > (C )||||c b c a ->- (D )c b a 111<< 147.直线cos1sin130x y +-=的倾斜角是(A )1 (B )12π+ (C )12π- (D )12π-+148.椭圆222212x y m n +=与双曲线222212x y m n-=有公共焦点,则椭圆的离心率是(A) (B(C(D149(A).空间两直线m l 、在平面βα、上射影分别为1a 、1b 和2a 、2b ,若1a ∥1b ,2a 与2b 交于一点,则l 和m 的位置关系为(A )一定异面 (B )一定平行 (C )异面或相交(D )平行或异面 149(B).如图,正方体ABCD -A 1B 1C 1D 1中,E 为BC 的中点,平面B 1D 1E 与平面BB 1C 1C所成角的正切值为 (A )52 (B )25 (C )32 (D )23AB D A 1B 1C 11(第9(B)题图)150.若n xx )1(+展开式中第32项与第72项的系数相同,那么展开式的中间一项的系数为 A.52104C B.52103C C.52102C D.51102C参考答案。