2021年新高考全国卷Ⅰ数学答案与解析
- 格式:doc
- 大小:1.43 MB
- 文档页数:9
机密★启用前2021年普通高等学校招生全国统一考试(新高考I 卷)数学(适用地区:山东、河北、湖北、湖南、江苏、广东、福建)本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A.{}2 B.{}2,3 C.{}3,4 D.{}2,3,42.已知2i z =-,则()i z z +=()A.62i- B.42i- C.62i + D.42i+3.,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B. C.4D.4.下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是()A.0,2π⎛⎫ ⎪⎝⎭B.,2ππ⎛⎫⎪⎝⎭C.3,2ππ⎛⎫ ⎪⎝⎭D.3,22ππ⎛⎫ ⎪⎝⎭5.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A.13B.12C.9D.66.若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A .65-B.25-C.25D.657.若过点(),a b 可以作曲线e xy =的两条切线,则()A.e b a <B.e a b <C.0e ba << D.0e ab <<8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同10.已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,()1,0A ,则()A.12OP OP =B.12AP AP =C.312OA OP OP OP ⋅=⋅D.123OA OP OP OP ⋅=⋅11.已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA ∠最小时,PB =D.当PBA ∠最大时,PB =12.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A.当1λ=时,1AB P △的周长为定值B.当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D.当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()()322xx xa f x -=⋅-是偶函数,则a =______.14.已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.15.函数()212ln f x x x =--的最小值为______.16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nkk S==∑______2dm .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.18.某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.19.记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.20.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.21.在平面直角坐标系xOy 中,已知点()1F 、)2122F MF MF -=,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.22.已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.机密★启用前2021年普通高等学校招生全国统一考试(新高考I 卷)数学(答案解析)(适用地区:山东、河北、湖北、湖南、江苏、广东、福建)本试卷共4页,22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}24A x x =-<<,{}2,3,4,5B =,则A B = ()A.{}2 B.{}2,3 C.{}3,4 D.{}2,3,4【答案】B 【解析】【分析】利用交集的定义可求A B .【详解】由题设有{}2,3A B ⋂=,故选:B .2.已知2i z =-,则()i z z +=()A.62i -B.42i- C.62i+ D.42i+【答案】C 【解析】【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为2z i =-,故2z i =+,故()()()22262z z i i i i +=-+=+故选:C.3.,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.C.4D.【答案】B 【解析】【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则2l ππ=l =.故选:B.4.下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是()A.0,2π⎛⎫ ⎪⎝⎭B.,2ππ⎛⎫⎪⎝⎭C.3,2ππ⎛⎫ ⎪⎝⎭D.3,22ππ⎛⎫ ⎪⎝⎭【答案】A 【解析】【分析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭,对于函数()7sin 6f x x π⎛⎫=- ⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈,取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭,则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件;取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,CD 选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成()sin y A ωx φ=+形式,再求()sin y A ωx φ=+的单调区间,只需把x ωϕ+看作一个整体代入sin y x =的相应单调区间内即可,注意要先把ω化为正数.5.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A.13B.12C.9D.6【答案】C 【解析】【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .【点睛】本题关键在于正确理解能够想到求最值的方法,即通过基本不等式放缩得到.6.若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+()A.65-B.25-C.25D.65【答案】C 【解析】【分析】将式子进行齐次化处理,代入tan 2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos 2sin cos sin 1sin 2sin sin cos sin cos sin cos θθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan 422sin cos 1tan 145θθθθθθθθ++-====+++.故选:C .【点睛】易错点睛:本题如果利用tan 2θ=-,求出sin ,cos θθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.7.若过点(),a b 可以作曲线e xy =的两条切线,则()A.e b a < B.e a b <C.0e b a << D.0e ab <<【答案】D 【解析】【分析】根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果【详解】在曲线x y e =上任取一点(),tP t e,对函数xy e=求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()tty e e x t -=-,即()1tty e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1tf t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点.故选:D.【点睛】数形结合是解决数学问题常用且有效的方法8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立【答案】B 【解析】【分析】根据独立事件概率关系逐一判断【详解】11561()()()()6636366P P P P =====甲,乙,丙,丁,,1()0()()()()()36P P P P P P =≠==甲丙甲丙,甲丁甲丁,1()()()()0()()36P P P P P P =≠=≠乙丙乙丙,丙丁丁丙,故选:B【点睛】判断事件,A B 是否独立,先计算对应概率,再判断()()()P A P B P AB =是否成立二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.有一组样本数据1x ,2x ,…,n x ,由这组数据得到新样本数据1y ,2y ,…,n y ,其中i i y x c =+(1,2,,),i n c =⋅⋅⋅为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同【答案】CD 【解析】【分析】A 、C 利用两组数据的线性关系有()()E y E x c =+、()()D y D x =,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B 、D 的正误.【详解】A :()()()E y E x c E x c =+=+且0c ≠,故平均数不相同,错误;B :若第一组中位数为i x ,则第二组的中位数为i i y x c =+,显然不相同,错误;C :()()()()D y D x D c D x =+=,故方差相同,正确;D :由极差的定义知:若第一组的极差为max min x x -,则第二组的极差为max min max min max min ()()y y x c x c x x -=+-+=-,故极差相同,正确;故选:CD10.已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,()1,0A ,则()A .12OP OP =B.12AP AP =C.312OA OP OP OP ⋅=⋅ D.123OA OP OP OP ⋅=⋅ 【答案】AC 【解析】【分析】A 、B 写出1OP ,2OP、1AP uuu r ,2AP uuu r的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα= ,2(cos ,sin )OP ββ=- ,所以1||1OP == ,2||1OP == ,故12||||OP OP = ,正确;B :1(cos 1,sin )AP αα=- ,2(cos 1,sin )AP ββ=-- ,所以1||2|sin |2AP α===== ,同理2||2|sin |2AP β= ,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+ ,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯= ,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+22cos cos sin sin cos sin sin cos cos sin αβαββαββαβ=---cos cos 2sin sin 2cos(2)αβαβαβ=-=+,错误;故选:AC11.已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA ∠最小时,PB =D.当PBA ∠最大时,PB =【答案】ACD 【解析】【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142x y+=,即240x y +-=,圆心M 到直线AB45==>,所以,点P 到直线AB 的距离的最小值为115425-<,最大值为1154105+<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,BM =,4MP =,由勾股定理可得BP ==CD 选项正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r 的圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点P 到直线l 的距离的取值范围是[],d r d r -+.12.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A.当1λ=时,1AB P △的周长为定值B.当1μ=时,三棱锥1P A BC -的体积为定值C.当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D.当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【答案】BD 【解析】【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B ,将P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数;对于D ,考虑借助向量的平移将P 点轨迹确定,进而考虑建立合适的直角坐标系来求解P 点的个数.【详解】易知,点P 在矩形11BCC B 内部(含边界).对于A ,当1λ=时,11=BP BC BB BC CC μμ=++,即此时P ∈线段1CC ,1AB P △周长不是定值,故A 错误;对于B ,当1μ=时,1111=BP BC BB BB B C λλ=++ ,故此时P 点轨迹为线段11B C ,而11//B C BC ,11//B C 平面1A BC ,则有P 到平面1A BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当12λ=时,112BP BC BB μ=+ ,取BC ,11B C 中点分别为Q ,H ,则BP BQ QH μ=+ ,所以P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,1,0,12A ⎛⎫ ⎪ ⎪⎝⎭,()0,0P μ,,10,,02B ⎛⎫⎪⎝⎭,则1,0,12A P μ⎛⎫=-- ⎪ ⎪⎝⎭,10,,2BP μ⎛⎫=- ⎪⎝⎭ ,()10μμ-=,所以0μ=或1μ=.故,H Q 均满足,故C 错误;对于D ,当12μ=时,112BP BC BB λ=+ ,取1BB ,1CC 中点为,M N .BP BM MN λ=+ ,所以P 点轨迹为线段MN .设010,,2P y ⎛⎫ ⎪⎝⎭,因为0,02A ⎛⎫ ⎪ ⎪⎝⎭,所以01,,22AP y ⎛⎫= ⎪ ⎪⎝⎭,11,122A B ⎛⎫=- ⎪ ⎪⎝⎭,所以00311104222y y +-=⇒=-,此时P 与N 重合,故D 正确.故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()()322xx x a f x -=⋅-是偶函数,则a =______.【答案】1【解析】【分析】利用偶函数的定义可求参数a 的值.【详解】因为()()322xx xa f x -=⋅-,故()()322x x f x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222xx x x xa x a --⋅-=-⋅-,整理得到()()12+2=0x x a --,故1a =,故答案为:114.已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______.【答案】32x =-【解析】【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果.【详解】不妨设(,)(6,0),(6,)22p pP p Q PQ p ∴+=-uu u r 因为PQ OP ⊥,所以260032p p p p ⨯-=>∴=∴Q C 的准线方程为32x =-故答案为:32x =-【点睛】利用向量数量积处理垂直关系是本题关键.15.函数()212ln f x x x =--的最小值为______.【答案】1【解析】【分析】由解析式知()f x 定义域为(0,)+∞,讨论102x <≤、112x <≤、1x >,并结合导数研究的单调性,即可求()f x 最小值.【详解】由题设知:()|21|2ln f x x x =--定义域为(0,)+∞,∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减;当112x <≤时,()212ln f x x x =--,有2()20f x x'=-≤,此时()f x 单调递减;当1x >时,()212ln f x x x =--,有2()20f x x'=->,此时()f x 单调递增;又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增;∴()(1)1f x f ≥=故答案为:1.16.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm 12dm ⨯的长方形纸,对折1次共可以得到10dm 12dm ⨯,20dm 6dm ⨯两种规格的图形,它们的面积之和21240dm S =,对折2次共可以得到5dm 12dm ⨯,10dm 6dm ⨯,20dm 3dm ⨯三种规格的图形,它们的面积之和22180dm S =,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折n 次,那么1nkk S==∑______2dm .【答案】(1).5(2).()41537202n n -+-【解析】【分析】(1)按对折列举即可;(2)根据规律可得n S ,再根据错位相减法得结果.【详解】(1)对折4次可得到如下规格:5124dm dm ⨯,562dm dm ⨯,53dm dm ⨯,3102dm dm ⨯,3204dm dm ⨯,共5种;(2)由题意可得12120S =⨯,2360S =⨯,3430S =⨯,4515S =⨯, ,()112012n n n S -+=,设()012112011202120312042222n n S -+⨯⨯⨯=++++L ,则()121120111202120312022222n nn n S -+⨯⨯=++++ ,两式作差得()()12116011201120111112240120240122222212n n n nn n S --⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎪⎝⎭- ()()112011203120360360222n n nn n -++=--=-,因此,()()4240315372072022nn n n S -++=-=-.故答案为:5;()41537202n n -+-.【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法可直接求解;(2)对于{}n n a b 结构,其中{}n a 是等差数列,{}n b 是等比数列,用错位相减法求和;(3)对于{}n n a b +结构,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭结构,其中{}na 是等差数列,公差为()0d d ≠,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭,利用裂项相消法求和.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.【答案】(1)122,5b b ==;(2)300.【解析】【分析】(1)根据题设中的递推关系可得13n n b b +=+,从而可求{}n b 的通项.(2)根据题设中的递推关系可得{}n a 的前20项和为20S 可化为()2012910210S b b b b =++++- ,利用(1)的结果可求20S .【详解】(1)由题设可得121243212,1215b a a b a a a ==+===+=++=又22211k k a a ++=+,2122k k a a +=+,故2223k k a a +=+即13n n b b +=+即13n n b b +-=所以{}n b 为等差数列,故()21331n b n n =+-⨯=-.(2)设{}n a 的前20项和为20S ,则2012320S a a a a =++++ ,因为123419201,1,,1a a a a a a =-=-=- ,所以()20241820210S a a a a =++++- ()1291091021021023103002b b b b ⨯⎛⎫=++++-=⨯⨯+⨯-= ⎪⎝⎭.【点睛】方法点睛:对于数列的交叉递推关系,我们一般利用已知的关系得到奇数项的递推关系或偶数项的递推关系,再结合已知数列的通项公式、求和公式等来求解问题.18.某学校组织“一带一路”知识竞赛,有A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得20分,否则得0分:B 类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A 类问题的概率为0.8,能正确回答B 类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A 类问题,记X 为小明的累计得分,求X 的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)B 类.【解析】【分析】(1)通过题意分析出小明累计得分X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答B 类问题的数学期望,比较两个期望的大小即可.【详解】(1)由题可知,X 的所有可能取值为0,20,100.()010.80.2P X ==-=;()()200.810.60.32P X ==-=;()1000.80.60.48P X ==⨯=.所以X 的分布列为X020100P0.20.320.48(2)由(1)知,()00.2200.321000.4854.4E X =⨯+⨯+⨯=.若小明先回答B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0,80,100.()010.60.4P Y ==-=;()()800.610.80.12P Y ==-=;()1000.80.60.48P X ==⨯=.所以()00.4800.121000.4857.6E Y =⨯+⨯+⨯=.因为54.457.6<,所以小明应选择先回答B 类问题.19.记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC∠.【答案】(1)证明见解析;(2)7cos 12ABC ∠=.【解析】【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论.(2)由题设2,,33b bBD b AD DC ===,应用余弦定理求cos ADB ∠、cos CDB ∠,又ADB CDB π∠=-∠,可得42221123b b a a +=,结合已知及余弦定理即可求cos ABC ∠.【详解】(1)由题设,sin sin a C BD ABC =∠,由正弦定理知:sin sin c b C ABC =∠,即sin sin C cABC b=∠,∴acBD b=,又2b ac =,∴BD b =,得证.(2)由题意知:2,,33b bBD b AD DC ===,∴22222241399cos 24233b b b c c ADB b b b +--∠==⋅,同理2222221099cos 2233b b b a a CDB b b b +--∠==⋅,∵ADB CDB π∠=-∠,∴2222221310994233b bc a b b --=,整理得2221123b a c +=,又2b ac =,∴42221123b b a a +=,整理得422461130a a b b -+=,解得2213a b =或2232a b =,由余弦定理知:222224cos 232a c b a ABC ac b+-∠==-,当2213a b =时,7cos 16ABC ∠=>不合题意;当2232a b =时,7cos 12ABC ∠=;综上,7cos 12ABC ∠=.【点睛】关键点点睛:第二问,根据余弦定理及ADB CDB π∠=-∠得到,,a b c 的数量关系,结合已知条件及余弦定理求cos ABC ∠.20.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】(1)详见解析(2)36【解析】【分析】(1)根据面面垂直性质定理得AO ⊥平面BCD ,即可证得结果;(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.【详解】(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD (2)作EF ⊥BD 于F,作FM ⊥BC 于M,连FM 因为AO ⊥平面BCD ,所以AO ⊥BD,AO ⊥CD所以EF ⊥BD,EF ⊥CD,BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F =I ,所以BC ⊥平面EFM ,即BC ⊥MF 则EMF ∠为二面角E-BC-D 的平面角,4EMF π∠=因为BO OD =,OCD 为正三角形,所以OCD 为直角三角形因为2BE ED =,1112(1)2233FM BF ∴==+=从而EF=FM=213AO ∴=AO ⊥Q 平面BCD,所以11131133326BCD V AO S ∆=⋅=⨯⨯⨯⨯=【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法.21.在平面直角坐标系xOy中,已知点()1F、)2122F MF MF -=,点M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A 、B 两点和P ,Q 两点,且TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)()221116y x x -=≥;(2)0.【解析】【分析】(1)利用双曲线的定义可知轨迹C 是以点1F 、2F 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程;(2)设点1,2T t ⎛⎫⎪⎝⎭,设直线AB 的方程为112y t k x ⎛⎫-=- ⎪⎝⎭,设点()11,A x y 、()22,B x y ,联立直线AB 与曲线C 的方程,列出韦达定理,求出TA TB ⋅的表达式,设直线PQ 的斜率为2k ,同理可得出TP TQ ⋅的表达式,由TA TB TP TQ ⋅=⋅化简可得12k k +的值.【详解】因为12122MF MF F F -=<=所以,轨迹C 是以点1F 、2F 为左、右焦点的双曲线的右支,设轨迹C 的方程为()222210,0x y a b a b -=>>,则22a =,可得1a =,4b ==,所以,轨迹C 的方程为()221116y x x -=≥;(2)设点1,2T t ⎛⎫⎪⎝⎭,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,不妨直线AB 的方程为112y t k x ⎛⎫-=-⎪⎝⎭,即1112y k x t k =+-,联立1122121616y k x t k x y ⎧=+-⎪⎨⎪-=⎩,消去y 并整理可得()()222111111621602k x k t k x t k ⎛⎫-+-+-+= ⎪⎝⎭,设点()11,A x y 、()22,B x y ,则112x >且212x >.由韦达定理可得2111221216k k t x x k -+=-,211221116216t k x x k ⎛⎫-+ ⎪⎝⎭=-,所以,()()()()22122121121122112111*********t k x x TA TB k x x k x x k +++⎛⎫⋅=+⋅-⋅-=+⋅-+= ⎪-⎝⎭,设直线PQ 的斜率为2k ,同理可得()()2222212116t k TP TQ k ++⋅=-,因为TA TB TP TQ ⋅=⋅,即()()()()22221222121211211616tk t k k k ++++=--,整理可得2212k k =,即()()12120k k k k -+=,显然120k k -≠,故120k k +=.因此,直线AB 与直线PQ 的斜率之和为0.【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析.【解析】【分析】(1)求出函数的导数,判断其符号可得函数的单调区间;(2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可证明该结论成立.【详解】(1)函数的定义域为()0,∞+,又()1ln 1ln f x x x '=--=-,当()0,1x ∈时,()0f x '>,当()1,+x ∈∞时,()0f x '<,故()f x 的递增区间为()0,1,递减区间为()1,+∞.(2)因为ln ln b a a b a b -=-,故()()ln 1ln +1b a a b +=,即ln 1ln +1a b a b+=,故11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,设1211,x x a b==,由(1)可知不妨设1201,1x x <<>.因为()0,1x ∈时,()()1ln 0f x x x =->,(),x e ∈+∞时,()()1ln 0f x x x =-<,故21x e <<.先证:122x x +>,若22x ≥,122x x +>必成立.若22x <,要证:122x x +>,即证122x x >-,而2021x <-<,故即证()()122f x f x >-,即证:()()222f x f x >-,其中212x <<.设()()()2,12g x f x f x x =--<<,则()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦,因为12x <<,故()021x x <-<,故()ln 20x x -->,所以()0g x '>,故()g x 在()1,2为增函数,所以()()10g x g >=,故()()2f x f x >-,即()()222f x f x >-成立,所以122x x +>成立,综上,122x x +>成立.设21x tx =,则1t >,结合ln 1ln +1a b a b+=,1211,x x a b ==可得:()()11221ln 1ln x x x x -=-,即:()111ln 1ln ln x t t x -=--,故11ln ln 1t t tx t --=-,要证:12x x e +<,即证()11t x e +<,即证()1ln 1ln 1t x ++<,即证:()1ln ln 111t t tt t --++<-,即证:()()1ln 1ln 0t t t t -+-<,令()()()1ln 1ln ,1S t t t t t t =-+->,则()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭,先证明一个不等式:()ln 1x x ≤+.设()()ln 1u x x x =+-,则()1111xu x x x -'=-=++,当10x -<<时,()0u x '>;当0x >时,()0u x '<,故()u x 在()1,0-上为增函数,在()0,+∞上为减函数,故()()max 00u x u ==,故()ln 1x x ≤+成立由上述不等式可得当1t >时,112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭,故()0S t '<恒成立,故()S t 在()1,+∞上为减函数,故()()10S t S <=,故()()1ln 1ln 0t t t t -+-<成立,即12x x e +<成立.综上所述,112e a b<+<.【点睛】方法点睛:极值点偏移问题,一般利用通过原函数的单调性,把与自变量有关的不等式问题转化与原函数的函数值有关的不等式问题,也可以引入第三个变量,把不等式的问题转化为与新引入变量有关的不等式问题.机密★启用前2021年普通高等学校招生全国统一考试(新高考Ⅱ卷)数学(适用地区:海南、辽宁、重庆)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数2i13i--在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ===,则()U A B = ð()A .{3}B.{1,6}C.{5,6}D.{1,3}3.抛物线22(0)y px p =>的焦点到直线1y x =+,则p =()A.1B.2C. D.44.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为()A .26%B.34%C.42%D.50%5.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+B.C.563D.36.某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是()A.σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B.σ越小,该物理量在一次测量中大于10的概率为0.5C.σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D.σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等7.已知5log 2a =,8log 3b =,12c =,则下列判断正确的是()A.c b a<< B.b a c<< C.a c b<< D.a b c<<8.已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则()A.102f ⎛⎫-= ⎪⎝⎭B.()10f -=C.()20f =D.()40f =二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列统计量中,能度量样本12,,,n x x x 的离散程度的是()A.样本12,,,n x x x 的标准差B.样本12,,,n x x x 的中位数C.样本12,,,n x x x 的极差D.样本12,,,n x x x 的平均数10.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是()A. B.C. D.11.已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是()A.若点A 在圆C 上,则直线l 与圆C 相切B.若点A 在圆C 内,则直线l 与圆C 相离C.若点A 在圆C 外,则直线l 与圆C 相离D.若点A 在直线l 上,则直线l 与圆C 相切12.设正整数010112222k k k k n a a a a --=⋅+⋅++⋅+⋅ ,其中{}0,1i a ∈,记()01k n a a a ω=+++ .则()A.()()2n n ωω=B.()()231n n ωω+=+C.()()8543n n ωω+=+ D.()21n nω-=三、填空题:本题共4小题,每小题5分,共20分.13.已知双曲线()222210,0x y a b a b-=>>的离心率为2,则该双曲线的渐近线方程为_______________14.写出一个同时具有下列性质①②③的函数():f x _______.①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()'f x 是奇函数.15.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.16.已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记n S 是公差不为0的等差数列{}n a 的前n 项和,若35244,a S a a S ==.(1)求数列{}n a 的通项公式n a ;(2)求使n n S a >成立的n 的最小值.18.在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.19.在四棱锥Q ABCD -中,底面ABCD 是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面ABCD ;(2)求二面角B QD A --的平面角的余弦值.。
2021年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设2()3()46z z z z i ++-=+,则z =()A.12i -B.12i +C.1i +D.1i -答案:C 解析:设z a bi =+,则z a bi =-,2()3()4646z z z z a bi i ++-=+=+,所以1a =,1b =,所以1z i =+.2.已知集合{|21,}S s s n n Z ==+∈,{|41,}T t t n n Z ==+∈,则S T = ()A.∅B.SC.TD.Z 答案:C 解析:21s n =+,n Z ∈;当2n k =,k Z ∈时,{|41,}S s s k k Z ==+∈;当21n k =+,k Z ∈时,{|43,}S s s k k Z ==+∈.所以T S Ü,S T T = .故选C.3.已知命题:p x R ∃∈﹐sin 1x <;命题||:,1x q x R e∈∀≥,则下列命题中为真命题的是()A.p q∧B.p q ⌝∧C.p q∧⌝D.()p q ⌝∨答案:A 解析:根据正弦函数的值域sin [1,1]x ∈-,故x R ∃∈,sin 1x <,p 为真命题,而函数||x y y e ==为偶函数,且0x ≥时,||1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.,则q 也为真命题,所以p q ∧为真,选A.4.设函数1()1xf x x-=+,则下列函数中为奇函数的是()A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案:B 解析:12()111x f x x x -==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.5.在正方体1111ABCD ABC D -中,P 为11BD 的中点,则直线PB 与1A D 所成的角为()A.2πB.3πC.4πD.6π答案:D 解析:如图,1P B C ∠为直线PB 与1A D 所成角的平面角.易知11AB C ∆为正三角形,又P 为11AC 中点,所以16PBC π∠=.6.将5名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种答案:C 解析:所求分配方案数为2454240C A =.7.把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin()4y x π=-的图像,则)(f x =()A.7sin()212x π-B.sin()212x π+C.7sin(212x π-D.sin(212x π+答案:B解析:逆向:231sin()sin(sin() 412212 y x y x y xππππ=-−−−→=+−−−−−−−→=+左移横坐标变为原来的倍.故选B.8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.7 9B.23 32C.9 32D.2 9答案:B解析:由题意记(0,1)x∈,(1,2)y∈,题目即求74x y+>的概率,绘图如下所示.故113311123224411132 ABCDAM ANSPS==⨯-⋅-⨯⨯==⨯阴正.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点,,E H G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”.GC与EH的差称为“表目距的差”,则海岛的高AB =()A.⨯+表高表距表高表目距的差B.⨯-表高表距表高表目距的差C.⨯+表高表距表距表目距的差D.⨯-表高表距表距表目距的差答案:A 解析:连接DF 交AB 于M ,则AB AM BM =+.记BDM α∠=,BFM β∠=,则tan tan MB MBMF MD DF βα-=-=.而tan FG GC β=,tan EDEHα=.所以11(()tan tan tan tan MB MB GC EH GC EH MB MB MB FG ED ED βαβα--=-=⋅-=⋅.故ED DF MB GC EH ⋅⨯==-表高表距表目距的差,所以高AB ⨯=+表高表距表高表目距的差.10.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a >答案:D 解析:若0a >,其图像如图(1),此时,0a b <<;若0a <,时图像如图(2),此时,0b a <<.综上,2ab a <.11.设B 是椭圆C :22221(0)x y a b a b +=>>的上顶点,若C 上的任意一点P 都满足,2PB b ≤,则C 的离心率的取值范围是()A.[)2B.1[,1)2C.2D.1(0,2答案:C 解析:由题意,点(0,)B b ,设00(,)P x y ,则2222200002221(1)x y y x a a b b +=⇒=-,故22222222222000000022()(122y c PB x y b a y by b y by a b b b =+-=-+-+=--++,0[,]y b b ∈-.由题意,当0y b =-时,2PB 最大,则32b b c -≤-,22b c ≥,222a c c -≥,2c c a =≤,2(0,2c ∈.12.设2ln1.01a =,ln1.02b =,1c -,则()A.a b c <<B.b c a <<C.b a c <<D.c a b <<答案:B 解析:设()ln(1)1f x x =+,则(0.02)b c f -=,易得1()1f x x '==+当0x ≥时,1x +=≥()0f x '≤.所以()f x 在[0,)+∞上单调递减,所以(0.02)(0)0f f <=,故b c <.再设()2ln(1)1g x x =++,则(0.01)a c g -=,易得2()21g x x '==+当02x ≤<时,1x ≥=+,所以()g x '在[0.2)上0≥.故()g x 在[0.2)上单调递增,所以(0.01)(0)0g g >=,故a c >.综上,a c b >>.二、填空题13.已知双曲线C :221(0)x y m m-=>的一条渐近线为0my +=,则C 的焦距为.答案:4解析:易知双曲线渐近线方程为by x a=±,由题意得2a m =,21b =,且一条渐近线方程为y x m=-,则有0m =(舍去),3m =,故焦距为24c =.14.已知向量(1,3)a = ,(3,4)b = ,若()a b b λ-⊥,则λ=.答案:35解析:由题意得()0a b b λ-⋅= ,即15250λ-=,解得35λ=.15.记ABC ∆的内角A ,B,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b =.答案:解析:1sin24ABC S ac B ac ∆===4ac =,由余弦定理,222328b a c ac ac ac ac =+-=-==,所以b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,PA PC ==,BA BC =,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,AC AB =,2BC =,俯视图为④.三、解答题17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y,样本方差分别己为21s 和22S .(1)求x ,y,21s ,22s :(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥,否则不认为有显著提高)。
1、若一个等差数列的首项为3,公差为2,那么它的第5项是?A、9B、11C、13D、15(答案)C。
解析:等差数列的通项公式为an=a1+(n-1)d,其中a1为首项,d为公差,n 为项数。
将a1=3,d=2,n=5代入,可得a5=3+(5-1)*2=11+2=13。
2、一个圆的半径为r,若其面积增加了一倍,那么它的半径变为了?A、r/2B、rC、√2rD、2r(答案)C。
解析:圆的面积公式为S=πr²。
若面积增加了一倍,则新的面积为2πr²。
设新半径为R,则2πr²=πR²,解得R=√2r。
3、一个正方体的表面积是24平方米,那么它的体积是?A、4立方米B、6立方米C、8立方米D、12立方米(答案)C。
解析:正方体的表面积公式为6a²,其中a为棱长。
由题意得6a²=24,解得a=2。
正方体的体积公式为a³,所以体积为2³=8立方米。
4、若一个三角形的两边长分别为3和4,那么它的第三边长可能是?A、1B、2C、6D、7(答案)C。
解析:根据三角形的性质,任意两边之和大于第三边,任意两边之差小于第三边。
所以3+4>第三边>4-3,即7>第三边>1,所以第三边可能是6。
5、一个长方体的长、宽、高分别为3、4、5,那么它的体积是?A、30B、40C、50D、60(答案)D。
解析:长方体的体积公式为V=lwh,其中l为长,w为宽,h为高。
将l=3,w=4,h=5代入,可得V=345=60。
6、若一个数的平方等于16,那么这个数是?A、4B、-4C、±4D、±8(答案)C。
解析:设这个数为x,则x²=16。
解得x=±4。
7、一个圆的直径为6,那么它的周长是?A、6πB、9πC、12πD、18π(答案)B。
解析:圆的周长公式为C=πd,其中d为直径。
将d=6代入,可得C=6π,但考虑到π约等于3.14,所以6π约等于18.84,与选项B的9π(约等于28.26)最为接近,且题目要求的是精确值,所以选B。
2021年普通高等学校招生全国统一考试(全国乙卷)数学(文)一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N = ()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}2.设43iz i =+,则z =()A.34i --B.–34i +C.34i -D.34i+3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是()A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案:A 解析:根据正弦函数的值域sin [1,1]x ∈-,sin 1x <,故x R ∃∈,p 为真命题,而函数||x y e =为偶函数,且0x ≥时,1xy e =≥,故x R ∀∈,||1x y e =≥恒成立.则q 也为真命题,所以p q ∧为真,选A.4.函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A.3π和B.3π和2C.6π和D.6π和2答案:C解析:())34x f x π=+max ()f x =,2613T ππ==.故选C.5.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为()A.18B.10C.6D.4答案:C 解析:根据约束条件可得图像如下,3z x y =+的最小值,即3y x z =-+,y 轴截距最小值.根据图像可知3y x z =-+过点(1,3)B 时满足题意,即min 336z =+=.6.225cos cos 1212ππ-=()A.12B.33C.22D.32答案:D 解析:2222223()sin cos 25cos cos cos cos cos 12121212121262ππππππππ-=-=--==∴选D.7.在区间1(0,)2随机取1个数,则取到的数小于13的概率为()A.34B.23C.13D.16答案:B解析:在区间1(0,2随机取1个数,可知总长度12d =,取到的数小于13,可知取到的长度范围13d '=,根据几何概型公式123132d p d '===,∴选B.8.下列函数中最小值为4的是()A.224y x x =++B.4|sin ||sin |y x x =+C.222x xy -=+D.4n ln l y x x=+答案:C 解析:对于A,22224213(1)33y x x x x x =++=+++=++≥.不符合,对于B,4|sin ||sin |y x x =+,令|sin |[0,1]t x =∈,∴4y t t =+,根据对勾函数min 145y =+=不符合,对于C,242222xxx x y -==++,令20xt =>,∴4224y t t =+≥=⨯=,当且仅当2t =时取等,符合,对于D,4n ln l y x x =+,令ln t x R =∈,4y t t=+.根据对勾函数(,4][4,)y ∈-∞-+∞ ,不符合.9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是()A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案:B 解析:12()111x f x x x-==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.所以选B.10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2πB.3πC.4πD.6π答案:D 解析:做出图形,11//AD BC ,所以1PBC ∠为异面直线所成角,设棱长为1.1BC =,122B P =,122PC =,62BP =.222111131222cos 22BC BP C P PBC BP BC +-+-∠==⋅,即16PBC π∠=,故选D.11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为A.5265D.2答案:A 解析:方法一:由22:15x C y +=,(0,1)B 则C 的参数方程:5sin x y θθ⎧=⎪⎨=⎪⎩.22||(sin 1)(5cos )PB θθ=-+24sin 2sin 6θθ=--+212554(sin )442θ=-++.∴max 5||2PB =,故选A.方法二:设00(,)P x y ,则220001([1,1])5x y y +=∈-①,(0,1)B .因此22200||(1)PB x y =+-②将①式代入②式化简得:22012525||4()444PB y =-++≥,当且仅当014y =-时||PB 的最大值为52,故选A.12.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a >答案:D 解析:2()2()()()()(32)f x a x a x b a x a a x a x b a '=--+-=---当0a >时,原函数先增再减后增.原函数在()0f x '=的较小零点时取得极大值.即23a b a +<,即a b <,∴2a ab <.当0a <时,原函数先减再增后减.原函数在()0f x '=的较大零点时取得极大值.即23a b a +>,a b >,2a ab <,故选D.二、填空题13.已知向量(2,5)a = ,(,4)b λ= ,若//a b,则λ=.答案:85解析:由已知//a b 可得82455λλ⨯=⇒=.14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为.答案:解析:22145x y -=的右焦点为(3,0),到直线280x y +-=的距离d ==.15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b =.答案:解析:由面积公式1sin 2S ac B ==,且60B =︒,解得4ac =,又由余弦定理2222cos b a c ac B =+-,223a c ac +=,且0b >解得b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,PA PC ==,BA BC =,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,AC AB =,2BC =,俯视图为④.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).答案:见解析解析:9.810.31010.29.99.81010.110.29.71010x ++++++++==+;10.110.410.11010.110.310.610.510.410.510.310y ++++++++==+.211(0.040.090.040.010.040.010.040.09)10s =+++++++10.360.03610=⨯=221(0.040.010.040.090.040.090.040.010.04)10s =++++++++10.40.0410=⨯=.(2)10.3100.3y x -=-===∵则0.3=>=,所以可判断新设备生产产品的该项指标的均值较旧设备有显著提高;没有显著提高.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.答案:见解析解析:19.设{}n a 是首项为1的等比数列,数列{}n b 满足3n n na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2n n S T <.答案:见解析解析:设{}n a 的公比为q ,则1n n a q -=,因为1a ,23a ,39a 成等差数列,所以21923q q +=⨯,解得13q =,故11()3n n a -=,11313(1)12313n n n S -==--.又3n n n b =,则1231123133333n n n n n T --=+++++ ,两边同乘13,则234111231333333n n n n n T +-=+++++ ,两式相减,得23412111113333333n n n n T +=+++++- ,即1111(1)1133(1)332333121n n n n n n n T ++-=-=---,整理得31323(14323423n n n n n n T +=--=-⨯⨯,323314322())04232323n n n n nn n T S ++-=---=-<⨯⨯,故2n n S T <.20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2.(1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF = ,求直线OQ 斜率的最大值.答案:见解析解析:(1)由焦点到准线的距离为p ,则2p =.抛物线c 的方程:24y x =.(2)设点200(,)4y P y ,(,)Q Q Q x y ,(1,0)F .∵9PQ QF = .∴2022000009499(,)9(1,)4104910Q Q Q Q Q Q Q Q Q Q y y x x x y x y y x y y y x y y ⎧+⎪⎧-=-=⎪⎪--=--⇒⇒⎨⎨⎪⎪-=-⎩=⎪⎩则020*********QOQ Q y y k y y x y ===≤++.∴直线OQ 斜率的最大值为13.21.已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标.答案:见解析解析:(1)2()32f x x x a'=-+(i)当4120a ∆=-≤,即13a ≥时,()0f x '≥恒成立,即()f x 在()f x 在x ∈R 上单调递增.(ii)当4120∆=->,即13a <时,()0f x '=解得,11133x -=,21133x +=.∴()f x 在113(,)3a --∞,113()3a -+∞单调递增,在113113()33a a --++单调递减,综上所述:当13a ≥时,()f x 在R 上单调递增;当13a <时,()f x 在113113()33a a -++单调递减.(2)设可原点切线的切点为32(,1)t t t at -++,切线斜率2()32k f t t t a '==-+.又321t t at k t -++=,可得322132t t at t t a t-++=-+.化简得2(1)(21)0t t t -++=,即1t =.∴切点为(1,1)a +,斜率1k a =+,切线方程为(1)y a x =+,将(1)y a x =+,321y x x ax =-++联立可得321(1)x x ax a x -++=+,化简得2(1)(1)0x x -+=,解得11x =,21x =-.∴过原点的切线与()y f x =公共点坐标为(1,1)a +,(1,1)a ---.22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程.答案:见解析解析:(1)C 的参数方程为2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)(2)C 的方程为22(2)(1)1x y -+-=①当直线斜率不存在时,直线方程为4x =,此时圆心到直线距离为2r >,舍去;②当直线斜率存在时,设直线方程为1(4)y k x -=-,化简为410kx y k --+=,此时圆心(2,1)C 到直线的距离为1d r ===,化简得2||k =,两边平方有2241k k =+,所以33k =±代入直线方程并化简得40x +=或40x +-=化为极坐标方程为5cos sin 4sin()46πρθθρθ-=-⇔+=-或cos sin 4sin()46πρθθρθ+=++=+.23.已知函数()|||3|f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.答案:见解析解析:当1a =时,()6|1||3|6f x x x ≥⇔-++≥,当3x ≤-时,不等式136x x ⇔---≥,解得4x ≤-;当31x -<<时,不等式136x x ⇔-++≥,解得x ∈∅;当1x ≥时,不等式136x x ⇔-++≥,解得2x ≥.综上,原不等式的解集为(,4][2,)-∞-+∞ .(2)若()f x a >-,即min ()f x a >-,因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+(当且仅当()(3)0x a x -+≤时,等号成立),所以min ()|3|f x a =+,所以|3|a a +>-,即3a a +<或3a a +>-,解得3(,)2a ∈-+∞.。
2021年普通高等学校招生全国统一考试(新高考I 卷)数学一、单选题1.设集合{|24}A x x =-<<,{2,3,4,5}B =,则A B = ()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案:B 解析:{2,3}A B = ,选B.2.已知2z i =-,则()z z i +=()A.62i -B.42i -C.62i +D.42i +答案:C 解析:2,()(2)(22)62z i z z i i i i =++=-+=+,选C.3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B. C.4D.答案:B解析:设母线长为l,则l l π=⇒=.4.下列区间中,函数()7sin()6f x x π=-单调递增的区间是()A.(0,)2πB.(,)2ππC.3(,)2ππD.3(,2)2ππ答案:A 解析:()f x 单调递增区间为:222()22()26233k x k k Z k x k k Z πππππππππ-≤-≤+∈⇒-≤≤+∈,令0k =,故选A.5.已知1F ,2F 是椭圆22:194x y C +=的两个焦点,点M 在C 上,则12||||MF MF ⋅的最大值为()A.13B.12C.9D.6答案:C 解析:由椭圆定义,12||||6MF MF +=,则21212||||||||(92MF MF MF MF +≤=,故选C.6.若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+()A.65-B.25-C.25D.65答案:C 解析:22sin (1sin 2)sin (sin cos 2sin cos )sin cos sin cos θθθθθθθθθθθ+++=++22222sin sin cos tan tan 2sin cos tan 15θθθθθθθθ++===++,故选C.7.若过点(,)a b 可以作曲线x y e =的两条切线,则()A.b e a <B.a e b <C.0b a e <<D.0a b e <<答案:D 解析:设切点为00(,)P x y ,∵xy e =,∴xy e '=,则切线斜率0xk e =,切线方程为0()xy b e x a -=-,又∵00(,)P x y 在切线上以及xy e =上,则有000()x x eb e x a -=-,整理得00(1)0x ex a b --+=,令()(1)xg x e x a b =--+,则()()xg x e x a '=-,∴()g x 在(,)a -∞单调递减,在(,)a +∞单调递增,则()g x 在x a =时取到极小值即最小值()ag a b e =-,又由已知过(,)a b 可作xy e =的两条切线,等价于()(1)xg x e x a b =--+有两个不同的零点,则min ()()0ag x g a b e==-<,得a e b >,又当x →-∞时,(1)0xe x a --→,则(1)xe x a b b --+→,∴0b >,当1x a a =+>时,有(1)0g a b +=>,即()g x 有两个不同的零点.∴0ab e <<.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案:B 解析:由题意知,两点数和为8的所有可能为:(2,6),(3,5),(4,4),(5,3),(6,2),两点数和为7的所有可能为:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),∴1()6P =甲,11()166P =⨯=乙,5()36P =丙,61()=366P =丁,()0P =甲丙,1()36P =甲丁,1()36P =乙丙,()0P =丙丁,故()()()P P P =⋅甲丁甲丁,B 正确,故选B.二、多选题9.有一组样本数据12,,,n x x x ,由这组数据得到新样本数据12,,,n y y y ,其中1(1,2,)i y x c i n =+= ,c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同答案:C、D 解析:对于A 选项:121n x x x x n +++= ,1212n ny y y x x x y c n n++++++==+ ,∴x y ≠,∴A 错误;对于B 选项:可假设数据样本12,,,n x x x 中位数为m ,由i i y x c =+可知数据样本12,,,n y y y 的中位数为m c +,∴B 错误;对于C选项:1S =2S =1S ==,∴C 正确;对于D 选项:∵i i y x c=+,∴两组样本数据极差相同,∴D 正确。
2021 年普通高等学校招生全国统一考试数学本试卷共 4 页,22 小题,满分 150 分.考试用时 120 分钟.注意事项:1. 答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用 2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4. 考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合 A = {x -2 < x < 4}, B = {2, 3, 4, 5} ,则 A B = ()A.{2}B. {2, 3}C. {3, 4}D. {2, 3, 4}【答案】B【解析】【分析】利用交集的定义可求A B .【详解】由题设有 A ⋂ B = {2, 3} ,故选:B .2. 已知 z = 2 - i ,则 z (A. 6 - 2i z + i ) = (B. 4 - 2i)C. 6 + 2iD. 4 + 2i【答案】C 【解析】【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为 z = 2 - i ,故 z = 2 + i ,故 z (z + i )= (2 - i )(2 + 2i ) = 6 + 2i故选:C.22 2 3. 已知圆锥的底面半径为 ,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2C. 4D. 4【答案】B【解析】【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则π l = 2π ⨯ ,解得l = 2 .故选:B.4. 下列区间中,函数 f (x ) = 7 sin ⎛x - π ⎫单调递增的区间是( )6 ⎪A. ⎛ 0, π ⎫ ⎝⎭B. ⎛ π , π ⎫C. ⎛π , 3π ⎫D.⎛ 3π , 2π ⎫⎪ ⎪ ⎪ 2 ⎪ ⎝ 2 ⎭⎝ 2 ⎭⎝ 2 ⎭⎝ ⎭【答案】A【解析】π π π【分析】解不等式2k π -< x - < 2k π + 2 6 2(k ∈ Z ) ,利用赋值法可得出结论.【详解】因为函数 y = sin x 的单调递增区间为⎛2k π - π , 2k π + π ⎫(k ∈ Z ),2 2 ⎪ ⎝ ⎭对于函数 f (x ) = 7 sin ⎛ x - π ⎫ ,由2k π - π < x - π < 2k π + π (k ∈ Z ) , 6 ⎪ 2 6 2 ⎝ ⎭2k ππ 2π 解得- < x < 2k π + 3 3(k ∈ Z ) , 取 k = 0 ,可得函数 f ( x ) 的一个单调递增区间为⎛ - π , 2π ⎫,3 3 ⎪ ⎝ ⎭则⎛ 0, π ⎫ ⊆ ⎛ - π , 2π ⎫ , ⎛ π ,π ⎫ ⊄ ⎛ - π , 2π ⎫,A 选项满足条件,B 不满足条件;2 ⎪3 3 ⎪ 2 ⎪ 3 3 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭取 k = 1 ,可得函数 f ( x ) 的一个单调递增区间为⎛ 5π , 8π ⎫,3 3 ⎪ ⎝ ⎭⎛π , 3π ⎫ ⊄ ⎛ - π , 2π ⎫且⎛π , 3π ⎫ ⊄⎛ 5π , 8π ⎫ , ⎛ 3π , 2π ⎫ ⊄ ⎛ 5π , 8π ⎫ ,CD 选项均不满足条件. 2 ⎪ 3 3 ⎪ 2 ⎪ 3 3 ⎪ 2 ⎪ 3 3 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成 y = A sin (ωx + φ) 形式,再求2 2= = θ ( θ + θ ) ⎝⎝y = A sin (ωx + φ) 的单调区间,只需把ω x + ϕ 看作一个整体代入 y = sin x 的相应单调区间内即可,注意要先把ω 化为正数.F F x 2 y 2 MF ⋅ MF5. 已知 1 , 2 是椭圆C :+= 1的两个焦点,点 M 在C 上,则1942的最大值为( )A. 13B. 12C. 9D. 6【答案】C【解析】【 分 析 】 本 题 通 过 利 用 椭 圆 定 义 得 到MF 1 + MF 2= 2a = 6, 借 助 基 本 不 等 式2MF ⋅ MF ≤ 即可得到答案. 1 22 ⎭【详解】由题, a 2 = 9, b 2 = 4 ,则 MF 1 + MF 2 = 2a = 6 ,2所以 MF ⋅ MF ≤ = 9 (当且仅当 MF 1 = MF 2 = 3 时,等号成立). 1 22 ⎭ 故选:C .【点睛】本题关键在于正确理解能够想到求最值的方法,即通过基本不等式放缩得到.sin θ (1+ sin 2θ )6. 若tan θ = -2 ,则 sin θ + cos θ= ()A. - 6 5B. -2 C.2 D. 6555【答案】C【解析】【分析】将式子进行齐次化处理,代入tan θ = -2 即可得到结果. 【详解】将式子进行齐次化处理得:sin θ (1+ sin 2θ ) sin θ + cos θ sin θ (sin 2 θ + cos 2θ + 2sin θ cos θ ) sin sin cos sin θ + cos θsin θ (sin θ + cos θ ) tan 2 θ + tan θ 4 - 2 2 = = = = .sin 2 θ + cos 2 θ 1+ tan 2 θ1+ 4 5故选:C .【点睛】易错点睛:本题如果利用tan θ = -2 ,求出sin θ , cos θ 的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.max max7. 若过点(a , b ) 可以作曲线y = e x 的两条切线,则( )A. e b < aB. e a < bC. 0 < a < e bD. 0 < b < e a【答案】D【解析】【分析】根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果 【详解】在曲线 y = e x 上任取一点 P (t , et) ,对函数 y = e x 求导得 y ' = e x ,所以,曲线 y = e x 在点 P 处的切线方程为 y - e t = e t(x - t ) ,即 y = e t x + (1- t )e t , 由题意可知,点(a , b ) 在直线 y = e tx + (1- t )e t上,可得b = ae t+ (1- t )e t= (a +1- t )e t,令 f (t ) = (a +1- t )e t,则 f '(t ) = (a - t )e t.当t < a 时, f '(t ) > 0 ,此时函数 f (t ) 单调递增,当t > a 时, f '(t ) < 0 ,此时函数 f (t ) 单调递减,所以, f (t ) = f (a ) = e a ,由题意可知,直线 y = b 与曲线 y = f (t ) 的图象有两个交点,则b < f (t ) = e a,当t < a +1时, f (t ) > 0 ,当t > a +1时, f (t ) < 0 ,作出函数 f (t ) 的图象如下图所示:由图可知,当0 <b <e a时,直线y =b 与曲线y = f (t )的图象有两个交点.故选:D.【点睛】数形结合是解决数学问题常用且有效的方法8.有6 个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1 个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立【答案】B【解析】【分析】根据独立事件概率关系逐一判断【详解】P(甲) =1,P(乙) =1,P(丙) =5,P(丁) =6=1,6636366P(甲丙) = 0 ≠P(甲)P(丙),P(甲丁) =136=P(甲)P(丁)P(乙丙) =136故选:B≠P(乙)P(丙),P(丙丁) = 0 ≠P(丁)P(丙)【点睛】判断事件A, B 是否独立,先计算对应概率,再判断P( A)P(B) =P( AB) 是否成立二、选择题:本题共4 小题,每小题5 分,共20 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5 分,部分选对的得2 分,有选错的得0 分.9.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c ( i = 1, 2,⋅⋅⋅, n), c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同【答案】CD【解析】【分析】A、C 利用两组数据的线性关系有E( y) =E(x) +c 、D( y) =D(x) ,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D 的正误.OP 1 = OP 2OA ⋅ OP 3 = OP 1 ⋅ O P 2 OP 2 4sin 2 α 2 【详解】A : E ( y ) = E (x + c ) = E (x ) + c 且c ≠ 0 ,故平均数不相同,错误; B :若第一组中位数为 x i ,则第二组的中位数为 y i = x i + c ,显然不相同,错误; C :D ( y ) = D (x ) + D (c ) = D (x ) ,故方差相同,正确;D :由极差的定义知:若第一组的极差为 x max - x min ,则第二组的极差为y max - y min = (x max + c ) - (x min + c ) = x max - x min ,故极差相同,正确;故选:CD10. 已知O 为坐标原点,点 P 1 (cos α , sin α ),P 2 (cos β , -sin β ) ,P 3 (cos (α + β ), sin (α + β )),A (1, 0),则()A B.C. D.【答案】AC【解析】【分析】A 、B 写出OP 1 , 、AP 1 , AP 2 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【 详 解 】 A : OP 1 = (cos α , sin α ) , OP 2 = (cos β , -sin β ) , 所 以 | =1 ,| = 1 ,故| OP 1 |=| OP 2 |,正确;B : AP 1 = (cos α -1, sin α ) , AP 2 = (cos β -1, -sin β ) ,所以| == α= = 2 | sin | , 2同理| = 2 | sin β | ,故| AP |,| AP | 不一定相等,错误;21 2C :由题意得: OA ⋅ OP 3 = 1⨯cos(α + β ) + 0⨯sin(α + β ) = cos(α + β ) ,OP 1 ⋅ OP 2 = cos α ⋅cos β + sin α ⋅ (-sin β ) = cos(α + β ) ,正确;D :由题意得: OA ⋅ OP 1 = 1⨯cos α + 0⨯sin α = cos α ,OP 2 ⋅ O P 3 = cos β ⨯cos(α + β ) + (-sin β ) ⨯sin(α + β )= cos α cos 2 β - sin α sin β cos β - sin α sin β cos β - cos α sin 2 βAP 1 = AP 2OA ⋅ OP 1 = OP 2 ⋅ O P 3OP |= cos 2 α + sin 2 α 1 OP |= (cos β)2 + (-sin β )2 2 AP |= (cos α -1)2+ sin 2α 1cos 2α - 2 cos α +1+ sin 2α 2(1- cos α ) AP |= (cos β -1)2 + sin 2 β 211 534 = cos α cos 2β - sin α sin 2β = cos(α + 2β ) ,错误;故选:AC11. 已知点 P 在圆(x - 5)2+ ( y - 5)2= 16 上,点 A (4, 0) 、 B (0, 2) ,则( )A. 点 P 到直线 AB 的距离小于10B. 点 P 到直线 AB 的距离大于2C. 当∠PBA 最小时, PB = 3D. 当∠PBA 最大时, PB = 3【答案】ACD【解析】【分析】计算出圆心到直线 AB 的距离,可得出点 P 到直线 AB 的距离的取值范围,可判断 AB 选项的正误;分析可知,当∠PBA 最大或最小时, PB 与圆 M 相切,利用勾股定理可判断 CD 选项的正误. 【详解】圆( x - 5)2+ ( y - 5)2= 16 的圆心为 M (5, 5) ,半径为4 ,直线 AB 的方程为 x + y= 1,即 x + 2 y - 4 = 0 ,42圆心 M 到直线 AB 的距离为= = 11 5 > 4 , 5所以,点 P 到直线 AB 的距离的最小值为11 5 - 4 < 2 ,最大值为11 5 + 4 < 10 ,A 选项正确,B 选项错55误;如下图所示:当∠PBA 最大或最小时, PB 与圆 M 相切,连接 MP 、 BM ,可知 PM ⊥ PB ,BM ==, MP = 4 ,由勾股定理可得 BP == 3 2 ,CD 选项2212 + 225 + 2⨯ 5 - 4 (0 - 5)2 + (2 - 5)2BM 2 - MP 2正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点 P 到直线l 的距离的取值范围是[d - r , d + r ].12. 在正三棱柱 ABC - A 1B 1C 1 中,AB = AA 1 = 1 ,点 P 满足 BP = λ BC + μ BB 1 ,其中λ ∈[0,1] ,μ ∈[0,1] ,则()A. 当λ = 1 时, △AB 1P 的周长为定值B. 当 μ = 1 时,三棱锥 P - A 1BC 的体积为定值C. 当λ = 1时,有且仅有一个点 P ,使得 A P ⊥ BP21D. 当 μ = 1 时,有且仅有一个点 P ,使得 AB ⊥ 平面 AB P21 1【答案】BD【解析】【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标; 对于B ,将 P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量 平移将 P 点轨迹确定,进而考虑建立合适的直角坐标系来求解 P 点的个数;对于D ,考虑借助向量的平移将 P 点轨迹确定,进而考虑建立合适的直角坐标系来求解 P 点的个数.【详解】易知,点 P 在矩形 BCC 1B 1 内部(含边界).对于A ,当λ = 1 时, BP = BC + μ BB 1 =BC + μCC 1 ,即此时 P ∈ 线段CC 1 , △AB 1P 周长不是定值,故A 错误;AP = ⎛ - 3 = - 对于B ,当 μ = 1 时,BP = λ BC + BB 1 =BB 1 + λ B 1C 1 ,故此时 P 点轨迹为线段 B 1C 1 ,而B 1C 1 //BC ,B 1C 1 // 平面 A 1BC ,则有 P 到平面 A 1BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当λ = 1时, BP = 1BC + μ BB ,取 BC , BC 中点分别为Q , H ,则 BP = BQ + μQH ,所221 1 1以 P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,A ⎛ 3 , 0,1⎫ ,P (0, 0,μ ) ,B ⎛ 0, 1 , 0 ⎫, 1 2⎪ 2 ⎪ ⎝ ⎭⎝ ⎭则, 0, μ -1⎫ , BP = ⎛ 0, - 1 , μ ⎫, μ (μ -1) = 0 ,所以 μ = 0 或 μ = 1 .故 H ,Q 均满足,故 1 2⎪ 2 ⎪ ⎝ ⎭⎝ ⎭ C 错误;对于D ,当 μ = 1时, BP = λ BC + 1BB ,取 BB , CC 中点为 M , N . BP = BM + λ M N ,所以 P 点2 211 1轨迹为线段 MN .设 P ⎛ 0, y , 1 ⎫ ,因为 A ⎛ 3 ⎫ ⎛ ,0, 0,所以 AP = - 3 , y , 1 ⎫ , AB ⎛ 3 1 ⎫ , , -1 , 0 2 ⎪ 2 ⎪ 2 0 2 ⎪ 1 2 2 ⎪ ⎝ ⎭ ⎝ ⎭ 3 1 1 1⎝ ⎭ ⎝ ⎭所以 + y 0 - = 0 ⇒ y 0 = - ,此时 P 与N 重合,故D 正确. 4 2 2 2故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.三、填空题:本题共 4 小题,每小题 5 分,共 20 分.13. 已知函数 f ( x ) = x 3 (a ⋅ 2x - 2- x )是偶函数,则a = .【答案】1【解析】【分析】利用偶函数的定义可求参数a 的值.【详解】因为 f (x ) = x 3 (a ⋅ 2x - 2-x ) ,故 f (-x ) = -x 3 (a ⋅ 2-x - 2x ),因为 f ( x ) 为偶函数,故 f (-x ) = f ( x ) ,时 x 3 (a ⋅ 2x - 2-x ) = -x 3 (a ⋅ 2-x - 2x ),整理得到(a -1)(2x +2-x )=0 ,故 a = 1 , 故答案为:114. 已知O 为坐标原点,抛物线C : y 2 = 2 px ( p > 0 )的焦点为 F ,P 为C 上一点,PF 与 x 轴垂直,Q 为p p 1 x 轴上一点,且 PQ ⊥ OP ,若 FQ = 6 ,则C 的准线方程为.【答案】 x =- 32【解析】【分析】先用坐标表示 P ,Q ,再根据向量垂直坐标表示列方程,解得 p ,即得结果.【详解】不妨设P ( , p )∴Q (6 + 2 2uuur , 0), PQ = (6, - p ) 因为 PQ ⊥ OP ,所以 p ⨯ 6 - p 2 = 0 Q p > 0∴ p = 3∴ C 的准线方程为 x =- 32 2 故答案为: x =- 32【点睛】利用向量数量积处理垂直关系是本题关键. 15. 函数 f ( x ) = 2x -1 - 2 ln x 的最小值为 .【答案】1【解析】【分析】由解析式知 f (x ) 定义域为(0, +∞) ,讨论0 < x ≤ 1 、 1< x ≤ 1、 x > 1 ,并结合导数研究的单调22性,即可求 f (x ) 最小值.【详解】由题设知: f (x ) =| 2x -1| -2 ln x 定义域为(0, +∞) , ∴当0 < x ≤ 1时, f (x ) = 1- 2x - 2 ln x ,此时 f (x ) 单调递减;2当 1 < x ≤ 1时, f (x ) = 2x -1- 2 ln x ,有 f '(x ) = 2 - 2≤ 0 ,此时 f (x ) 单调递减;2x当 x > 1 时, f (x ) = 2x -1- 2 ln x ,有 f '(x ) = 2 - 2> 0 ,此时 f (x ) 单调递增;x又 f (x ) 在各分段的界点处连续,∴综上有: 0 < x ≤ 1时, f (x ) 单调递减, x > 1 时, f (x ) 单调递增; ∴ f (x ) ≥ f (1) = 1故答案为:1.16. 某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm ⨯12dm 的长方形纸,对折 1 次共可以得到10dm ⨯12dm , 20dm ⨯ 6dm 两种规格的图形,它们的面积之和S = 240dm 2 ,对折 2 次共可以得到5dm ⨯12dm ,10dm ⨯ 6dm , 20dm ⨯ 3dm 三种规格的图形,它们的面积之和 S 2 = 180dm 2 ,以此类推,则对折 4 次共可以得到不同规格图形的种数为;如果对折n 次,+ 120n 2n -1( ) ( ) 2 ( )那么∑S k = dm 2.k =1【答案】(1). 5(2).720 -15(3 + n ) 2n -4【解析】【分析】(1)按对折列举即可;(2)根据规律可得 S n ,再根据错位相减法得结果.【详解】(1)对折 4 次可得到如下规格: 5 dm ⨯12dm , 5 dm ⨯ 6dm , 5dm ⨯ 3dm , 10dm ⨯ 3dm ,4 2 220dm ⨯ 3dm ,共5 种;4(2)由题意可得S = 2 ⨯120 , S = 3⨯ 60 , S = 4 ⨯ 30 , S = 5⨯15 , , S 120n +1 = , 12120⨯ 2 120⨯ 3 120⨯ 43120(n +1) 4n2n -1设 S = + + +L +, 20 21 22 2n -1则 1S = 120⨯ 2 + 120 ⨯ 3 +120 n +1 + , 22122 2n60⎛1- 1 ⎫ 1 ⎛ 1 1 1 ⎫ 120 (n +1) 2n -1 ⎪ 120(n +1) 两式作差得 S = 240 +120 + + + n -1 ⎪ - = 240 + ⎝ ⎭ - 1 n 2 ⎝ 2 2 2 ⎭ 2120 120(n +1)120(n + 3) 1- 22 = 360 -- = 360 -, 2n -1 2n240(n + 3) 2n15(n + 3)因此, S = 720 -= 720 -. 2n15 n + 3 故答案为: 5 ; 720 -.2n -42n -4【点睛】方法点睛:数列求和 常用方法:(1) 对于等差等比数列,利用公式法可直接求解; (2) 对于{a n b n }结构,其中{a n } 是等差数列,{b n }是等比数列,用错位相减法求和; (3) 对于{a n + b n } 结构,利用分组求和法;(4) 对于⎧ 1 ⎫ 结构,其中{a } 是等差数列,公差为d (d ≠ 0) ,则1= 1 ⎛ 1 - 1 ⎫ ,利用裂 ⎨ ⎬na a⎪ ⎩ a n a n +1 ⎭nn +1d ⎝ a n a n +1 ⎭ n n项相消法求和.四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{a } 满足a = 1 , a= ⎧a n +1, n 为奇数, n1n +1⎨a + 2, n 为偶数. ⎩ n(1) 记b n = a 2n ,写出b 1 , b 2 ,并求数列{b n } 的通项公式;(2) 求{a n }的前 20 项和.【答案】(1) b 1 = 2, b 2 = 5 ;(2) 300 .【解析】【分析】(1)根据题设中的递推关系可得b n +1 = b n + 3 ,从而可求{b n } 的通项.(2)根据题设中的递推关系可得{a n } 的前20 项和为S 20 可化为 S 20 = 2(b 1 + b 2 + + b 9 + b 10 ) -10 ,利用(1) 的结果可求 S 20 .【详解】(1)由题设可得b 1 = a 2 = a 1 +1 = 2, b 2 = a 4 = a 3 +1 = a 2 + 2 +1 = 5又 a 2k +2 = a 2k +1 +1, a 2k +1 = a 2k + 2 ,故 a 2k +2 = a 2k + 3 即b n +1 = b n + 3 即b n +1 - b n = 3 所以{b n }为等差数列,故b n = 2 + (n -1)⨯ 3 = 3n -1 .(2) 设{a n }的前20 项和为 S 20 ,则 S 20 = a 1 + a 2 + a 3 + + a 20 ,因为a 1 = a 2 -1, a 3 = a 4 -1,, a 19 = a 20 -1 ,所以S 20 = 2 (a 2 + a 4 + + a 18 + a 20 ) -10= 2(b + b ++ b + b) -10 = 2⨯⎛10⨯ 2 +9⨯10 ⨯ 3⎫-10 = 300 . 129102⎪ ⎝ ⎭【点睛】方法点睛:对于数列的交叉递推关系,我们一般利用已知的关系得到奇数项的递推关系或偶数项的递推关系,再结合已知数列的通项公式、求和公式等来求解问题.18. 某学校组织“一带一路”知识竞赛,有 A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得 20 分,否则得 0 分: B 类问题中的每个问题回答正确得 80 分,否则得 0 分,己知小明能正确回答 A 类问题的概率为 0.8,能正确7 回答 B 类问题的概率为 0.6,且能正确回答问题的概率与回答次序无关.(1) 若小明先回答 A 类问题,记 X 为小明的累计得分,求 X 的分布列; (2) 为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2) B 类. 【解析】【分析】(1)通过题意分析出小明累计得分 X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答 B 类问题的数学期望,比较两个期望的大小即可. 【详解】(1)由题可知, X 的所有可能取值为0 , 20 ,100 .P ( X = 0) = 1- 0.8 = 0.2 ; P ( X = 20) = 0.8(1- 0.6) = 0.32 ; P ( X = 100) = 0.8⨯ 0.6 = 0.48 . 所以 X 的分布列为(2)由(1)知, E ( X ) = 0⨯ 0.2 + 20⨯ 0.32 +100 ⨯ 0.48 = 54.4 .若小明先回答 B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0 , 80 ,100 .P (Y = 0) = 1- 0.6 = 0.4 ; P (Y = 80) = 0.6 (1- 0.8) = 0.12 ; P ( X = 100) = 0.8⨯ 0.6 = 0.48 .所以 E (Y ) = 0⨯ 0.4 + 80 ⨯ 0.12 +100 ⨯ 0.48 =57.6 .因为54.4 < 57.6 ,所以小明应选择先回答 B 类问题.19. 记 ABC 是内角A , B , C 的对边分别为a , b , c .已知b 2 = ac ,点 D 在边 AC 上,BD sin ∠ABC = a sin C .(1) 证明: BD = b ;(2) 若 AD = 2DC ,求cos ∠ABC【答案】(1)证明见解析;(2)cos ∠ABC = . 12X 0 20100 P0.20.320.48c a c b b 【解析】【分析】(1)根据正弦定理的边角关系有 BD = ac ,结合已知即可证结论.b(2)由题设 BD = b , AD =2b , DC = b,应用余弦定理求cos ∠ADB 、cos ∠CDB ,又 3 32 b 4 11b 2∠ADB = π - ∠CDB ,可得2a + = ,结合已知及余弦定理即可求cos ∠ABC .a 2 3【详解】(1) 由题设, BD =a sin C ,由正弦定理知: =b sin C ,即= c , sin ∠ABC ∴ BD =ac,又b 2 = ac ,b∴ BD = b ,得证.(2) 由题意知: BD = b , AD =2b , DC = b , 3 3sin C sin ∠ABC sin ∠ABC b2 + 4b 2- 2 13b 2 - c 2 2+ b 2 - 2 10b 2 - a 2 ∴ cos ∠ADB = 9 = 9 ,同理cos ∠CDB = 9 = 9 , 2b ⋅ 2b 4b 2 2b ⋅ b2b 2 3 3 3 3∵ ∠ADB = π - ∠CDB ,13b 2 - 9 c 2 a 2 = - 10b 292 211b 2∴4b 22b 2,整理得2a + c =,又b 3 = ac ,332b 4 11b 2 4 2 2 4 a 21 a2 =3 ∴ 2a + = a 2 ,整理得6a 3-11a b + 3b = 0 ,解得 b 2 = 3 或 b 22 ,a 2 + c 2 -b 24a 2由余弦定理知: cos ∠ABC == -, 2ac3 2b 2当 a 2 = 1时, cos ∠ABC = 7 > 1不合题意;当 a 2 = 3 时, cos ∠ABC = 7 b 2 36 b 2 2 12 2 ;综上,cos ∠ABC =7.12【点睛】关键点点睛:第二问,根据余弦定理及∠ADB =π-∠CDB 得到a, b, c 的数量关系,结合已知条件及余弦定理求cos ∠ABC .20.如图,在三棱锥A -BCD 中,平面ABD ⊥平面BCD ,AB =AD ,O 为BD 的中点.(1)证明:OA ⊥CD ;(2)若OCD 是边长为1 的等边三角形,点E 在棱AD 上,DE = 2EA ,且二面角E -BC -D 的大小为45︒,求三棱锥A -BCD 的体积.【答案】(1)详见解析(2)36【解析】【分析】(1)根据面面垂直性质定理得AO⊥平面BCD,即可证得结果;(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.【详解】(1)因为AB=AD,O 为BD 中点,所以AO⊥BD因为平面ABD 平面BCD =BD ,平面ABD⊥平面BCD,AO ⊂平面ABD,因此AO⊥平面BCD,因为CD ⊂平面BCD,所以AO⊥CD(2)作EF⊥BD 于F, 作FM⊥BC 于M,连FM因为AO⊥平面BCD,所以AO⊥BD, AO⊥CD所以EF⊥BD, EF⊥CD,BD ⋂CD =D ,因此EF⊥平面BCD,即EF⊥BC因为FM⊥BC,FM I EF =F ,所以BC⊥平面EFM,即BC⊥MF3 17 y则∠EMF 为二面角 E-BC-D 的平面角, ∠EMF = π4 因为 BO = OD , OCD 为正三角形,所以 OCD 为直角三角形 因为 BE = 2ED ,∴ FM = 1 BF = 1 (1+ 1) = 2223 3从而EF=FM= 2∴ AO = 13Q AO ⊥ 平面BCD,所以V = 1 AO ⋅ S3 ∆BCD= 1 ⨯1⨯ 1 ⨯1⨯ = 3 3 2 6【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法. 21. 在平面直角坐标系 xOy 中,已知点 F 1 (- (1) 求C 的方程;17, 0) 、 F 2( 17, 0) MF 1- MF2= 2 ,点 M 的轨迹为C .(2) 设点T 在直线 x = 1上,过T 的两条直线分别交C 于A 、B 两点和 P ,Q 两点,且 TA ⋅ TB = TP ⋅ TQ ,2求直线 AB 的斜率与直线 PQ 的斜率之和.【答案】(1) x 2 2- = 1( x ≥ 1) ;(2) 0 . 16【解析】【分析】(1)利用双曲线的定义可知轨迹C 是以点 F 1 、 F 2 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程; (2)设点T⎛ 1 , t ⎫ ,设直线 AB 的方程为 y - t = k ⎛ x - 1 ⎫,设点 A ( x , y ) 、B (x , y ) ,联立直线 AB 与 2 ⎪ 1 2 ⎪1 12 2⎝ ⎭ ⎝ ⎭曲线C 的方程,列出韦达定理,求出 TA ⋅ TB 的表达式,设直线 PQ 的斜率为k 2 ,同理可得出 TP ⋅ TQ 的表达式,由 TA ⋅ TB = TP ⋅ TQ 化简可得k 1 + k 2 的值. 【详解】因为 MF 1 - MF 2 = 2 < F 1F 2 = 2 ,- 2 = ( > > ) = = y 1 2 1 2 2 所以,轨迹C 是以点 F 1 、 F 2 为左、右焦点的双曲线的右支,设轨迹C 的方程为 x a 2y 21 a 0, b 0 ,则2a2 ,可得 a 1 , b =b= 4 ,所以,轨迹C 的方程为 x 2 2-= 1( x ≥ 1) ;16(2)设点T ⎛ 1 , t ⎫,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,2 ⎪ ⎝ ⎭不妨直线 AB 的方程为 y - t = k ⎛ x - 1 ⎫,即 y = k x + t - 1 k ,1 2 ⎪12 1⎝ ⎭⎧ y = k x + t - 1 k 2 联立⎪ 1 2 1 ,消去 y 并整理可得(k 2 -16) x 2 + k (2t - k ) x + ⎛ t - 1 k ⎫ +16 = 0 ,⎨ ⎪⎩16x 2 - y 2 = 16 设点 A ( x , y ) 、 B ( x , y1 1 1) ,则 x > 1 且 x > 1. 1 ⎪ ⎝ ⎭ 1 1 2 2 1 2 22⎛ 1 ⎫2k 2- 2k t t - k ⎪ +16 由韦达定理可得 x 1 + x 2 = 1 1, k 2 -16 x 1 x 2 = ⎝ 2 1 ⎭, 1 k 2 -16x + x 1(t 2 +12)(1+ k 2) 所以, TA ⋅ TB = (1+ k 2 )⋅ x - ⋅ x - = (1+ k 2 )⋅⎛ x x - 1 2 + ⎫ = 1 ,1 1 21 12 2 4 ⎪ k 2 -16 ⎝ ⎭ 1(t 2 +12)(1+ k 2 )设直线 PQ 的斜率为k 2 ,同理可得 TP ⋅ TQ =2,k 2-16(t 2 +12)(1+ k 2 ) (t 2 +12)(1+ k 2 )因为 TA ⋅ TB = TP ⋅ TQ ,即1=k 2-16k 2-162,整理可得k 2 = k 2,12即(k 1 - k 2 )(k 1 + k 2 ) = 0 ,显然k 1 - k 2 ≠ 0 ,故k 1 + k 2 = 0 . 因此,直线 AB 与直线 PQ 的斜率之和为0 .【点睛】方法点睛:求定值问题常见的方法有两种:(1) 从特殊入手,求出定值,再证明这个值与变量无关;(2) 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22. 已知函数 f ( x ) = x (1- ln x ) .(1) 讨论 f( x ) 的单调性;1 2 1 2 2a ⎪b ⎪ (2) 设a , b 为两个不相等的正数,且b ln a - a ln b = a - b ,证明: 2 <1 + 1< e . a b【答案】(1) f ( x ) 的递增区间为(0,1) ,递减区间为(1, +∞) ;(2)证明见解析. 【解析】【分析】(1)求出函数的导数,判断其符号可得函数的单调区间;(2)设 1 = x , 1 = x ,原不等式等价于2 < x + x < e ,前者可构建新函数,利用极值点偏移可证,后者a1 b2 1 2可设 x 2 = tx 1 ,从而把 x 1 + x 2 < e 转化为(t -1)ln (t +1) - t ln t < 0 在(1, +∞) 上的恒成立问题,利用导数可证明该结论成立.【详解】(1)函数的定义域为(0, +∞ ) ,又 f '(x ) = 1- ln x -1 = -ln x , 当 x ∈(0,1)时, f '(x ) > 0 ,当 x ∈(1, +∞) 时, f '( x ) < 0 ,故 f (x ) 的递增区间为(0,1) ,递减区间为(1, +∞) . (2)因为b ln a - a ln b = a - b ,故b (ln a +1) = a (ln b +1) ,即ln a +1 = ln b +1, a b故 f ⎛ 1 ⎫ = f ⎛ 1 ⎫ ,⎝ ⎭⎝ ⎭设 1 = x , 1 = x ,由(1)可知不妨设0 < x < 1, x> 1.a1b21 2因为 x ∈(0,1)时, f (x ) = x (1- ln x ) > 0 , x ∈(e , +∞) 时, f ( x ) = x (1- ln x ) < 0 ,故1 < x 2 < e . 先证: x 1 + x 2 > 2 ,若 x 2 ≥ 2 , x 1 + x 2 > 2 必成立.若 x 2 < 2 , 要证: x 1 + x 2 > 2 ,即证 x 1 > 2 - x 2 ,而0 < 2 - x 2 < 1,故即证 f (x 1 ) > f (2 - x 2 ) ,即证: f ( x 2 ) > f (2 - x 2 ) ,其中1 < x 2 < 2 . 设 g (x ) = f ( x ) - f (2 - x ),1 < x < 2 , 则 g '(x ) = f '( x ) + f '(2 - x ) = -ln x - ln (2 - x ) = -ln ⎡⎣x (2 - x )⎤⎦ ,因为1 < x < 2 ,故0 < x (2 - x ) < 1,故-ln x (2 - x ) > 0 ,max 所以 g '(x ) > 0 ,故 g ( x ) 在(1, 2) 为增函数,所以 g ( x ) > g (1) = 0 , 故 f (x ) > f (2 - x ) ,即 f ( x 2 ) > f (2 - x 2 ) 成立,所以 x 1 + x 2 > 2 成立,综上, x 1 + x 2 > 2 成立. 设 x 2 = tx 1 ,则t > 1,结合ln a +1 = ln b +1 , 1 = x , 1 = x 可得: x (1- ln x ) = x (1- ln x ) ,a b a 1b 21 12 2即:1- ln x = t (1- ln t - ln x ) ,故ln x = t -1- t ln t ,1 1 1t -1要证: x 1 + x 2 < e ,即证(t +1) x 1 < e ,即证ln (t +1) + ln x 1 < 1 ,即证: ln (t +1)+ t -1- t ln t < 1 ,即证: (t -1)ln (t +1) - t ln t < 0 ,t -1令 S (t ) = (t -1)ln (t +1) - t ln t , t > 1 ,则 S '(t ) = ln (t +1) +t -1 -1- ln t = ln ⎛1+ 1 ⎫ - 2,t +1t ⎪t +1 ⎝ ⎭先证明一个不等式: ln (x +1) ≤ x . 设u (x ) = ln ( x +1) - x ,则u '( x ) = 1x +1 -1 = -x , x +1当-1 < x < 0 时, u '(x ) > 0 ;当 x > 0 时, u '( x ) < 0 , 故u ( x ) 在(-1, 0) 上为增函数,在(0, +∞) 上为减函数,故u ( x ) = u (0) = 0 ,故ln ( x +1) ≤ x 成立由上述不等式可得当t > 1时, ln ⎛1+1 ⎫ ≤ 1 < 2,故 S '(t ) < 0 恒成立, t ⎪t t +1 ⎝ ⎭故 S (t ) 在(1, +∞) 上为减函数,故 S (t ) < S (1) = 0 ,故(t -1)ln (t +1) - t ln t < 0 成立,即 x 1 + x 2 < e 成立.综上所述, 2 < 1 + 1< e .a b【点睛】方法点睛:极值点偏移问题,一般利用通过原函数的单调性,把与自变量有关的不等式问题转化与原函数的函数值有关的不等式问题,也可以引入第三个变量,把不等式的问题转化为与新引入变量有关的不等式问题.。
2021年普通高等学校招生全国统一考试数学(原卷)本试卷共4页,22小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用 28铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上,3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一井交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A= {x|-2<x<4}. B = {2,3,4,5},则A∩B=A.{2}B.{2,3}C.{3,4,}D.{2,3,4}2.已知z=2-i,则(z(z⃗+i)=A.6-2iB.4-2iC.6+2iD.4+2i3.已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为A.2B.2√2C.4D.4√24.下列区间中,函数f(x)=7sin(x−π6)单调递增的区间是A.(0,π2) B.(π2,π) C.(π,3π2) D.(3π2,2 π)5.已知F1,F2是椭圆C:x 29+y24=1的两个焦点,点M在C 上,则|MF1|·|MF2|的最大值为A.13B.12C.9D.66.若tanθ=-2,则sinθ(1+sin2θ)sinθ+cosθ=A.−65B. −25C.25D.657.若过点(a,b)可以作曲线y=e x的两条切线,则A. e b <aB. e a <bC. 0<a<e bD. 0<b<e a8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
2021年新高考全国一卷数学试题答案与解析
一、选择
1.设集合A={x|-2<x<4}. B = {2,3,4,5},则A∩B=
A {2}
B {2,3} C{3,4,} D{2,3,4}
注意:本题是寻找范围内的整数点,注意边界的取舍问题
答案:B
2.
A 6-2i B4-2i C6+2i D4+2i
答案:C
3.
已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为
A 2
B
C 4 D
4.下列区间中,函数单调递增的区间是
??.已知F1,F2是椭圆C:的两个焦点,点M在C 上,则|MF1|·|MF2|的最大值为A13 B12 C9 D6
6.若
答案:C
答案:D
答案:B 二、多选
答案:CD
答案:AC
答案:ACD
答案:BD
三、填空
13.已知函数f(x)=是偶函数,则a=______(1)
14.已知O为坐标原点,抛物线C:的焦点为F,P为C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP,若|FQ|=6,则C的准线方程为________(x=)
15. 函数f(x) =|2x-l|-2lnx的最小值为_________(1)
16. 某校学生在研究民间剪纸艺术时,发现此纸时经常会沿纸的某条对称轴把纸对折.规格为20dmXl2dm的长方形纸.对折1次共可以得到10dmX2dm . 20dmX6dm两种规格的图形,它们的面积之和=240 dm2,对折2次共可以得5dmX12dm ,10dmX6dm,20dmX3dm三种规格的图形,它们的面积之和180dm2.以此类推.则对折4次共可以得到不同规格图形的种数为______:如果对折n次,那么=______dm2
四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤。
22.(1)f(x)=x-xlnx
令f’(x)>0,则0<x<1,
令f’(x)<0,则x>1
∴f(x)的单调增区间为(0,1),单调减区间为(1,+∞).
(2)
即,即f()=f()
令p=,q=,不妨设0<p<1<q,下面证明2<p+q<e.
①先证p+q>2,当p≥2时结论显然成立.
当q∈(1,2)时,p+q>2,,则p>2-q,∴2-q<1.只需设f(p)>f(2-q). 即证当q∈(1,2)时,由f(p)>f(2-q)
令g(x)=f(x)-f(2-x).
g’(x)=f’(x)+f’(2-x)=-lnx-ln(2-x)=-ln[-(x-1)2+1]
当x∈(1,2)时,-(x-1)2+1<1,所以g’(x)>0,
∴g(x)在(1,2)上单调递增,
∴g(q)>g(1)=0,即f(q)>f(2-q)
②再设,
当时,,当时,
∴
∵∴
要证只需证
即证当时,有
设,,。