锐角三角函数-2021年中考数学真题专项汇编(含答案)
- 格式:docx
- 大小:790.57 KB
- 文档页数:10
2021年中考数学一轮复习知识点课标要求专题训练24:锐角三角函数(含答案)一、知识要点:1、锐角三角函数 正弦:c a A A =∠=斜边的对边sin ; 余弦:cb A A =∠=斜边的邻边cos ; 正切:b a A A A =∠∠=的邻边的对边tan 。
常见三角函数值:锐角α三角函数 30° 45° 60°αsin 21 22 23 αcos 23 22 21 αtan33 1 32、解直角三角形 解直角三角形就是应用勾股定理、两锐角的关系、三角函数等进行求解。
除直角外,共5个元素(三边、两锐角),若知道其中2个元素(至少有一个是边),就可以求出其余3个未知元素。
二、课标要求:1、利用相似的直角三角形,探索并认识锐角三角函数(sin A ,cos A ,tan A ),知道30°,45°,60°角的三角函数值。
2、会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它的对应锐角。
3、能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。
三、常见考点:1、30°,45°,60°角的三角函数值。
2、30°,45°,60°角的三角函数值与实数运算的结合。
3、解直角三角形。
4、用锐角三角函数的相关知识解决一些简单的实际问题。
四、专题训练:1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.如图,在塔AB前的平地上选择一点C,测出看塔顶的仰角为30°,从C点向塔底走100米到达D点,测出看塔顶的仰角为45°,则塔AB的高为()米.(≈1.7)A.145米B.135米C.125米D.120米3.在如图所示的网格中,小正方形网格的边长为1,△ABC的三个顶点均在格点上.则cos B 的值为()A.B.C.D.4.在Rt△ABC中,∠C=90°,cos B=,则Rt△ABC的三边a、b、c之比a:b:c为()A.2::3 B.1::C.1:2:3 D.2::5.在△ABC中,BC=2,AC=2,∠A=30°,则AB的长为()A.B.2 C.或4 D.2或46.用计算器求sin24°37'的值,以下按键顺序正确的是()A.B.C.D.7.如图,在△ABC中,AB=AC=4,∠C=72°,D是AB的中点,DE⊥AB交AC于点E,则cos A的值为()A.B.C.D.8.在△ABC中,∠C=90°,tan A=2,则sin A的值是()A.B.C.D.9.如图,在四边形ABCD中,∠ACB=∠CAD=90°,AC=CB,sin∠ACD=,则tan∠BDC 的值是()A.B.C.D.10.若α是锐角,sin(α+15°)=,那么锐角α等于()A.15°B.30°C.45°D.60°11.如图,CD是△ABC的高,若AB=10,CD=6,tan∠CAD=,则BD=.12.如图,△ABC的顶点都是正方形网格中的格点,则tan∠ACB等于.13.如图,在2×4的方格中,两条线段的夹角(锐角)为∠1,则sin∠1=.14.如图,在Rt△ABC中,∠A=90°,AB=AC,BD是AC边上的中线,则tan∠ADB的值是.15.如图,已知CD是△ABC的高,BD=4AD,CD=2AD,点E是BC上一点,EF⊥EA,AG=EG,tan∠EFA的值为.16.如图,测角仪CD竖直放在距建筑物AB底部8m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪CD的高度是1.5m,则建筑物AB的高度约为m.(结果精确到个位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.如图,已知P(4,3)为∠α边上一点,则cosα=.18.如图,河旁有一座小山,从山顶A处测得河对岸点C的俯角为30°,测得岸边点D的俯角为45°,通过测量可知河的宽度CD为50m.现需从山顶A到河对岸点C拉一条笔直的缆绳AC,则AC=m(计算结果用含根号的式子表示).19.如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是.20.如图,一山坡的坡度i=1:,小明从A处爬到B处所走的直线距离AB=10米,则他在垂直方向上升的高度CB为米.21.如图,在一次数学综合实践活动中,小亮要测量一教学楼的高度,先在坡面D处测得楼房项部A的仰角为30°,沿坡面向下走到坡脚C处,然后向教学楼方向继续行走10米到达E处,测得楼房顶部A的仰角为60°,已知坡面CD=16米,山坡的坡度i=1:,求楼房AB高度.(结果精确到0.1米)(参考数据:≈1.73,≈1.41)22.一种升降熨烫台如图所示,其原理是通过改变两根支撑杆夹角的度数来调整熨烫台的高度.AB和CD是两根相同长度的活动支撑杆,点O是它们的连接点,OA=OC,h(cm)表示熨烫台的高度.(1)如图1,若∠AOC=120°,h=60cm,求AB的长度;(2)小明发现,实际使用时将家里这种升降熨烫台的两根支撑杆的夹角∠AOC由120°变为60°(如图2),使用起来才顺手,请问在(1)的条件下,该熨烫台升高了多少?23.江阴芙蓉大道城市快速路在2020年5月份通车,在安装路灯过程中,工人师傅发现垂直于地面的灯柱OA与灯杆AB相交成一定的角度才能产生光照效果,路灯采用锥形灯罩,在地面上的照射区域OC长为8m,从O、C两处测得路灯B的仰角分别为∠BOC和∠BCO,且tan∠BOC=4,tan∠BCO=.(1)求路灯B到地面的距离;(2)若∠OAB=120°,求灯柱OA的高度(结果保留根号).24.如图所示,建筑物AB坐落在一斜坡的坡顶的平地上,当太阳光线与水平线夹角成60°时,测得建筑物AB在坡顶平地上的一部分影子BC=15米,在斜坡CE上的另一部分影子CD=5米,且斜坡CE的坡度为i(即tanα)=1:,求建筑物AB的高度.(结果保留根号)25.如图,楼和塔之间的距离AC为50m,小明在楼底A处测得塔顶的仰角为60°,爬到楼顶D测得塔顶的仰角为30°,求楼高AD.26.如图,某渔船在完成捕捞作业后准备返回港口C,途经某海域A处时,港口C的工作人员监测到点A在南偏东30°方向上,另一港口B的工作人员监测到点A在正西方向上.已知港口C在港口B的北偏西60°方向,且B、C两地相距120海里.(1)求出此时点A到港口C的距离(计算结果保留根号);(2)若该渔船从A处沿AC方向向港口C驶去,当到达点A'时,测得港口B在A'的南偏东75°的方向上,求此时渔船的航行距离(计算结果保留根号).参考答案1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:在Rt△ABD中,∵∠ADB=45°,∴BD=AB.在Rt△ABC中,∵∠ACB=30°,∴=tan30°=,∴BC=AB.设AB=x(米),∵CD=100米,∴BC=(x+100)米.∴x+100=x,∴x=50(+1),即塔AB的高为50(+1)≈135米.故选:B.3.解:在Rt△BCD中,BD==2,所以cos B===.故选:B.4.解:∵∠C=90°,∴cos B==,设a=2x,c=3x,∴b==x,∴a:b:c=2x:x:3x=2::3.故选:A.5.解:作CD⊥AB交AB的延长线于点D,当B2C=2时,∵∠A=30°,∠ADC=90°,AC=2,∴CD=,∴AD==3,B2D==1,∴AB2=3﹣1=2,同理可得,AB1=3+1=4,即AB的长为2或4,故选:D.6.解:先按键“sin”,再输入角的度数24°37′,按键“=”即可得到结果.故选:A.7.解:∵在△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=180°﹣∠C﹣∠ABC=36°.∵D是AB中点,DE⊥AB,∴AE=BE,AD=BD=AB=2,∴∠ABE=∠A=36°,∴∠BEC=∠A+∠ABE=72°=∠C,∴BE=BC=AE,设BC=AE=x,则CE=AC﹣AE=4﹣x.∵∠ABC=∠BEC,∠C=∠C,∴△ABC∽△BEC,∴=,即=,解得:x1=2﹣2,x2=﹣2﹣2(舍去),∴AE=2﹣2,∴cos A===,故选:C.8.解:∵∠C=90°,∴tan A==2,设AC=x,则BC=2x,∴AB==x,∴sin A===.故选:C.9.解:如图,过点D作DE⊥BC交BC的延长线于E,过点C作CH⊥BD于H.∵∠ACB=∠CAD=90°,DE⊥EC,∴∠ACE=∠E=90°,∴四边形ACED是矩形,∴AD=CE,AC=DE,∵sin∠ACD==,∴可以假设AD=3k,CD=5k,则AC=BC=DE=4k,∴BE=BC+CE=7k,∴BD===k,∵S△CBD=•BC•DE=•BD•CH,∴CH=k,∴DH===,∴tan∠BDC===.故选:C.10.解:∵sin45°=,∴α+15°=45°,∴α=30°,故选:B.11.解:∵CD是△ABC的高,∴∠ADC=90°,∵CD=6,tan∠CAD==,∴AD=CD=8,∵AB=10,∴BD=AB﹣AD=10﹣8=2,故答案为:2.12.解:过点B作BD⊥AC,垂足为D.∵AB=5,AC==,BC==5,∴CD=.∵S△ABC=15﹣﹣×4×3=,S△ABC=×AC×DB,∴××BD=,∴BD==.在Rt△BCD中,tan∠ACB==3.故答案为:3.13.解:如图,过点C作CE∥AB,连接DE,∵CE=,DE=,CD=,∴DE=CE,CE2+DE2=10=CD2,∴∠CED=90°,∴∠EDC=∠ECD=45°,∵CE∥AB,∴∠1=∠DCE=45°,∴sin∠1=,故答案为:.14.解:∵BD是AC边上的中线,∴AD=AC.∵AB=AC,∴AD=AB.在Rt△ABD中,tan∠ADB==2.故答案为:2.15.解:设AD=x,则CD=2x,BD=4x,∵CD为高,∴∠CDB=∠CDA=90°,∵==2,∴△ADC∽△CBD,∴∠CAD=∠BCD,∵∠CAD+∠ACD=90°,∴∠ACD+∠BCD=90°,即∠ACB=90°,∵AG=GE,∴CG=AG=GE,∵EF⊥EA,∴∠EFA+∠DAE=90°,∵∠DAE+∠AGD=90°,∴∠AGD=∠EFA,在Rt△AGD中,设DG=t,则AG=CG=2x﹣t,∵x2+t2=(2x﹣t)2,∴t=x,∴tan∠AGD===,∴tan∠EFA=.故答案为.16.解:作DE⊥AB于点E,由题意可得,DE=CD=8m,∵∠ADE=50°,∴AE=DE•tan50°≈8×1.19=9.52(m),∵BE=CD=1.5m,∴AB=AE+BE=9.52+1.52=11.2≈11(m),故答案为:11.17.解:过点P(4,3)作PQ⊥x轴,垂足为Q,则PQ=3,OQ=4,在Rt△POQ中,OP===5,所以cosα==,故答案为:.18.解:作AB⊥CD交CD的延长线于点B,在Rt△ABC中,∵∠ACB=∠CAE=30°,∠ADB=∠EAD=45°,∴AC=2AB,DB=AB.设AB=x,则BD=x,AC=2x,CB=50+x,∵tan∠ACB=tan30°,∴AB=CB•tan∠ACB=CB•tan30°.∴x=(50+x)•.解得:x=25(1+),∴AC=50(1+)(米).答:缆绳AC的长为50(1+)米.故答案为:50(1+)19.解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.∵∠ABC=120°,∴∠ABH=180°﹣∠ABC=60°,∵AB=12,∠H=90°,∴BH=AB•cos60°=6,AH=AB•sin60°=6,∵EF⊥DF,DE=5,∴sin∠ADE==,∴EF=4,∴DF===3,∵S△CDE=6,∴•CD•EF=6,∴CD=3,∴CF=CD+DF=6,∵tan C==,∴=,∴CH=9,∴BC=CH﹣BH=9﹣6.故答案为:9﹣6.20.解:因为坡度i=1:,∴tan∠A==,∴∠A=30°,∴CB=AB=5(米).故答案为:5.21.解:过D作DG⊥BC于G,DH⊥AB于H,交AE于F,作FP⊥BC于P,如图所示:则DG=FP=BH,DF=GP,∵坡面CD=16米,山坡的坡度i=1:,∴∠DCG=30°,∴FP=DG=CD=8,∴CG=DG=8,∵∠FEP=60°,∴FP=EP=8,∴EP=,∴DF=GP=8+10+=+10,∵∠AEB=60°,∴∠EAB=30°,∵∠ADH=30°,∴∠DAH=60°,∴∠DAF=30°=∠ADF,∴AF=DF=+10,∴FH=AF=+5,∴AH=FH=16+5,∴AB=AH+BH=16+5+8=24+5≈24+5×1.73≈32.7(米),答:楼房AB高度约为32.7米.22.解:(1)如图1中,过点B作BH⊥AC于H.∵OA=OC,∠AOC=120°,∴∠OAC=∠OCA=(180°﹣120°)=30°,∵∠AHB=90°,BH=h=60cm,∴AB=2BH=120(cm).(2)如图2中,过点B作BT⊥AC于T.在Rt△ABT中,AB=120cm,∠A=60°,∠ATB=90°,∴BT=AB•sin60°=60(cm),∴熨烫台升高了(60﹣60)cm.23.解:(1)过点B作BF⊥OC于F,设BF=x.在Rt△BOF中,∵tan∠BOC==4,∴OF=x,在Rt△BCF中,∵tan∠BCO==,∴CF=x,∵OC=8,∴x+x=8,∴x=8,∴BF=8(m),即路灯B到地面的距离8m;(2)过点A作AG⊥BF于点G,∵∠OAB=120°,∴∠BAG=∠OAB﹣∠OAG=120°﹣90°=30°.∵OF=×8=2,∴AG=OF=2,在Rt△BCF中,∵tan∠BAG=,∴BG=tan30°×2=∴OA=GF=(8﹣)(m),即灯柱OA的高度为(8﹣)m.24.解:如图,延长BC交AD于F,过F作FG⊥CD于G,∵斜坡CE的坡度为i(即tanα)=1:,∴α=30°.∵BF∥EM,∴∠FCD=∠E=30°.∵∠AFB=60°.∴∠CDF=∠AFB﹣∠FCD=30°.∴∠ECD=∠FDC=30°.∴FC=FD.∴CG=CD=.∴CF===5(米).∴BF=BC+CF=15+5=20(米).∴AB=BF•tan60°=20(米).答:建筑物AB的高度是20米.25.解:由题意,可知∠BDE=30°,∠BAC=60°,四边形ACED是矩形,∴DE=AC=50m.在Rt△DBE中,∵tan∠BDE=,∴=,∴BE=(m).在Rt△ABC中,∵tan∠CAB=,∴=,∴BC=50(m),∴AD=CE=BC﹣BE=50﹣=(m).答:大楼AD的高为m.26.解:(1)如图所示:延长BA,过点C作CD⊥BA延长线与点D,由题意可得:∠CBD=30°,BC=120海里,则CD=BC=60海里,∵cos∠ACD==cos30°=,即=,∴AC=40(海里),答:此时点A到军港C的距离为40海里;(2)过点A′作A′N⊥BC于点N,如图:由(1)得:CD=60海里,AC=40海里,∵A'E∥CD,∴∠AA'E=∠ACD=30°,∴∠BA′A=45°,∵∠BA'E=75°,∴∠ABA'=15°,∴∠2=15°=∠ABA',即A′B平分∠CBA,∴A'E=A'N,设AA′=x,则AE=AA',A'N=A′E=AE=x,∵∠1=60°﹣30°=30°,A'N⊥BC,∴A'C=2A'N=x,∵A'C+AA'=AC,∴x+x=40,解得:x=60﹣20,∴AA'=(60﹣20)海里,答:此时渔船的航行距离为(60﹣20)海里.。
初中数学锐角三角函数的专项训练解析含答案一、选择题1.如图,在平面直角坐标系中,四边形ABCD是菱形,点B的坐标是(0,4),点D的坐标是(83,4),点M和点N是两个动点,其中点M从点B出发,沿BA以每秒2个单位长度的速度做匀速运动,到点A后停止,同时点N从点B出发,沿折线BC→CD以每秒4个单位长度的速度做匀速运动,如果其中一个点停止运动,则另一点也停止运动,设M,N两点的运动时间为x,△BMN的面积为y,下列图象中能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】D【解析】【分析】根据两个点的运动变化,写出点N在BC上运动时△BMN的面积,再写出当点N在CD上运动时△BMN的面积,即可得出本题的答案;【详解】解:当0<x⩽2时,如图1:连接BD,AC,交于点O′,连接NM,过点C作CP⊥AB垂足为点P,∴∠CPB=90°,∵四边形ABCD是菱形,其中点B的坐标是(0,4),点D的坐标是3,4),∴BO′3,CO′=4,∴228',O B O C+'=∵AC=8,∴△ABC是等边三角形,∴∠ABC=60°,∴CP=BC×sin60°=8×32=43,BP=4,BN=4x,BM=2x,242BM x xBP==,2BN xBC=,∴=BM BNBP BC,又∵∠NBM=∠CBP,∴△NBM∽△CBP,∴∠NMB=∠CPB=90°,∴114438322CBPS BP CP=⨯⨯=⨯⨯=V;∴2NBMCBPS BNS BC⎛⎫= ⎪⎝⎭VV,即y=22283=232NBM CBPBN xS S xBC⎛⎫⎛⎫=⨯=⨯⎪ ⎪⎝⎭⎝⎭V V,当2<x⩽4时,作NE⊥AB,垂足为E,∵四边形ABCD是菱形,∴AB∥CD,∴3BM=2x,∴y=11=2434322BM NE x x⨯⨯=g g;故选D.【点睛】本题主要考查了动点问题的函数图象,掌握动点问题的函数图象是解题的关键. 2.在Rt△ABC中,∠C=90°,如果AC=2,cosA=23,那么AB的长是()A.3 B.43C.5D.13【答案】A 【解析】根据锐角三角函数的性质,可知cosA=ACAB=23,然后根据AC=2,解方程可求得AB=3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=A∠的邻边斜边,然后带入数值即可求解.3.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )A 83B43C.8 D.83【答案】A 【解析】【分析】根据折叠性质可得BE=12AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM 中,利用∠ABM的余弦求出BM的长即可.【详解】∵对折矩形纸片ABCD,使AD与BC重合,AB=4,∴BE=12AB=2,∠BEF=90°,∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,∴∠EA′B=30°,∴∠EBA′=60°,∴∠ABM=30°,∴在Rt△ABM中,AB=BM⋅cos∠ABM,即4=BM⋅cos30°,解得:BM=83,故选A.【点睛】本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.4.如图,在矩形ABCD中,AB=23,BC=10,E、F分别在边BC,AD上,BE=DF.将△ABE,△CDF分别沿着AE,CF翻折后得到△AGE,△CHF.若AG、CH分别平分∠EAD、∠FCB,则GH长为()A.3 B.4 C.5 D.7【答案】B【解析】【分析】如图作GM⊥AD于M交BC于N,作HT⊥BC于T.通过解直角三角形求出AM、GM的长,同理可得HT、CT的长,再通过证四边形ABNM为矩形得MN=AB=3BN=AM=3,最后证四边形GHTN为平行四边形可得GH=TN即可解决问题.【详解】解:如图作GM⊥AD于M交BC于N,作HT⊥BC于T.∵△ABE沿着AE翻折后得到△AGE,∴∠GAM=∠BAE,AB=AG=3∵AG分别平分∠EAD,∴∠BAE=∠EAG,∵∠BAD=90°,∴∠GAM=∠BAE=∠EAG=30°,∵GM⊥AD,∴∠AMG=90°,∴在Rt△AGM中,sin∠GAM=GMAG,cos∠GAM=AMAG,∴GM=AG•sin30°3AM=A G•cos30°=3,同理可得HT3CT=3,∵∠AMG=∠B=∠BAD=90°,∴四边形ABNM为矩形,∴MN=AB=23,BN=AM=3,∴GN=MN﹣GM=3,∴GN=HT,又∵GN∥HT,∴四边形GHTN是平行四边形,∴GH=TN=BC﹣BN﹣CT=10﹣3﹣3=4,故选:B.【点睛】本题考查翻折变换,解直角三角形,矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.5.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米【答案】C【解析】【分析】根据正切函数可求小河宽PA的长度.【详解】∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选:C.【点睛】此题考查解直角三角形的应用,解题关键在于掌握解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.6.如图,ABC ∆是一张顶角是120︒的三角形纸片,,6AB AC BC ==现将ABC ∆折叠,使点B 与点A 重合,折痕DE ,则DE 的长为( )A .1B .2C .2D .3【答案】A【解析】【分析】 作AH ⊥BC 于H ,根据等腰三角形的性质求出BH ,根据翻折变换的性质求出BD ,根据正切的定义解答即可. 【详解】解:作AH ⊥BC 于H ,∵AB=AC ,AH ⊥BC ,BH=12BC=3, ∵∠BAC=120°,AB=AC ,∴∠B=30°,∴AB=30BH cos ︒3 由翻折变换的性质可知,3∴DE=BD •tan30°=1,故选:A .【点睛】此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.7.如图,菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,∠DOE =120°,DE =1,则BD =( )A.3B.23C.63D.33【答案】B【解析】【分析】证明△OBE是等边三角形,然后解直角三角形即可.【详解】∵四边形ABCD是菱形,∴OD=OB,CD=BC.∵DE⊥BC,∴∠DEB=90°,∴OE=OD=OB.∵∠DOE=120°,∴∠BOE=60°,∴△OBE是等边三角形,∴∠DBC=60°.∵∠DEB=90°,∴BD=23 sin60DE=︒.故选B.【点睛】本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,点O为△ABC边 AC的中点,连接BO并延长到点D,连接AD、CD,若BD=12,AC=8,∠AOD=120°,则四边形ABCD的面积为()A.3B.2C10D.243【答案】D【解析】【分析】分别过点A、C作BD的垂线,垂足分别为M、N,通过题意可求出AM、CN的长度,可计算三角形ABD和三角形CBD的面积,相加即为四边形ABCD的面积.【详解】解:分别过点A、C作BD的垂线,垂足分别为M、N,∵点O 为△ABC 边 AC 的中点,AC=8,∴AO=CO=4,∵∠AOD =120°,∴∠AOB=60°,∠COD=60°, ∴34AM AM sin AOB AO ===∠, 34CN CN sin COD CO ===∠, ∴AM=23,CN=23,∴122312322ABD BD AM S ⨯===g △, 122312322BD CN S ⨯===g △BCD , ∴=123123243ABD BCD ABCD S S S +=+=△△四边形故选:D.【点睛】本题考查了三角函数的内容,熟练掌握特殊角的三角函数值是解题的关键.9.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若∠B=60°,则c a a b c b+++的值为( )A .12B .22C .1D 2【答案】C【解析】【分析】先过点A 作AD ⊥BC 于D ,构造直角三角形,结合∠B=60°,利用3sin602︒=cos60°=12,可求13,,22DB c AD c ==把这两个表达式代入到另一个Rt △ADC 的勾股定理表达式中,化简可得即a 2+c 2=b 2+ac ,再把此式代入通分后所求的分式中,可求其值等于1.【详解】解:过A 点作AD ⊥BC 于D ,在Rt △BDA 中,由于∠B=60°,∴13,,22DB c AD c == 在Rt △ADC 中,DC 2=AC 2﹣AD 2, ∴2221324a c b c ⎛⎫-=- ⎪⎝⎭, 即a 2+c 2=b 2+ac ,∴()()2222222 1.c a c cb a ab a c ab bc b ac ab bc a b c b a b c b ac ab bc b ac ab bc b++++++++++====++++++++++ 故选C .【点睛】本题考查了特殊角的三角函数值、勾股定理的内容.在直角三角形中,两直角边的平方和等于斜边的平方.注意作辅助线构造直角三角形是解题的好方法.10.如图,在扇形OAB 中,120AOB ∠=︒,点P 是弧AB 上的一个动点(不与点A 、B 重合),C 、D 分别是弦AP ,BP 的中点.若33CD =,则扇形AOB 的面积为( )A .12πB .2πC .4πD .24π【答案】A【解析】【分析】 如图,作OH ⊥AB 于H .利用三角形中位线定理求出AB 的长,解直角三角形求出OB 即可解决问题.【详解】解:如图作OH ⊥AB 于H .∵C 、D 分别是弦AP 、BP 的中点.∴CD 是△APB 的中位线,∴AB =2CD =63, ∵OH⊥AB ,∴BH =AH =33,∵OA =OB ,∠AOB =120°,∴∠AOH =∠BOH =60°, 在Rt △AOH 中,sin ∠AOH =AH AO, ∴AO =336sin 3AH AOH ==∠, ∴扇形AOB 的面积为:2120612360ππ=g g , 故选:A .【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.11.如图,在Rt △ABC 内有边长分别为a ,b ,c 的三个正方形.则a 、b 、c 满足的关系式是( )A .b=a+cB .b=acC .b 2=a 2+c 2D .b=2a=2c【答案】A【解析】【分析】 利用解直角三角形知识.在边长为a 和b 两正方形上方的两直角三角形中由正切可得a b c b a c-=-,化简得b =a +c ,故选A. 【详解】请在此输入详解!12.如图,Rt△AOB中,∠AOB=90°,AO=3BO,OB在x轴上,将Rt△AOB绕点O顺时针旋转至△RtA'OB',其中点B'落在反比例函数y=﹣2x的图象上,OA'交反比例函数y=kx的图象于点C,且OC=2CA',则k的值为()A.4 B.72C.8 D.7【答案】C【解析】【详解】解:设将Rt△AOB绕点O顺时针旋转至Rt△A'OB'的旋转角为α,OB=a,则OA=3a,由题意可得,点B′的坐标为(acosα,﹣asinα),点C的坐标为(2asinα,2acosα),∵点B'在反比例函数y=﹣2x的图象上,∴﹣asinα=﹣2acosα,得a2sinαcosα=2,又∵点C在反比例函数y=kx的图象上,∴2acosα=k2asinα,得k=4a2sinαcosα=8.故选C.【点睛】本题主要考查反比例函数与几何图形的综合问题,解此题的关键在于先设旋转角为α,利用旋转的性质和三角函数设出点B'与点C的坐标,再通过反比例函数的性质求解即可.13.如图,有一个边长为2cm的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是()A .3cmB .2cmC .23cmD .4cm【答案】A【解析】【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可.【详解】解:如图所示,正六边形的边长为2cm ,OG ⊥BC ,∵六边形ABCDEF 是正六边形,∴∠BOC=360°÷6=60°,∵OB=OC ,OG ⊥BC ,∴∠BOG=∠COG=12∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG=12BC=12×2=1cm , ∴OB=sin 30BG o=2cm , ∴OG=2222213OB BG -=-=,∴圆形纸片的半径为3cm ,故选:A .【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.14.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得60BAC ∠=︒,70DAC ∠=︒,则竹竿AB 与AD 的长度之比为( ).A.2sin70︒B.2cos70︒C.2tan70︒D.2 tan70︒【答案】B【解析】【分析】直接利用锐角三角函数关系分别表示出AB,AD的长,即可得出答案.【详解】解:∵∠BAC=60°,∠DAC=70°,∴cos60°=12ACAB=,则AB=2AC,∴cos70°=ACAD,∴AC=AD•cos70°,AD=cos70AC︒,∴2cos70ACACABAD=︒=2cos70°.故选:B.【点睛】此题主要考查了解直角三角形的应用,正确表示出各边长是解题关键.15.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m【答案】D【解析】【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D .【详解】 解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =- 21(4)82x =--+, 则抛物线的对称轴为4x =,∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-, 整理得28150x x -+=,解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.16.如图 ,矩形 ABCD 中,AB >AD ,AB =a ,AN 平分∠DAB ,DM ⊥AN 于点 M ,CN ⊥AN 于点 N .则 DM +CN 的值为(用含 a 的代数式表示)( )A .aB .45 aC .2aD .3a 【答案】C【解析】【分析】 根据“AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N”得∠MDC=∠NCD=45°,cos45°=DM CN DE CE= ,所以DM+CN=CDcos45°;再根据矩形ABCD ,AB=CD=a ,DM+CN 的值即可求出.【详解】∵AN 平分∠DAB ,DM ⊥AN 于点M ,CN ⊥AN 于点N ,∴∠ADM=∠MDC=∠NCD=45°,∴00cos 4545D CNMcos +=CD ,在矩形ABCD 中,AB=CD=a ,∴DM+CN=acos45°=2a. 故选C.【点睛】此题考查矩形的性质,解直角三角形,解题关键在于得到cos45°=DM CN DE CE =17.如图,点E 是矩形ABCD 的边AD 的中点,且BE ⊥AC 于点F ,则下列结论中错误的是( )A .AF =12CF B .∠DCF =∠DFCC .图中与△AEF 相似的三角形共有5个D .tan ∠CAD =2 【答案】D【解析】【分析】由AE=12AD=12BC ,又AD ∥BC ,所以12AE AF BC FC ==,故A 正确,不符合题意; 过D 作DM ∥BE 交AC 于N ,得到四边形BMDE 是平行四边形,求出BM=DE=12BC ,得到CN=NF ,根据线段的垂直平分线的性质可得结论,故B 正确,不符合题意;根据相似三角形的判定即可求解,故C 正确,不符合题意;由△BAE ∽△ADC ,得到CD 与AD 的大小关系,根据正切函数可求tan ∠CAD 的值,故D 错误,符合题意.【详解】解:A 、∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE BC =AF FC, ∵AE =12AD =12BC , ∴AF FC =12,故A 正确,不符合题意; B 、过D 作DM ∥BE 交AC 于N ,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形,∴BM =DE =12BC , ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF =DC ,∴∠DCF =∠DFC ,故B 正确,不符合题意;C 、图中与△AEF 相似的三角形有△ACD ,△BAF ,△CBF ,△CAB ,△ABE 共有5个,故C 正确,不符合题意.D 、设AD =a ,AB =b 由△BAE ∽△ADC ,有b a =2a .∵tan ∠CAD =CD AD =b a ,故D 错误,符合题意.故选:D .【点睛】本题考查了相似三角形的判定和性质,矩形的性质,图形面积的计算,正确的作出辅助线是解题的关键.18.已知在 Rt ABC 中, ∠C = 90°,AC = 8, BC = 15 ,那么下列等式正确的是( )A .8sin 17A =B .cosA=815C .tan A =817D .cot A=815 【答案】D【解析】【分析】 根据锐角三角函数的定义进行作答.【详解】 由勾股定理知,AB=17;A.15sin 17BC A AB == ,所以A 错误;B.8cos 17AC A AB ==,所以,B 错误;C.15tan 8BC A AC ==,所以,C 错误;D.cot AC A BC ==815,所以选D. 【点睛】 本题考查了锐角三角函数的定义,熟练掌握锐角三角函数的定义是本题解题关键.19.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )A .183π-B .183πC .32316πD .1839π-【答案】C【解析】【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°-60°=120°,∵DF是菱形的高,∴DF⊥AB,∴DF=AD•sin60°=38432⨯=,∴图中阴影部分的面积=菱形ABCD的面积-扇形DEFG的面积=2120(43)84332316360ππ⨯⨯-=-.故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.20.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,∵∠B和∠D所对的弧都为弧AC,∴∠B=∠D,即sinB=sinD=25,∵半径AO=5,∴CD=10,∴2 sin105AC ACDCD===,∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.。
中考数学总复习《锐角三角函数》专题训练(附带答案) 学校:___________班级:___________姓名:___________考号:___________命题点1直角三角形的边角关系及简单应用1(2022广西北部湾经济区)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC是() A.12sin α米B.12cos α米C.12sinα米 D.12cosα米(第1题) (第2题)2(2022福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44 cm,则高AD约为(参考数据:sin 27°≈0.45,cos 27°≈0.89,tan27°≈0.51)()A.9.90 cmB.11.22 cmC.19.58 cmD. 22.44 cm3(2022随州)如图,已知点B,D,C在同一直线的水平地面上,在点C处测得建筑物AB的顶端A的仰角为α,在点D处测得建筑物AB的顶端A的仰角为β,若CD=a,则建筑物AB的高度为()A.atanα-tanβB.atanβ-tanαC.atanαtanβtanα-tanβD.atanαtanβtanβ-tanα(第3题) (第4题)4(2022乐山)如图,在Rt △ABC 中,∠C=90°,BC=√5,点D 是AC 上一点,连接BD.若tan A=12,tan ∠ABD=13,则CD 的长为 ( )A.2√5B.3C.√5D.25(2022益阳)如图,在Rt △ABC 中,∠C=90°,若sin A=45,则cos B= .(第5题) (第6题)6(2022常州)如图,在四边形ABCD 中,∠A=∠ABC=90°,DB 平分∠ADC.若AD=1,CD=3,则sin ∠ABD= .7(2022广州)如图,AB 是☉O 的直径,点C 在☉O 上,且AC=8,BC=6.(1)尺规作图:过点O 作AC 的垂线,交AC ⏜于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求点O 到AC 的距离及sin ∠ACD 的值.命题点2解直角三角形的实际应用 角度1背靠背型8(2022安徽)如图,为了测量河对岸A ,B 两点间的距离,数学兴趣小组在河岸南侧选定观测点C ,测得A ,B 均在C 的北偏东37°方向上,沿正东方向行走90米至观测点D ,测得A 在D 的正北方向上,B 在D 的北偏西53°方向上.求A ,B 两点间的距离.参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75.9(2022抚顺)如图,B港口在A港口的南偏西25°方向上,距离A港口100海里处.一艘货轮航行到C处,发现A港口在货轮的北偏西25°方向,B港口在货轮的北偏西70°方向.求此时货轮与A港口的距离(结果取整数.参考数据:sin 50°≈0.766,cos 50°≈0.643,tan 50°≈1.192,√2≈1.414)角度2母子型10(2022天津)如图,某座山AB的顶部有一座通讯塔BC,且点A,B,C在同一条直线上.从地面P处测得塔顶C的仰角为42°,测得塔底B的仰角为35°.已知通讯塔BC的高度为32 m,求这座山AB的高度(结果取整数).(参考数据:tan 35°≈0.70,tan 42°≈0.90)11(2022连云港)我市的花果山景区大圣湖畔屹立着一座古塔——阿育王塔,是苏北地区现存最高和最古老的宝塔.小明与小亮要测量阿育王塔的高度,如图所示,小明在点A处测得阿育王塔最高点C的仰角∠CAE=45°,再沿正对阿育王塔方向前进至B处测得最高点C的仰角∠CBE=53°,AB=10 m;小亮在点G处竖立标杆FG,小亮所在位置点D、标杆顶F、最高点C在一条直线上,FG=1.5 m,GD=2 m.(1)求阿育王塔的高度CE;(2)求小亮与阿育王塔之间的距离ED.(注:结果精确到0.01 m.参考数据:sin 53°≈0.799,cos 53°≈0.602,tan 53°≈1.327)角度3拥抱型12(2021自贡)如图,在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B处测得办公楼底部D处的俯角是53°,从综合楼底部A处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1米.参考数据:tan 37°≈0.75,tan 53°≈1.33,√3≈1.73)角度4实物型13(2022吉林)动感单车是一种新型的运动器械.图(1)是一辆动感单车的实物图,图(2)是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70 cm,∠BCD的度数为58°.当AB长度调至34 cm时,求点A到CD的距离AE的长度(结果精确到1 cm).(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan58°≈1.60)图(1)图(2)14(2022成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10 cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是点A的对应点),用眼舒适度较为理想,求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1 cm.参考数据:sin 72°≈0.95,cos 72°≈0.31,tan 72°≈3.08)角度5其他类型15(2022山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:如图,无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60 m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24 m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB 与CD 之间的距离AC 的长(结果精确到1 m.参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75,√3≈1.73).分类训练15 锐角三角函数1.A2.B 【解析】 ∵AB=AC ,AD ⊥BC ,∴BD=CD=12BC=22 cm .在Rt △ABD 中,tan ∠ABD=ADBD ,∴AD=BD ·tan ∠ABD=22×tan 27°≈22×0.51=11.22(cm). 3.D 【解析】 设AB=x.在Rt △ABD 中,tan β=AB BD =x BD ,∴BD=xtanβ,∴BC=CD+BD=a+xtanβ.在Rt △ABC 中,tan α=ABBC =xa+xtanβ,∴x=atanαtanβtanβ-tan α.4.C 【解析】 如图,过点D 作DE ⊥AB 于点E.∵tan A=DE AE =12,tan ∠ABD=DE BE =13,∴AE=2DE ,BE=3DE ,∴2DE+3DE=5DE=AB.在Rt △ABC 中,tan A=12,BC=√5,∴BC AC =√5AC =12,∴AC=2√5,∴AB=√AC 2+BC 2=5,∴DE=1,∴AE=2,∴AD=√AE 2+DE 2=√22+12=√5,∴CD=AC-AD=√5,故选C .5.456.√66 【解析】 如图,过点D 作DE ⊥BC ,垂足为E ,则四边形ABED 是矩形,∴BE=AD=1,DE=AB ,∠ADB=∠CBD.∵DB 平分∠ADC ,∴∠ADB=∠CDB ,∴∠CBD=∠CDB ,∴CB=CD=3,∴CE=BC-BE=3-1=2,∴DE=√CD 2-CE 2=√32-22=√5,∴BD=√DE 2+BE 2=√(√5)2+12=√6,∴sin ∠ABD=AD BD =√6=√66.7.【答案】 (1)作图如图所示.(2)设(1)中AC 的垂线交AC 于点F ,则OF ⊥AC∴AF=CF=12AC=4. 又点O 是AB 的中点∴OF 是△ABC 的中位线∴OF=12BC=3,即点O 到AC 的距离为3. ∵AB 是☉O 的直径 ∴∠ACB=90°∴AB=√AC 2+BC 2=√82+62=10 ∴OD=5∴DF=OD-OF=5-3=2∴在Rt △CDF 中,CD=√DF 2+CF 2=√22+42=2√5 ∴sin ∠ACD=DFCD =2√5=√55.8.【答案】如图,由题意知,∠ECA=37°,CD=90,∠ADC=90°,∠ADB=53°,AD∥EC∴∠BCD=53°,∠BDC=∠ADC-∠ADB=37°,∠A=37°∴∠BCD+∠BDC=90°∴∠CBD=90°,即AC⊥BD.在Rt△CBD中,BD=CD cos∠BDC=90cos 37°≈90×0.80=72.在Rt△ABD中,AB=BDtanA =72tan37°≈720.75=96.答:A,B两点间的距离为96 m.9.【答案】如图,过点B作BH⊥AC于点H,根据题意,得∠BAC=25°+25°=50°,∠BCA=70°-25°=45°.在Rt△ABH中,AB=100,∠BAH=50°,sin∠BAH=BHAB ,cos∠BAH=AHAB∴BH=AB·sin∠BAC≈100×0.766=76.6,AH=AB·cos∠BAC≈100×0.643=64.3.在Rt△BHC中,∠BCH=45°∴CH=BH=76.6∴AC=AH+CH=64.3+76.6≈141.答:货轮距离A港口约141海里.10.【答案】根据题意,得BC=32,∠APC=42°,∠APB=35°.在Rt△PAC中,tan∠APC=ACPA∴PA=ACtan∠APC.在Rt△PAB中,tan∠APB=ABPA∴PA=ABtan∠APB.∵AC=AB+BC∴AB+BCtan∠APC =AB tan∠APB∴AB=BC·tan∠APBtan∠APC-tan∠APB =32×tan35°tan42°−tan35°≈32×0.700.90−0.70=112(m).答:这座山AB的高度约为112 m.11.【答案】(1)在Rt△CAE中,∵∠CAE=45°∴CE=AE.∵AB=10∴BE=AE-10=CE-10.在Rt△CEB中,由tan 53°=CEBE =CE CE-10得tan 53°(CE-10)=CE,∴CE≈40.58.答:阿育王塔的高度约为40.58 m.(2)由题意知Rt△FGD∽Rt△CED∴FGCE =GDED,即 1.540.58=2ED,∴ED≈54.11.答:小亮与阿育王塔之间的距离约为54.11 m.归纳总结解直角三角形实际应用的一般步骤①审题:根据题意画出图形,建立数学模型.②构造直角三角形:将已知条件转化到示意图中,把实际问题转化为解直角三角形问题.③列关系式:选择合适的边角关系式,使运算简便、准确.④检验:得出数学问题的答案并检验答案是否符合实际意义,同时还要注意结果有无对精确度的要求.12.【答案】在Rt△BAD中,tan∠BDA=ABAD,∠BDA=53°∴AD=ABtan53°≈18.05(米).在Rt△CAD中,tan∠CAD=CDAD,∠CAD=30°第 11 页 共 11页 ∴CD=AD ·tan ∠CAD=√33AD ≈10.4(米).故办公楼的高度约为10.4米.13.【答案】 在Rt △ACE 中,∠AEC=90°,∠C=58°,AC=AB+BC=34+70=104 ∴AE=AC sin C=104×sin 58°≈104×0.85≈88.答:点A 到CD 的距离AE 的长度约为88 cm .14.【答案】 在Rt △ACO 中,∠AOC=180°-∠AOB=30°,AC=10 cm∴OA=2AC=20 cm .在Rt △A'DO 中,∠A'OD=180°-∠A'OB=72°,OA'=OA=20 cm∴A'D=A'O sin ∠A'OD ≈20×0.95=19(cm).答:顶部边缘A'处离桌面的高度A'D 的长约为19 cm .15.【答案】 分别延长AB ,CD 与直线OF 交于点G ,点H ,如图则∠AGO=∠EHO=90°.又∵∠GAC=90°,∴四边形ACHG 是矩形∴GH=AC.由题意,得AG=60,OF=24,∠AOG=70°,∠EOF=30°,∠EFH=60°.在Rt △AGO 中,∠AGO=90°,tan ∠AOG=AG OG ∴OG=AG tan∠AOG =60tan70°≈602.75≈21.8.∵∠EFH 是△EOF 的外角∴∠FEO=∠EFH-∠EOF=60°-30°=30°∴∠EOF=∠FEO ,∴EF=OF=24.在Rt △EHF 中,∠EHF=90°,cos ∠EFH=FH EF ∴FH=EF ·cos ∠EFH=24×cos 60°=12∴AC=GH=GO+OF+FH=21.8+24+12≈58(m).答:楼AB 与CD 之间的距离AC 的长约为58 m.。
2021中考数学 分类训练:锐角三角函数及其应用一、选择题 1. (2020·聊城)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ∠ACB 的值为( )A .553 B .517C .53D .542. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( ) A . 6 cm B . 7 cm C . 8 cm D . 9 cm3. 满足下列条件时,△ABC 不是直角三角形的为 ( )A .AB=,BC=4,AC=5B .AB ∶BC ∶AC=3∶4∶5 C .∠A ∶∠B ∶∠C=3∶4∶5D .cos A -+tan B -2=04. 在直角三角形中,下列条件中不能解直角三角形的是( )A .已知一直角边和一锐角B .已知斜边和一锐角C .已知两边D .已知两角5. (2019•山东威海)如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B点.已知坡角为20°,山高BC=2千米.用科学计算器计算小路AB 的长度,下列按键顺序正确的是A.B.C.D.6. 如图,平面直角坐标系中,☉P经过三点A(8,0),O(0,0),B(0,6),点D 是☉P上的一动点,当点D到弦OB的距离最大时,tan∠BOD的值是()A.2B.3C.4D.57. (2019·浙江杭州)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于A.asinx+bsinx B.acosx+bcosxC.asinx+bcosx D.acosx+bsinx8. (2019·浙江金华)如图,矩形ABCD的对角线交于点O.已知AB=m,∠BAC=∠α,则下列结论错误的是A.∠BDC=∠αB.BC=m•tanαC .AO 2sin mα= D .BD cos mα=二、填空题 9. 【题目】(2020·黔东南州)cos60°= .10. 如图,在△ABC 中,BC =6+2,∠C =45°,AB =2AC ,则AC 的长为________.11. (2019•湖北随州)计算:(π–2019)0–2cos60°=__________.12. (2019·浙江衢州)如图,人字梯AB ,AC 的长都为2米,当α=50°时,人字梯顶端离地面的高度AD 是__________米(结果精确到0.1m .参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).13. (2020·天水)如图所示,∠AOB是放置在正方形网格中的一个角,则sin ∠AOB 的值是________.14. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)15. (2019·浙江舟山)如图,在△ABC中,若∠A=45°,AC2–BC255AB2,则tanC=__________.16. 如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l 上一点.当△APB为直角三角形时,AP=________.三、解答题17. 如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,连接CE,求:(1)线段BE的长;(2)∠ECB的正切值.18. 如图,在△ABC中,∠C=90°,AB的垂直平分线分别交边AB,BC于点D,E,连接AE.(1)如果∠B=25°,求∠CAE的度数;(2)如果CE =2,sin ∠CAE =23,求tanB 的值.19. 如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB 与墙MN平行且距离为0.8米.已知小汽车车门宽AO 为1.2米,当车门打开角度∠AOB 为40°时,车门是否会撞到墙?请说明理由.(参考数据:sin 40°≈0.64;cos 40°≈0.77;tan 40°≈0.54)20. 某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.21. 如图,⊙O是△ABC 的外接圆,AC 为直径,AB ︵=BD ︵,BE ⊥DC 交DC 的延长线于点E .(1)求证:∠1=∠BCE ;(2)求证:BE 是⊙O 的切线;(3)若EC =1,CD =3,求cos ∠DBA .22. 阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=tanα±tanβ1∓tanαtanβ利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan75°=tan(45°+30°)=tan45°+tan30°1-tan45°tan30°=1+331-1×33=2+ 3根据以上阅读材料,请选择适当的公式计算下列问题:(1)计算sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为 3 米,请你帮助李三求出纪念碑的高度.23. 如图1,图2,在△ABC中,AB=13,BC=14,5cos13ABC∠=.探究如图1,AH⊥BC于点H,则AH=_____,AC=______,△ABC的面积S △ABC=________.拓展如图2,点D在AC上(可与点A、C重合),分别过点A、C作直线BD 的垂线,垂足为E、F.设BD=x,AE=m,CF=n.(当点D与点A重合时,我们认为S△ABD=0)(1)用含x ,m 或n 的代数式表示S △ABD 及S △CBD ;(2)求(m +n )与x 的函数关系式,并求(m +n )的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值范围. 发现 请你确定一条直线,使得A 、B 、C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.图1 图22021中考数学 分类训练:锐角三角函数及其应用-答案一、选择题 1. 【答案】D【解析】利用网格特征把∠ACB 放置于直角三角形中求正弦值.如图,在Rt △ACD 中,由勾股定理,得AC =22CD AD +=2234+=5,于是sin ∠ACB =AC AD =54.ABCD2. 【答案】C【解析】∵sin A=BCAB=45,∴设BC=4a,则AB=5a,AC=(5a)2-(4a)2=3a,∴3a=6,即a=2,故BC=4a=8 cm.3. 【答案】C[解析]A.∵52+42=25+16=41=()2,∴△ABC是直角三角形;B.设AB=3x,则BC=4x,AC=5x.∵(3x)2+(4x)2=9x2+16x2=25x2=(5x)2,∴△ABC 是直角三角形;C.∵∠A∶∠B∶∠C=3∶4∶5,∴∠C=×180°=75°≠90°,∴△ABC不是直角三角形;D.∵cos A-+tan B-2=0,∴cos A=,tan B=,∴∠A=60°,∠B=30°,∴∠C=90°,∴△ABC是直角三角形.故选C.4. 【答案】D5. 【答案】A【解析】在△ABC中,sinA=sin20°=BCAB,∴AB=sin20BC︒=2sin20︒,∴按键顺序为:2÷sin20=,故选A.6. 【答案】B[解析]如图所示,当点D到弦OB的距离最大时,DE⊥OB于E点,且D,E,P三点共线.连接AB,由题意可知AB为☉P的直径,∵A(8,0),∴OA=8,∵B(0,6),∴OB=6,∴OE=BE=OB=3,在Rt△AOB中,AB==10,∴BP=AB=×10=5,在Rt△PEB中,PE==4,∴DE=EP+DP=4+5=9,∴tan∠DOB===3,故选B.7. 【答案】D【解析】如图,过点A 作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a •cosx+b •sinx , 故选D.8. 【答案】C【解析】A 、∵四边形ABCD 是矩形,∴∠ABC=∠DCB=90°,AC=BD ,AO=CO ,BO=DO ,∴AO=OB=CO=DO ,∴∠DBC=∠ACB ,∴由三角形内角和定理得:∠BAC=∠BDC=∠α,故本选项不符合题意; B 、在Rt △ABC 中,tan αBCm=,即BC=m •tan α,故本选项不符合题意; C 、在Rt △ABC 中,AC cos m α=,即AO 2cos mα=,故本选项符合题意;D 、∵四边形ABCD 是矩形,∴DC=AB=m ,∵∠BAC=∠BDC=α,∴在Rt △DCB 中,BD cos mα=,故本选项不符合题意; 故选C .二、填空题9. 【答案】【答案】10. 【答案】2 [解析] 过点A 作AD ⊥BC ,垂足为D ,如图所示.设AC =x ,则AB =2x. 在Rt △ACD 中,AD =AC·sinC =22x , CD =AC·cosC =22x. 在Rt △ABD 中,AB =2x ,AD =22x , ∴BD =AB 2-AD 2=62x. ∴BC =BD +CD =62x +22x =6+2, ∴x =2.11. 【答案】0 【解析】原式=1–2×=1–1=0,故答案为:0.12. 【答案】1.5【解析】∵sin αAD AC,∴AD=AC •sin α≈2×0.77≈1.5,故答案为:1.5. 13. 【答案】22【解析】连接AB ,利用勾股定理的逆定理证明△OAB 是等腰直角三角形,得到∠AOB =45°,再根据特殊角的三角函数求解.∵AB 2=12+32=10,OB 2=12+32=10,OA 2=22+42=20,∴AB 2+OB 2=OA 2,∴△OAB 是等腰直角三角形,∠AOB =45°,∴sin ∠AOB =sin45°=22.14. 【答案】11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B=PM PB ,∴0.8=9PB ,∴PB ≈11海里.15. 【答案】5【解析】如图,过B 作BD ⊥AC 于D ,∵∠A=45°,∴∠ABD=∠A=45°,∴AD=BD.∵∠ADB=∠CDB=90°,∴AB2=AD2+DB2=2BD2,BC2=DC2+BD2,∴AC2–BC2=(AD+DC)2–(DC2+BD2)=AD2+DC2+2AD•DC–DC2–BD2=2AD•DC=2BD•DC,∵AC2–BC255=AB2,∴2BD•DC55=⨯2BD2,∴DC55=BD,∴tan555BD BDCDCBD===.故答案为:5.16. 【答案】3或3 3 或37【解析】如解图,∵点O是AB的中点,AB=6,∴AO=BO=3.①当点P为直角顶点,且P在AB上方时,∵∠1=120°,∴∠AOP1=60°,∴△AOP1是等边三角形,∴AP1=OA=3;②当点P为直角顶点,且P在AB下方时,AP2=BP1=62-32=33;③当点A为直角顶点时,AP3=AO·tan∠AOP3=3×3=33;④当点B为直角顶点时,AP4=BP3=62+(33)2=37.综上,当△APB为直角三角形时,AP的值为3或3 3 或37.三、解答题17. 【答案】解:(1)∵AD=2CD,AC=3,∴AD=2,∵在Rt △ABC 中,∠ACB=90°,AC=BC=3,∴∠A=∠B=45°,AB===3,∵DE ⊥AB ,∴∠AED=90°,∴AE=AD ·cos45°=2×=, ∴BE=AB -AE=3=2, 即线段BE 的长为2. (2)过点E 作EH ⊥BC ,垂足为点H ,如图所示.∵在Rt △BEH 中,∠EHB=90°,∠B=45°,∴EH=BH=BE ·cos45°=2=2,∵BC=3,∴CH=1,在Rt △CHE 中,tan ∠ECB==2,即∠ECB 的正切值为2.18. 【答案】 解:(1)∵DE 垂直平分AB ,∴EA =EB ,∴∠EAB =∠B =25°.又∵∠C =90°,∴∠CAE =90°-25°-25°=40°.(2)∵∠C =90°,∴sin ∠CAE =CE AE =23. ∵CE =2,∴AE =3,∴AC = 5.∵EA =EB =3,∴BC =5,∴tanB =AC BC =55.19. 【答案】【思路分析】本题是一道锐角三角形函数的实际应用问题,关键是从实际问题抽象出数学模型.本题车门是否会碰到墙?实际上就是求点A到直线OB的距离,所以过点A作AC⊥OB于点C,在Rt△AOC中,利用锐角三角函数关系,可求得AC的长,与0.8米比较就可得出结论.解图解:如解图,过点A作OB的垂线,垂足为C,在Rt△AOC中,sin∠AOC=AC AO,(3分)∴AC=AO·sin40°=1.2×0.64=0.768. ∵0.768<0.8,∴车门不会碰到墙.(8分)20. 【答案】解:(1)∵新坡面AC的坡度为1∶3,∴tanα=13=33,∴α=30°.(2分)答:新坡面的坡角α的度数为30°.(3分)(2)原天桥底部正前方8米处的文化墙PM不需要拆除.理由如下:如解图所示,过点C作CD⊥AB,垂足为点D,∵坡面BC的坡度为1∶1,∴BD=CD=6米,(4分)∵新坡面AC的坡度为1∶3,∴CD∶AD=1∶3,∴AD=63米,(6分)∴AB=AD-BD=(63-6)米<8米,故正前方的文化墙PM不需拆除.答:原天桥底部正前方8米处的文化墙PM 不需要拆除.(7分)21. 【答案】(1)证明:如解图,过点B 作BF ⊥AC 于点F ,∵AB ︵=BD ︵,∴AB =BD在△ABF 与△DBE 中,⎩⎨⎧∠BAF =∠BDE∠AFB =∠DEB AB =DB,∴△ABF ≌△DBE (AAS),∴BF =BE ,∵BE ⊥DC ,BF ⊥AC ,∴∠1=∠BCE ;(2)证明:如解图,连接OB ,∵AC 是⊙O 的直径,∴∠ABC =90°,即∠1+∠BAC =90°,∵∠BCE +∠EBC =90°,且∠1=∠BCE ,∴∠BAC =∠EBC ,∵OA =OB ,∴∠BAC =∠OBA ,∴∠EBC =∠OBA ,∴∠EBC +∠CBO =∠OBA +∠CBO =90°,∴∠EBO =90°,又∵OB 为⊙O 的半径,∴BE 是⊙O 的切线;解图(3)解:在△EBC 与△FBC 中,⎩⎨⎧∠BEC =∠CFB ,∠ECB =∠FCB ,BC =BC ,∴△EBC ≌△FBC (AAS),∴CE =CF =1.由(1)可知:AF =DE =1+3=4,∴AC =CF +AF =1+4=5,∴cos ∠DBA =cos ∠DCA =CD CA =35.22. 【答案】解:(1)sin 15°=sin (45°-30°)(2分)=sin 45°cos 30°-cos 45°sin 30°(3分) =22×32-22×12 =6-24.(4分)(2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3,(5分)∴ BE =14+73,(6分)又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),(7分) 答:纪念碑的高度是(14+83)米.(8分)23. 【答案】探究 AH =12,AC =15,S △ABC =84.拓展 (1)S △ABD =12mx ,S △CBD =12nx . (2)由S △ABC =S △ABD +S △CBD ,得118422mx nx +=.所以168m n x +=. 由于AC 边上的高565BG =,所以x 的取值范围是565≤x ≤14. 所以(m +n )的最大值为15,最小值为12. (3)x 的取值范围是x =565或13<x ≤14. 发现 A 、B 、C 三点到直线AC 的距离之和最小,最小值为565.。
2020-2021中考数学一模试题分类汇编——锐角三角函数综合含答案一、锐角三角函数1.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.(1)求∠CAO'的度数.(2)显示屏的顶部B'比原来升高了多少?(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°.【解析】试题分析:(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°.试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°;(2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OBsin∠BOD=24×=12,∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°,∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°,∴O′B′+O′C﹣BD=24+12﹣12=36﹣12,∴显示屏的顶部B′比原来升高了(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°,理由:∵显示屏O′B与水平线的夹角仍保持120°,∴∠EO′F=120°,∴∠FO′A=∠CAO′=30°,∵∠AO′B′=120°,∴∠EO′B′=∠FO′A=30°,∴显示屏O′B′应绕点O′按顺时针方向旋转30°.考点:解直角三角形的应用;旋转的性质.2.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=KD•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.3.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】试题分析:(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.考点:1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.4.在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)【答案】(1)①如图;②AH=PH,AH⊥PH.证明见解析(2)或【解析】试题分析:(1)①如图(1);②(1)法一:轴对称作法,判断:AH=PH,AH⊥PH.连接CH,根据正方形的每条对角线平分一组对角得:△DHQ等腰Rt△,根据平移的性质得DP=CQ,证得△HDP≌△△HQC,全等三角形的对应边相等得PH=CH,等边对等角得∠HPC=∠HCP,再结合BD是正方形的对称轴得出∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)轴对称作法同(1)作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由代入HR,CR解方程即可得出x的值. 四点共圆作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.试题解析:(1)①法一:轴对称作法,判断:AH=PH,AH⊥PH证:连接CH,得:△DHQ等腰Rt△,又∵DP=CQ,∴△HDP≌△△HQC,∴PH=CH,∠HPC=∠HCPBD为正方形ABCD对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.法二:四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)法一:轴对称作法考虑△DHQ等腰Rt△,PD=CQ,作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由得:,∴.即PD=法二:四点共向作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.考点:全等三角形的判定;解直角三角形;正方形的性质;死电脑共圆5.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【解析】试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.试题解析:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO=,∴,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD=,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【考点】二次函数综合题.6.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点F.(1)求证:DF⊥AC;(2)若∠ABC=30°,求tan∠BCO的值.【答案】(1)证明见解析; (2) tan∠BCO=3 9.【解析】试题分析:(1)连接OD,根据三角形的中位线定理可求出OD∥AC,根据切线的性质可证明DE⊥OD,进而得证.(2)过O作OF⊥BD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解.试题解析:证明:连接OD∵DE为⊙O的切线, ∴OD⊥DE∵O为AB中点, D为BC的中点∴OD‖AC∴DE⊥AC(2)过O作OF⊥BD,则BF=FD在Rt△BFO中,∠ABC=30°∴OF=12OB, BF=32∵BD=DC, BF=FD,∴FC=3BF=332OB在Rt△OFC中,tan∠BCO=13233OBOFFCOB==.点睛:此题主要考查了三角形中位线定理及切线的性质与判定、三角函数的定义等知识点,有一定的综合性,根据已知得出OF=12OB,3,33OB是解题关键.7.许昌芙蓉湖位于许昌市水系建设总体规划中部,上游接纳清泥河来水,下游为鹿鸣湖等水系供水,承担着承上启下的重要作用,是利用有限的水资源、形成良好的水生态环境打造生态宜居城市的重要部分.某校课外兴趣小组想测量位于芙蓉湖两端的A,B两点之间的距离他沿着与直线AB平行的道路EF行走,走到点C处,测得∠ACF=45°,再向前走300米到点D 处,测得∠BDF=60°.若直线AB 与EF 之间的距离为200米,求A ,B 两点之间的距离(结果保留一位小数)【答案】215.6米.【解析】【分析】过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点,根据Rt △ACM 和三角函数tan BDF ∠求出CM 、DN ,然后根据MN MD DN AB =+=即可求出A 、B 两点间的距离.【详解】解:过A 点做EF 的垂线,交EF 于M 点,过B 点做EF 的垂线,交EF 于N 点在Rt △ACM 中,∵45ACF ∠=︒,∴AM=CM=200米,又∵CD=300米,所以100MD CD CM =-=米,在Rt △BDN 中,∠BDF=60°,BN=200米 ∴115.6tan 60BN DN =≈o 米, ∴215.6MN MD DN AB =+=≈米即A ,B 两点之间的距离约为215.6米.【点睛】本题主要考查三角函数,正确做辅助线是解题的关键.8.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点A 、点B ,且ABO ∆的面积为8.(1)求k 的值;(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.【答案】(1)1k =;(2)4m t =+;(3)32BOCM S =Y .【解析】【分析】(1)先求出A 的坐标,然后利用待定系数法求出k 的值;(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证POD OCE ∆≅∆可得OE PD =,进一步得出m 与t 的函数关系式;(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出QTB PTO ∆≅∆;再证出KPB BPN ∠=∠;设KPB x ∠=︒,通过计算证出PO PM =;再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到OD BO PD MO =,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32.【详解】解:(1)把0x =代入4y kx =+,4y =,∴4BO =,又∵4ABO S ∆=, ∴142AO BO ⋅=,4AO =, ∴(4,0)A -,把4x =-,0y =代入4y kx =+,得044k =-+,解得1k =.故答案为1;(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,∴90PDO CEO ∠=∠=︒,∴90POD OPD ∠+∠=︒,∵线段OP 绕点O 顺时针旋转90°至线段OC ,∴90POC ∠=︒,OP OC =,∴90POD EOC ∠+∠=︒,∴OPD EOC ∠=∠,∴POD OCE ∆≅∆,∴OE PD =,4m t =+.故答案为4m t =+.(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,由(1)知,4AO BO ==,90BOA ∠=︒,∴ABO ∆为等腰直角三角形,∴45ABO BAO ∠=∠=︒,9045BOT ABO ABO ∠=︒-∠=︒=∠,∴BT TO =,∵90BTO ∠=︒,∴90TPO TOP ∠+∠=︒,∵PO BM ⊥,∴90BNO ∠=︒,∴BQT TPO ∠=∠,∴QTB PTO ∆≅∆,∴QT TP =,PO BQ =,∴PQT QPT ∠=∠,∵PO PK KB =+,∴QB PK KB =+,QK KP =,∴KQP KPQ ∠=∠,∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠,∴KPB BPN ∠=∠,设KPB x ∠=︒,∴BPN x ∠=︒,∵2PMB KPB ∠=∠,∴2PMB x ∠=︒,45POM PAO APO x ∠=∠+∠=︒+︒,9045NMO POM x ∠=︒-∠=︒-︒, ∴45PMO PMB NMO x POM ∠=∠+∠=︒+︒=∠,∴PO PM =,过点P 作PD x ⊥轴,垂足为点D ,∴22OM OD t ==,9045OPD POD x BMO ∠=︒-∠=︒-︒=∠,tan tan OPD BMO ∠=∠,OD BO PD MO =,442t t t=+, 14t =,22t =-(舍)∴8OM =,由(2)知,48m t OM =+==,∴CM y P 轴,∵90PNM POC ∠=∠=︒,∴BM OC P ,∴四边形BOCM 是平行四边形,∴4832BOCM S BO OM =⨯=⨯=Y .故答案为32.【点睛】本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.9.在△ABC 中,∠B =45°,∠C =30°,点D 是边BC 上一点,连接AD ,将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接DE .(1)如图①,当点E 落在边BA 的延长线上时,∠EDC = 度(直接填空);(2)如图②,当点E落在边AC上时,求证:BD=12 EC;(3)当AB=22,且点E到AC的距离等于3﹣1时,直接写出tan∠CAE的值.【答案】(1)90;(2)详见解析;(3)633 tan EAC-∠=【解析】【分析】(1)利用三角形的外角的性质即可解决问题;(2)如图2中,作PA⊥AB交BC于P,连接PE.只要证明△BAD≌△PAE(SAS),提出BD=PE,再证明EC=2PE即可;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,可得EP=3x,EH=2PH=2x,由此FH=2x+3﹣1,CF=23x+3﹣3,由△BAD≌△PAE,得BD=EP=3x,AE=AD,在Rt△ABG中, AG=GB=2,在Rt△AGC中,AC=2AG=4,故AE2=AD2=AF2+EF2,由勾股定理得AF=1+3,由此tan∠EAF=2﹣3,根据对称性可得tan∠EAC=6-33.【详解】(1)如图1中,∵∠EDC=∠B+∠BED,∠B=∠BED=45°,∴∠EDC=90°,故答案为90;(2)如图2中,作PA⊥AB交BC于P,连接PE.∵∠DAE=∠BAP=90°,∴∠BAD=∠PAE,∵∠B=45°,∴∠B=∠APB=45°,∴AB=AP,∵AD=AE,∴△BAD≌△PAE(SAS),∴BD=PE,∠APE=∠B=45°,∴∠EPD=∠EPC=90°,∵∠C=30°,∴EC=2PE=2BD;(3)如图3,作EF⊥AC于F,延长FE交BC于H,作AG⊥BC于G,PA⊥AB交BC于P,连接PE.设PH=x,在Rt△EPH中,∵∠EPH=90°,∠EHP=60°,∴EP3,EH=2PH=2x,∴FH=31,CF3FH=33∵△BAD≌△PAE,∴BD=EP3,AE=AD,在Rt△ABG中,∵AB=2∴AG=GB=2,在Rt△AGC中,AC=2AG=4,∵AE2=AD2=AF2+EF2,∴22+(23)231)2+(4﹣3﹣32,整理得:9x2﹣12x=0,解得x=43(舍弃)或0∴PH=0,此时E,P,H共点,∴AF=1+3,∴tan∠EAF=EFAF =3131-+=2﹣3.根据对称性可知当点E在AC的上方时,同法可得tan∠EAC=6-33.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.10.如图,AB是⊙O的直径,PA、PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=3,tan∠PDA=34,求OE的长.【答案】(1)见解析;(25.【解析】【分析】(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=34,可求出CD=2,进而求得OC=32,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.【详解】(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,∵DE⊥PO,∴∠PAO=∠E=90°,∵∠AOP=∠EOD,∴∠APO=∠EDO,∴∠EPD=∠EDO.(2)连接OC ,∴PA=PC=3,∵tan ∠PDA=34, ∴在Rt △PAD 中, AD=4,PD=22PA AD +=5,∴CD=PD-PC=5-3=2,∵tan ∠PDA=34, ∴在Rt △OCD 中,OC=32, OD=22OC CD +=52, ∵∠EPD=∠ODE ,∠OCP=∠E=90°,∴△OED ∽△DEP ,∴PD DO =PE DE =DE OE=2, ∴DE=2OE, 在Rt △OED 中,OE 2+DE 2=OD 2,即5OE 2=252⎛⎫ ⎪⎝⎭=254, ∴OE=5.【点睛】本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用tan ∠PDA=34,得线段的长是解题关键.11.阅读下面材料:观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,过A 作AD ⊥BC 于D (如图),则sin B =AD c ,sin C =AD b ,即AD =c sin B ,AD =b sin C ,于是c sin B =b sin C ,即sin sin b c B C = .同理有:sin sin c a C A =,sin sin a b AB =,所以sin sin sin a b c A BC ==. 即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC 中,∠B =75°,∠C =45°,BC =60,则AB = ;(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB .(3)在(2)的条件下,试求75°的正弦值.(结果保留根号)【答案】(1)6;(2)6海里;(3)6+24. 【解析】【分析】 (1)根据材料:在一个三角形中,各边和它所对角的正弦的比相等,写出比例关系,代入数值即可求得AB 的值.(2)此题可先由速度和时间求出BC 的距离,再由各方向角得出∠A 的角度,过B 作BM ⊥AC 于M ,求出∠MBC=30°,求出MC ,由勾股定理求出BM ,求出AM 、BM 的长,由勾股定理求出AB 即可;(3)在三角形ABC 中,∠A=45,∠ABC=75,∠ACB=60,过点C 作AC 的垂线BD ,构造直角三角形ABD ,BCD ,在直角三角形ABD 中可求出AD 的长,进而可求出sin75°的值.【详解】解:(1)在△ABC 中,∠B=75°,∠C=45°,BC=60,则∠A=60°,∵AB sinC =sin BC A , ∴45AB sin o =60sin60o, 23,解得:6.(2)如图,依题意:BC=60×0.5=30(海里)∵CD∥BE,∴∠DCB+∠CBE=180°∵∠DCB=30°,∴∠CBE=150°∵∠ABE=75°.∴∠ABC=75°,∴∠A=45°,在△ABC中,sin AB ACB∠=BCsin A∠即60?ABsin=3045?sin,解之得:AB=156.答:货轮距灯塔的距离AB=156海里.(3)过点B作AC的垂线BM,垂足为M.在直角三角形ABM中,∠A=45°,6,所以3BDC中,∠BCM=60°,BC=30°,可求得CM=15,所以AC=153+15, 由题意得,1531575sin +o =15660sin o ,sin75°=6+24 . 【点睛】本题考查方向角的含义,三角形的内角和定理,含30度角的直角三角形,等腰三角形的性质和判定等知识点,解题关键是熟练掌握解直角三角形方法.12.如图所示的是一个地球仪及它的平面图,在平面图中,点A 、B 分别为地球仪的南、北极点,直线AB 与放置地球仪的平面交于点D ,所夹的角度约为67°,半径OC 所在的直线与放置它的平面垂直,垂足为点E ,DE =15cm ,AD =14cm .(1)求半径OA 的长(结果精确到0.1cm ,参考数据:sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)(2)求扇形BOC 的面积(π取3.14,结果精确到1cm )【答案】(1)半径OA 的长约为24.5cm ;(2)扇形BOC 的面积约为2822cm .【解析】【分析】(1)在Rt △ODE 中,DE=15,∠ODE=67°,根据∠ODE 的余弦值,即可求得OD 长,减去AD 即为OA .(2)用扇形面积公式即可求得.【详解】(1)在Rt △ODE 中,15cm DE =,67ODE ∠=︒.∵cos DE ODE DO ∠=, ∴150.39OD ≈, ∴()384614245cm OA OD AD =-≈-≈.., 答:半径OA 的长约为24.5cm .(2)∵67ODE ∠=︒,∴157BOC ∠=︒,∴2360BOC n r S π=扇形 2157 3.1424.52360⨯⨯≈()2822cm ≈.答:扇形BOC 的面积约为2822cm .【点睛】此题主要考查了解直角三角形的应用,本题把实际问题转化成数学问题,利用三角函数中余弦定义来解题是解题关键.13.如图,正方形OABC 的顶点O 与原点重合,点A ,C 分别在x 轴与y 轴的正半轴上,点A 的坐标为(4,0),点D 在边AB 上,且tan ∠AOD =12,点E 是射线OB 上一动点,EF ⊥x 轴于点F ,交射线OD 于点G ,过点G 作GH ∥x 轴交AE 于点H .(1)求B ,D 两点的坐标;(2)当点E 在线段OB 上运动时,求∠HDA 的大小; (3)以点G 为圆心,GH 的长为半径画⊙G .是否存在点E 使⊙G 与正方形OABC 的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E 的坐标.【答案】(1)B (4,4),D (4,2);(2)45°;(3)存在,符合条件的点为(8﹣2,8﹣2)或(2,2)或42164216,77⎛⎫ ⎪ ⎪⎝⎭或16421642,77⎛-- ⎝⎭,理由见解析 【解析】【分析】(1)由正方形性质知AB=OA=4,∠OAB=90°,据此得B (4,4),再由tan ∠AOD= 12得AD=12OA=2,据此可得点D 坐标; (2)由1tan 2GF GOF OF ∠==知GF=12OF ,再由∠AOB=∠ABO=45°知OF=EF ,即GF=12EF ,根据GH ∥x 轴知H 为AE 的中点,结合D 为AB 的中点知DH 是△ABE 的中位线,即HD∥BE,据此可得答案;(3)分⊙G与对角线OB和对角线AC相切两种情况,设PG=x,结合题意建立关于x的方程求解可得.【详解】解:(1)∵A(4,0),∴OA=4,∵四边形OABC为正方形,∴AB=OA=4,∠OAB=90°,∴B(4,4),在Rt△OAD中,∠OAD=90°,∵tan∠AOD=12,∴AD=12OA=12×4=2,∴D(4,2);(2)如图1,在Rt△OFG中,∠OFG=90°∴tan∠GOF=GFOF =12,即GF=12OF,∵四边形OABC为正方形,∴∠AOB=∠ABO=45°,∴OF=EF,∴GF=12EF,∴G为EF的中点,∵GH∥x轴交AE于H,∴H为AE的中点,∵B(4,4),D(4,2),∴D为AB的中点,∴DH是△ABE的中位线,∴HD∥BE,∴∠HDA=∠ABO=45°.(3)①若⊙G与对角线OB相切,如图2,当点E在线段OB上时,过点G作GP⊥OB于点P,设PG=x,可得PE=x,EG=FG=2x,OF=EF=22x,∵OA=4,∴AF=4﹣22x,∵G为EF的中点,H为AE的中点,∴GH为△AFE的中位线,∴GH=12AF=12×(4﹣22x)=2﹣2x,则x=2﹣2x,解得:x=22﹣2,∴E(8﹣42,8﹣42),如图3,当点E在线段OB的延长线上时,x2x﹣2,解得:x=2∴E(2,2②若⊙G与对角线AC相切,如图4,当点E在线段BM上时,对角线AC,OB相交于点M,过点G 作GP ⊥OB 于点P ,设PG =x ,可得PE =x ,EG =FG =2x , OF =EF =22x ,∵OA =4, ∴AF =4﹣22x ,∵G 为EF 的中点,H 为AE 的中点,∴GH 为△AFE 的中位线,∴GH =12AF =12×(4﹣22x )=2﹣2x , 过点G 作GQ ⊥AC 于点Q ,则GQ =PM =3x ﹣22,∴3x ﹣22=2﹣2x ,∴4227x +=, ∴42164216,E ⎛⎫++ ⎪ ⎪⎝⎭; 如图5,当点E 在线段OM 上时,GQ =PM =23x ,则23x =22,解得4227x =,∴16421642,77E ⎛⎫-- ⎪ ⎪⎝⎭; 如图6,当点E 在线段OB 的延长线上时,3x ﹣22=2x ﹣2,解得:4227x -=(舍去); 综上所述,符合条件的点为(8﹣42,8﹣42)或(8+42,8+42)或42164216,77⎛⎫++ ⎪ ⎪⎝⎭或16421642,77⎛⎫-- ⎪ ⎪⎝⎭. 【点睛】本题是圆的综合问题,解题的关键是掌握正方形和直角三角形的性质、正切函数的定义、三角形中位线定理及分类讨论思想的运用.14.如图,正方形ABCD 的边长为2+1,对角线AC 、BD 相交于点O ,AE 平分∠BAC 分别交BC 、BD 于E 、F ,(1)求证:△ABF ∽△ACE ;(2)求tan ∠BAE 的值;(3)在线段AC 上找一点P ,使得PE+PF 最小,求出最小值.【答案】(1)证明见解析;(2)tan ∠EAB 2﹣1;(3)PE+PF 的最小值为22+【解析】【分析】(1)根据两角对应相等的两个三角形相似判断即可;(2)如图1中,作EH ⊥AC 于H .首先证明BE=EH=HC ,设BE=EH=HC=x ,构建方程求出x 即可解决问题;(3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小,最小值为线段EH 的长;【详解】(1)证明:∵四边形ABCD 是正方形,∴∠ACE =∠ABF =∠CAB =45°,∵AE 平分∠CAB ,∴∠EAC =∠BAF =22.5°,∴△ABF ∽△ACE .(2)解:如图1中,作EH ⊥AC 于H .∵EA 平分∠CAB ,EH ⊥AC ,EB ⊥AB ,∴BE =EB ,∵∠HCE =45°,∠CHE =90°,∴∠HCE =∠HEC =45°,∴HC =EH ,∴BE =EH =HC ,设BE =HE =HC =x ,则EC =2x , ∵BC =2+1,∴x+x =2+1,∴x =1,在Rt △ABE 中,∵∠ABE =90°,∴tan ∠EAB =221BE AB == ﹣1. (3)如图2中,作点F 关于直线AC 的对称点H ,连接EH 交AC 于点P ,连接PF ,此时PF+PE 的值最小.作EM ⊥BD 于M .BM =EM =22, ∵AC =22AB BC +=2+2,∴OA =OC =OB =12AC =222+ , ∴OH =OF =OA•tan ∠OAF =OA•tan ∠EAB =222+ •(2﹣1)=22, ∴HM =OH+OM =22+, 在Rt △EHM 中,EH =2222222EM HM 22⎛⎫⎛⎫+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭= =22+.. ∴PE+PF 的最小值为22+..【点睛】本题考查正方形的性质,相似三角形的判定,勾股定理,最短问题等知识,解题的关键是学会添加常用辅助线,学会利用轴对称解决最短问题,属于中考常考题型.15.如图,某次中俄“海上联合”反潜演习中,我军舰A 测得潜艇C 的俯角为30°.位于军舰A 正上方1000米的反潜直升机B 侧得潜艇C 的俯角为68°.试根据以上数据求出潜艇C 离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5, 3≈1.7)【答案】潜艇C 离开海平面的下潜深度约为308米【解析】试题分析:过点C 作CD ⊥AB ,交BA 的延长线于点D ,则AD 即为潜艇C 的下潜深度,用锐角三角函数分别在Rt △ACD 中表示出CD 和在Rt △BCD 中表示出BD ,利用BD=AD+AB 二者之间的关系列出方程求解.试题解析:过点C 作CD ⊥AB ,交BA 的延长线于点D ,则AD 即为潜艇C 的下潜深度,根据题意得:∠ACD =30°,∠BCD =68°,设AD=x ,则BD=BA+AD=1000+x ,在Rt △ACD 中,CD =tan AD ACD ∠ =0tan30x 3x 在Rt △BCD 中,BD=CD •tan68°,∴325+x=3x•tan68°解得:x≈100米,∴潜艇C离开海平面的下潜深度为100米.点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.视频。
专题23锐角三角函数(共62题)(无答案)一、单选题1.(2021·湖南中考真题)下列计算正确的是( )A .0(3)1π-=B .1tan302=︒C 2=±D .236a a a ⋅=2.(2021·福建中考真题)如图,某研究性学习小组为测量学校A 与河对岸工厂B 之间的距离,在学校附近选一点C ,利用测量仪器测得60,90,2km A C AC ∠=︒∠=︒=.据此,可求得学校与工厂之间的距离AB 等于( )A .2kmB .3kmC .D .4km3.(2021·浙江金华市·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米 4.(2021·湖北随州市·中考真题)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知3sin cos 5αβ==,则梯子顶端上升了( )A .1米B .1.5米C .2米D .2.5米5.(2021·湖南衡阳市·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6,cos370.8,tan370.75︒≈︒≈︒≈)( ).A .7.5米B .8米C .9米D .10米6.(2021·天津中考真题)tan30︒的值等于( )A B .2 C .1 D .27.(2021·湖南株洲市·中考真题)某限高曲臂道路闸口如图所示,AB 垂直地面1l 于点A ,BE 与水平线2l 的夹角为()090αα︒≤≤︒,12////EF l l ,若 1.4AB =米,2BE =米,车辆的高度为h (单位:米),不考虑闸口与车辆的宽度.①当90α=︒时,h 小于3.3米的车辆均可以通过该闸口;①当45α=︒时,h 等于2.9米的车辆不可以通过该闸口;①当60α=︒时,h 等于3.1米的车辆不可以通过该闸口.则上述说法正确的个数为( )A .0个B .1个C .2个D .3个8.(2021·重庆中考真题)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:2.4i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin500.77︒≈;cos500.64︒≈;tan50 1.19︒≈)A .69.2米B .73.1米C .80.0米D .85.7米9.(2021·浙江中考真题)如图,已知在矩形ABCD 中,1,AB BC ==,点P 是AD 边上的一个动点,连结BP ,点C 关于直线BP 的对称点为1C ,当点P 运动时,点1C 也随之运动.若点P 从点A 运动到点D ,则线段1CC 扫过的区域的面积是( )A .πB .π+CD .2π10.(2021·浙江丽水市·中考真题)如图,AB 是O 的直径,弦CD OA ⊥于点E ,连结,OC OD .若O 的半径为,m AOD α∠=∠,则下列结论一定成立的是( )A .tan OE m α=⋅B .2sin CD m α=⋅C .cos AE m α=⋅D .2sin COD S m α=⋅11.(2021·浙江宁波市·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =.若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D .212.(2021·云南中考真题)在ABC 中,90ABC ∠=︒,若s n 3100,5i A A C ==,则AB 的长是( ) A .5003 B .5035 C .60 D .8013.(2021·山东泰安市·中考真题)如图,为了测量某建筑物BC 的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A 点出发,沿斜坡AD 行走130米至坡顶D 处,再从D 处沿水平方向继续前行若干米后至点E 处,在E 点测得该建筑物顶端C 的仰角为60°,建筑物底端B 的俯角为45°,点A 、B 、C 、D 、E 在同一平面内,斜坡AD 的坡度1:2.4i =.根据小颖的测量数据,计算出建筑物BC 的高度约为( ) 1.732≈)A .136.6米B .86.7米C .186.7米D .86.6米14.(2021·江苏连云港市·中考真题)如图,ABC 中,BD AB ⊥,BD 、AC 相交于点D ,47AD AC =,2AB =,150ABC ∠=︒,则DBC △的面积是( )A B C D 15.(2021·浙江绍兴市·中考真题)如图,Rt ABC 中,90BAC ∠=︒,1cos 4B =,点D 是边BC 的中点,以AD 为底边在其右侧作等腰三角形ADE ,使ADE B ∠=∠,连结CE ,则CE AD的值为( )A .32BCD .216.(2021·重庆中考真题)如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和N D .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度i =1:1.25.若58ND DE =,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N 的高度差为( )(参1.73≈≈)A .9.0mB .12.8mC .13.1mD .22.7m17.(2021·四川南充市·中考真题)如图,在矩形ABCD 中,15AB =,20BC =,把边AB 沿对角线BD 平移,点'A ,'B 分别对应点A ,B .给出下列结论:①顺次连接点'A ,'B ,C ,D 的图形是平行四边形;①点C 到它关于直线'AA 的对称点的距离为48;①''A C B C -的最大值为15;①''A C B C +的最小值为)A .1个B .2个C .3个D .4个18.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+B .2sin 1α+C .211cos α+D .2cos 1α+19.(2021·四川南充市·中考真题)如图,在菱形ABCD 中,60A ∠=︒,点E ,F 分別在边AB ,BC 上,2AE BF ==,DEF 的周长为,则AD 的长为( )A B .C 1 D .120.(2021·湖北荆州市·中考真题)如图,在菱形ABCD 中,60D ∠=︒,2AB =,以B 为圆心、BC 长为半径画AC ,点P 为菱形内一点,连接PA ,PB ,PC .当BPC △为等腰直角三角形时,图中阴影部分的面积为( )A .23πB .23π-C .2πD .122π- 21.(2021·吉林长春市·中考真题)如图是净月潭国家森林公园一段索道的示意图.已知A 、B 两点间的距离为30米,A α∠=,则缆车从A 点到达B 点,上升的高度(BC 的长)为( )A .30sin α米B .30sin α米C .30cos α米D .30cos α米 22.(2021·湖北黄冈市·中考真题)如图,AC 为矩形ABCD 的对角线,已知3AD =,4CD =.点P 沿折线C A D --以每秒1个单位长度的速度运动(运动到D 点停止),过点P 作PE BC ⊥于点E ,则CPE △的面积y 与点P 运动的路程x 间的函数图象大致是( )A .B .C .D .23.(2021·四川达州市·中考真题)在平面直角坐标系中,等边AOB ∆如图放置,点A 的坐标为()1,0,每一次将AOB ∆绕着点О逆时针方向旋转60︒,同时每边扩大为原来的2倍,第一次旋转后得到11A OB ∆,第二次旋转后得到22A OB ∆,…,依次类推,则点2021A 的坐标为( )A .()202020202,2- B .()202120212,2C .()202020202,2D .()201120212,2- 24.(2021·湖北十堰市·中考真题)如图,小明利用一个锐角是30的三角板测量操场旗杆的高度,已知他与旗杆之间的水平距离BC 为15m ,AB 为1.5m (即小明的眼睛与地面的距离),那么旗杆的高度是( )A .3m 2⎛⎫ ⎪⎝⎭ B . C . D .3m 2⎛⎫+ ⎪⎝⎭25.(2021·浙江台州市·中考真题)如图,将长、宽分别为12cm ,3cm 的长方形纸片分别沿AB ,AC 折叠,点M ,N 恰好重合于点P .若①α=60°,则折叠后的图案(阴影部分)面积为( )A .(36-)cm 2B .(36-cm 2C .24 cm 2D .36 cm 226.(2021·湖南怀化市·中考真题)如图,菱形ABCD 的四个顶点均在坐标轴上,对角线AC 、BD 交于原点O ,AE BC ⊥于E 点,交BD 于M 点,反比例函数0)y x =>的图象经过线段DC 的中点N ,若4BD =,则ME 的长为( )A .53ME = B .43=ME C .1ME = D .23ME = 27.(2021·湖北十堰市·中考真题)如图,ABC 内接于,120,,O BAC AB AC BD ∠=︒=是O 的直径,若3AD =,则BC =( )A .B .C .3D .4二、填空题 28.(2021·江苏无锡市·中考真题)一条上山直道的坡度为1:7,沿这条直道上山,则前进100米所上升的高度为________米.29.(2021·广东中考真题)如图,在ABCD 中,45,12,sin 5AD AB A ===.过点D 作DE AB ⊥,垂足为E ,则sin BCE ∠=______.30.(2021·安徽中考真题)如图,圆O 的半径为1,ABC 内接于圆O .若60A ∠=︒,75B ∠=︒,则AB =______.31.(2021·海南中考真题)如图,ABC 的顶点B C 、的坐标分别是(1,0)、,且90,30ABC A ∠=︒∠=︒,则顶点A 的坐标是_____.32.(2021·甘肃武威市·中考真题)如图,在矩形ABCD 中,E 是BC 边上一点,90,30,AED EAD F ∠=︒∠=︒是AD 边的中点,4cm EF =,则BE =________cm .33.(2021·四川广元市·中考真题)如图,在44⨯的正方形网格图中,已知点A 、B 、C 、D 、O 均在格点上,其中A 、B 、D 又在O 上,点E 是线段CD 与O 的交点.则BAE ∠的正切值为________.34.(2021·湖南中考真题)如图,在ABC 中,5AB =,4AC =,4sin 5A =,BD AC ⊥交AC 于点D .点P 为线段BD 上的动点,则35PC PB +的最小值为________.35.(2021·湖北武汉市·中考真题)如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 到达C 点,这时测得小岛A 在北偏东30方向上.小岛A 到航线BC 的距离是__________n mile 1.73≈,结果用四舍五入法精确到0.1).36.(2021·四川乐山市·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30,她朝石碑前行5米到达点D 处,又测得石顶A 点的仰角为60︒,那么石碑的高度AB 的长=________米.(结果保留根号)37.(2021·四川乐山市·中考真题)如图,已知点(4,3)A ,点B 为直线2y =-上的一动点,点()0,C n ,23n -<<,AC BC ⊥于点C ,连接AB .若直线AB 与x 正半轴所夹的锐角为α,那么当sin α的值最大时,n 的值为________.38.(2021·浙江衢州市·中考真题)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE 与地面平行,支撑杆AD ,BC 可绕连接点O 转动,且OA OB =,椅面底部有一根可以绕点H 转动的连杆HD ,点H 是CD 的中点,F A ,EB 均与地面垂直,测得54cm FA =,45cm EB =,48cm AB =. (1)椅面CE 的长度为_________cm .(2)如图3,椅子折叠时,连杆HD 绕着支点H 带动支撑杆AD ,BC 转动合拢,椅面和连杆夹角CHD ∠的度数达到最小值30时,A ,B 两点间的距离为________cm (结果精确到0.1cm ).(参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈)39.(2021·浙江中考真题)如图,已知在Rt ABC 中,90,1,2ACB AC AB ∠=︒==,则sin B 的值是______.40.(2021·浙江宁波市·中考真题)如图,在矩形ABCD 中,点E 在边AB 上,BEC △与FEC 关于直线EC 对称,点B 的对称点F 在边AD 上,G 为CD 中点,连结BG 分别与,CE CF 交于M ,N 两点,若BM BE =,1MG =,则BN 的长为________,sin AFE ∠的值为__________.41.(2021·四川乐山市·中考真题)在Rt ABC 中,90C ∠=︒.有一个锐角为60︒,4AB =.若点P 在直线AB 上(不与点A 、B 重合),且30PCB ∠=︒,则CP 的长为________.42.(2021·湖北荆州市·中考真题)如图1是一台手机支架,图2是其侧面示意图,AB ,BC 可分别绕点A ,B 转动,测量知8cm BC =,16cm AB =.当AB ,BC 转动到60=︒∠BAE ,50ABC ∠=︒时,点C 到AE的距离为_____________cm .(结果保留小数点后一位,参考数据:sin700.94︒≈ 1.73≈)43.(2021·山西中考真题)太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通.如图是该地铁某站扶梯的示意图,扶梯AB 的坡度5:12i =(i 为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端A 以0.5米/秒的速度用时40秒到达扶梯顶端B ,则王老师上升的铅直高度BC 为__________米.44.(2021·湖北宜昌市·中考真题)“莱洛三角形”是工业生产中加工零件时广泛使用的一种图形.如图,以边长为2厘米的等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,三段圆弧围成的图形就是“莱洛三角形”,该“莱洛三角形”的面积为____________平方厘米.(圆周率用π表示)45.(2021·湖北黄冈市·中考真题)如图,建筑物BC 上有一高为8m 的旗杆AB ,从D 处观测旗杆顶部A 的仰角为53︒,观测旗杆底部B 的仰角为45︒,则建筑物BC 的高约为_____m (结果保留小数点后一位).(参考数据sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈)46.(2021·四川眉山市·中考真题)如图,在菱形ABCD 中,10AB AC ==,对角线AC 、BD 相交于点O ,点M 在线段AC 上,且3AM =,点P 为线段BD 上的一个动点,则12MP PB +的最小值是______.47.(2021·江苏苏州市·中考真题)如图,射线OM、ON互相垂直,8OA=,点B位于射线OM的上方,且在线段OA的垂直平分线l上,连接AB,5AB=.将线段AB绕点O按逆时针方向旋转得到对应线段A B'',若点B'恰好落在射线ON上,则点A'到射线ON的距离d≈______.48.(2021·新疆中考真题)如图,已知正方形ABCD边长为1,E为AB边上一点,以点D为中心,将DAE△按逆时针方向旋转得DCF,连接EF,分別交BD,CD于点M,N.若25AEDN=,则sin EDM∠=__________.49.(2021·四川达州市·中考真题)如图,在边长为6的等边ABC∆中,点E,F分别是边AC,BC上的动点,且AE CF=,连接BE,AF交于点P,连接CP,则CP的最小值为___________.三、解答题50.(2021·广东中考真题)如图,在Rt ABC 中,90A ∠=︒,作BC 的垂直平分线交AC 于点D ,延长AC 至点E ,使CE AB =.(1)若1AE =,求ABD △的周长;(2)若13AD BD =,求tan ABC ∠的值. 51.(2021·内蒙古通辽市·中考真题)计算;101(3)2cos30|32π-⎛⎫+--︒+- ⎪⎝⎭52.(2021·湖南中考真题)“2021湖南红色文化旅游节——重走青年毛泽东游学社会调查之路”启动仪式于4月29日在安化县梅城镇举行.该镇南面山坡上有一座宝塔,一群爱好数学的学生在研学之余对该宝塔的高度进行了测量.如图所示,在山坡上的A 点测得塔底B 的仰角13BAC ∠=︒,塔顶D 的仰角38DAC ∠=︒,斜坡50AB =米,求宝塔BD 的高(精确到1米)(参考数据:sin130.22,cos130.97,tan130.23,sin380.62,cos380.79,tan380.78︒≈︒≈︒≈︒≈︒≈︒≈)53.(2021·湖南中考真题)已知锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,边角总满足关系式:sin sin sin a b c A B C==.(1)如图1,若6,45,75a B C =∠=∠=︒︒,求b 的值;(2)某公园准备在园内一个锐角三角形水池ABC 中建一座小型景观桥CD (如图2所示),若,14CD AB AC ⊥=米,10AB =米,sin ACB ∠=CD 的长度. 54.(2021·湖南张家界市·中考真题)张家界大峡谷玻璃桥是我市又一闻名中外的五星景点.某校初三年级在一次研学活动中,数学研学小组设计以下方案测量桥的高度.如图,在桥面正下方的谷底选一观测点A ,观测到桥面B ,C 的仰角分别为30,60︒︒,测得BC 长为320米,求观测点A 到桥面BC 的距离.(结果保1.73≈)55.(2021·黑龙江绥化市·中考真题)一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为ABC ,点B C D 、、在同一条直线上,测得90,60,32cm ACB ABC AB ∠=︒∠=︒=,75BDE ∠=︒,其中一段支撑杆84cm CD =,另一段支撑杆70cm DE =,求支撑杆上的点E 到水平地面的距离EF 是多少?(用四舍五入法对结果取整数,参考数据sin150.26,cos150.97,tan15 1.732︒≈︒≈︒≈≈)56.(2021·浙江宁波市·中考真题)我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP 始终平分同一平面内两条伞骨所成的角BAC ∠,且AB AC =,从而保证伞圈D 能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D 已滑动到点D 的位置,且A ,B ,D 三点共线,40cm AD '=,B 为AD '中点,当140BAC ∠=︒时,伞完全张开.(1)求AB 的长.(2)当伞从完全张开到完全收拢,求伞圈D 沿着伞柄向下滑动的距离.(参考数据:sin70094,cos700.34,tan70 2.75︒≈︒≈︒≈)57.(2021·江西中考真题)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC 与手臂MC 始终在同一直线上,枪身BA 与额头保持垂直量得胳膊28cm MN =,42cm MB =,肘关节M 与枪身端点A 之间的水平宽度为25.3cm (即MP 的长度),枪身8.5cm BA =.图1(1)求ABC ∠的度数;(2)测温时规定枪身端点A 与额头距离范围为3~5cm .在图2中,若测得68.6BMN ∠=°,小红与测温员之间距离为50cm 问此时枪身端点A 与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)(参考数据:sin66.40.92︒≈,cos66.40.40=°,sin 23.60.40︒≈ 1.414≈)58.(2021·甘肃武威市·中考真题)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔CD 垂直于地面,在地面上选取,A B 两处分别测得CAD ∠和CBD ∠的度数(,,A D B 在同一条直线上).数据收集:通过实地测量:地面上,A B 两点的距离为58m,42,58CAD CBD ∠=︒∠=︒.问题解决:求宝塔CD 的高度(结果保留一位小数).参考数据:sin 420.67,cos420.74,tan 420.90︒≈︒=︒≈,sin580.85,cos580.53,tan58 1.60︒=︒=︒=.根据上述方案及数据,请你完成求解过程.59.(2021·青海中考真题)如图1是某中学教学楼的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转35︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据sin350.6︒≈,cos350.8︒≈ 1.4≈).60.(2021·四川成都市·中考真题)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角33MBC ∠=︒,在与点A 相距3.5米的测点D处安置测倾器,测得点M 的仰角45MEC ∠=︒ (点A ,D 与N 在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据:sin330.54,cos330.84,tan330.65︒≈︒≈︒≈)61.(2021·山东聊城市·中考真题)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A处向正南方向走300米到达革命纪念碑B处,再从B处向正东方向走到党史纪念馆C处,然后从C处向北偏西37°方向走200米到达人民英雄雕塑D处,最后从D处回到A处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)62.(2021·四川广元市·中考真题)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D点处时,无人机测得操控者A的俯角为75︒,测得小区楼房BC顶端点C处的俯角为45︒.已知操控者A和小区楼房BC之间的距离为45米,小区楼房BC的高度为米.(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A,B,C,D都在同一平面内.参考数据:tan752︒=tan152︒=.计算结果保留根号)。
2021年全国各省市数学中考分类汇编锐角三角函数一、选择题1.(2021·山东省淄博市)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为()A. 35B. √55C. 45D. 2√552.(2021·浙江省金华市)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为()A. 4cosα米B. 4sinα米C. 4tanα米D. 4cosα米3.(2021·山东省泰安市)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D 处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C 的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:√3≈1.732)()A. 136.6米B. 86.7米C. 186.7米D. 86.6米4.(2021·重庆市)如图,在建筑物AB左侧距楼底B点水平距离150米的C处有一山坡,斜坡CD的坡度(或坡比)为i=1:2.4,坡顶D到BC的垂直距离DE=50米(点A,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为( )(参考数据:sin50°≈0.77;cos50°≈0.64;tan50°≈1.19)A. 69.2米B. 73.1米C. 80.0米D. 85.7米5. (2021·广东省)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A. 200tan70°米B. 200tan70∘米C. 200sin 70°米D. 200sin70∘米 6. (2021·湖北省随州市)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知sinα=cosβ=35,则梯子顶端上升了( ) A. 1米 B. 1.5米 C. 2米 D. 2.5米7. (2021·广西壮族自治区桂林市)如图,在平面直角坐标系内有一点P (3,4),连接OP ,则OP 与x 轴正方向所夹锐角α的正弦值是( )A. 34B. 43 C. 35D. 458.(2021·广东省广州市)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,将△ABC绕点A逆时针旋转得到△AB′C′,使点C′落在AB边上,连结BB′,则sin∠BB′C′的值为()A. 35B. 45C. √55D. 2√559.(2021·贵州省毕节市)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为()A. 6√2mB. 8√2mC. 4√6mD. 8√3m10.(2021·福建省)如图,AB为⊙O的直径,点P在AB的延长线上,PC,PD与⊙O相切,切点分别为C,D.若AB=6,PC=4,则sin∠CAD等于()A. 35B. 23C. 34D. 45二、填空题11.(2021·湖北省黄石市)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=5米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为45°,则电线杆AB的高度约为______ 米.(参考数据:√2≈1.414,√3≈1.732,结果按四舍五入保留一位小数)12.(2021·山东省烟台市)如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是______ .13.(2021·辽宁省本溪市)如图,由边长为1的小正方形组成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C和点D,则tan∠ADC= ______ .14.(2021·广东省梅州市)如图,在▱ABCD中,AD=5,AB=12,sin A=4.过点D作DE⊥AB,5垂足为E,则sin∠BCE= ______ .15.(2021·浙江省衢州市)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE与地面平行,支撑杆AD,BC可绕连接点O转动,且OA=OB,椅面底部有一根可以绕点H转动的连杆HD,点H是CD的中点,FA,EB均与地面垂直,测得FA=54cm,EB=45cm,AB=48cm.(1)椅面CE的长度为______ cm.(2)如图3,椅子折叠时,连杆HD绕着支点H带动支撑杆AD,BC转动合拢,椅面和连杆夹角∠CHD的度数达到最小值30°时,A,B两点间的距离为______ cm (结果精确到0.1cm).(参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)16.(2021·湖北省荆州市)如图1是一台手机支架,图2是其侧面示意图,AB,BC可分别绕点A,B转动,测量知BC=8cm,AB=16cm.当AB,BC转动到∠BAE=60°,∠ABC=50°时,点C到AE的距离为______ cm.(结果保留小数点后一位,参考数据:sin70°≈0.94,√3≈1.73)17.(2021·湖北省黄冈市)如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则建筑物BC的高约为______ m(结果保留小数点后一位).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53≈1.33)18.(2021·浙江省湖州市)如图,已知在Rt△ABC中,∠ACB=90°,AC=1,AB=2,则sin B的值是______ .19.(2021·广东省)如图,旗杆高AB=8m,某一时刻,旗杆影子长BC=16m,则tan C=______.20.(2021·江苏省常州市)如图,在△ABC中,AC=3,BC=4,D、E分别在CA、CB上,点F在△ABC内.若四边形CDFE是边长为1的正方形,则sin∠FBA= ______ .三、解答题3-π)0.21.(2021·湖南省岳阳市)计算:(-1)2021+|-2|+4sin30°-(√822.(2021·四川省达州市)计算:-12+(π-2021)0+2sin60°-|1-√3|.23.(2021·湖北省黄冈市)计算:|1−√3|−2sin60°+(π−1)0.)−2+4sin60°−(−1).24.(2021·湖南省怀化市)计算:(3−π)0−√12+(1325.(2021·浙江省金华市)已知:如图,矩形ABCD的对角线AC,BD相交于点O,∠BOC=120°,AB=2.(1)求矩形对角线的长.(2)过O作OE⊥AD于点E,连结BE.记∠ABE=α,求tanα的值.26.(2021·湖南省娄底市)我国航天事业捷报频传,天舟二号于2021年5月29日成功发射,震撼人心.当天舟二号从地面到达点A处时,在P处测得A点的仰角∠DPA为30°且A与P两点的距离为6千米,它沿铅垂线上升7.5秒后到达B处,此时在P 处测得B点的仰角∠DPB为45°,求天舟二号从A处到B处的平均速度.(结果精确到1m/s,取√3=1.732,√2=1.414)27.(2021·黑龙江省绥化市)一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B、C、D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32cm,∠BDE=75°,其中一段支撑杆CD=84cm,另一段支撑杆DE=70cm.求支撑杆上的点E到水平地面的距离EF是多少?(用四舍五入法对结果取整数,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,√3≈1.732)28.(2021·湖北省荆门市)某海域有一小岛P,在以P为圆心,半径r为10(3+√3)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20√2海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B处开始沿南偏东至多多少度的方向航行能安全通过这一海域?29.(2021·湖南省益阳市)“2021湖南红色文化旅游节--重走青年毛泽东游学社会调查之路”启动仪式于4月29日在安化县梅城镇举行,该镇南面山坡上有一座宝塔,一群爱好数学的学生在研学之余对该宝塔的高度进行了测量.如图所示,在山坡上的A点测得塔底B的仰角∠BAC=13°,塔顶D的仰角∠DAC=38°,斜坡AB=50米,求宝塔BD的高(精确到1米).(参考数据:sin13°≈0.22,cos13°≈0.97,tan13°≈0.23,sin38°≈0.62,cos38°≈0.79,tan38°≈0.78)30.(2021·湖南省湘西土家族苗族自治州)有诗云:东山雨霁画屏开,风卷松声入耳来.一座楼阁镇四方,团结一心建家乡.1987年为庆祝湘西自治州成立三十周年,湘西州政府在花果山公园内修建了一座三层楼高的“一心阁”民族团结楼阁.芙蓉学校数学实践活动小组为测量“一心阁”CH的高度,在楼前的平地上A处,观测到楼顶C处的仰角为30°,在平地上B处观测到楼顶C处的仰角为45°,并测得A、B 两处相距20m,求“一心阁”CH的高度.(结果保留小数点后一位,参考数据:√2≈1.41,√3=1.73)参考答案1.A2.A3.A4.D5.B6.C7.D8.C9.B10.D11.10.512.2√5513.14.16.6.317.24.218.1219.1220.√101021.解:原式=-1+2+4×1-1=-1+2+2-1=2.222.解:原式=-1+1+2×√3-(√3-1)2=-1+1+√3-√3+1=1.23.解:原式=√3-1-2×√3+12=√3-1-√3+1=0.24.解:原式=1-2√3+9+4×√3+12=1-2√3+9+2√3+1=11.25.解:(1)∵∠BOC=120°,∴∠AOB=60°,∵四边形ABCD是矩形,∴∠BAD=90°,AC=BD,AO=OC,BO=DO,∴△AOB 是等边三角形,∴AB =AO =BO ,∵AB =2,∴BO =2,∴BD =2BO =4,∴矩形对角线的长为4;(2)由勾股定理得:AD =√BD 2−AB 2=√42−22=2√3,∵OA =OD ,OE ⊥AD 于点E ,∴AE =DE =12AD =√3,∴tanα=AE AB =√32.26.解:由题意可得:∠APD =30°,∠BPD =45°,AP =6km ,∠BDP =90°, 在Rt △BPD 中,∵∠APD =30°,AP =6km ,∠ADP =90°,cos ∠APD =cos30°=PDPA , ∴AD =12AP =3km ,PD =PA •cos30°=6×√32=3√3(km ), 在Rt △APD 中,∵∠BPD =45°,PD =3√3km ,∠BDP =90°,tan ∠BPD =tan45°=BDPD , ∴BD =PD tan45°=3√3(km ), 故AB =BD -AD =3√3-3≈5.196-3=2.196(km )=2196m ,则天舟二号从A 处到B 处的平均速度约为:2196÷7.5≈293(m /s ), 答:天舟二号从A 处到B 处的平均速度约为293m /s .27.解:方法一:如图1,过点D 作DM ⊥EF 于M ,过点D 作DN ⊥BA 交BA 延长线于N ,在Rt △ABC 中,∠ABC =60°,AB =32(cm ),∴BC =AB •cos60°=32×12=16(cm ), ∵DC =84(cm ),∴BD =DC +BC =84+16=100(cm ),∵∠F =90°,∠DMF =90°,∴DM ∥FN ,∴∠MDB=∠ABC=60°,,在Rt△BDN中,sin∠DBN=sin60°=DNBD∴DN=√3×100=50√3(cm),2∵∠F=90°,∠N=90°,∠DMF=90°,∴四边形MFND是矩形,∴DN=MF=50√3,∵∠BDE=75°,∠MDB=60°,∴∠EDM=∠BDE-∠MDB=75°-60°=15°,∵DE=70(cm),∴ME=DE•sin∠EDM=70×sin15°≈18.2(cm),∴EF=ME+MF=50√3+18.2≈104.8≈105(cm),答:支撑杆上的点E到水平地面的距离EF大约是105cm.方法二:如图2,过点D作DH⊥BA交BA延长线于H,过点E作EG⊥HD延长线于G,在Rt△ABC中,∠ABC=60°,AB=32(cm),∴BC=AB•cos60°=32×1=16(cm),2∵DC=84(cm),∴BD=DC+BC=84+16=100(cm),同方法一得,DH=BD•sin60°=50√3,∵在Rt△BDH中,∠DBH=60°,∴∠BDH=30°,∵∠BDE=75°,∴∠EDG=180°-∠BDH-∠BDE=180°-75°-30°=75°,∴∠DEG=90°-75°=15°,∴DG=DE•sin15°≈18.2(cm),∴GH=DG+DH=18.2+50√3≈104.8≈105(cm),∵∠F=90°,∠H=90°,∠G=90°,∴EF=EG≈105(cm),答:支撑杆上的点E到水平地面的距离EF大约是105cm.28.解:(1)过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠PAC=30°,∠PBC=45°,AB=20√2,设PC=x,则BC=x,在Rt△PAC中,∵tan30°=PCAC =xx+20√2=√33,∴x=10√6+10√2,∴PA=2x=20√6+20√2,答:A,P之间的距离AP为(20√6+20√2)海里;(2)因为PC-10(3+√3)=10√6+10√2-30-10√3=10(√3+1)(√2-√3)<0,所以有触礁的危险;设海监船无触礁危险的新航线为射线BD,作PE⊥BD,垂足为E,当P到BD的距离PE=10(3+√3)海里时,有sin∠PBE=10(3+√3)√2⋅PC =10(3+√3)20(√3+1)=√32,∴∠PBD=60°,∴∠CBD=60°-45°=15°,90°-15°=75°即海监船由B处开始沿南偏东至多75°的方向航行能安全通过这一海域.29.解:在Rt△ABC中,sin∠BAC=BCAB ,cos∠BAC=ACAB,∴BC=AB•sin∠BAC=AB•sin13°≈50×0.22=11(米);AC=AB•cos∠BAC=AB•cos13°≈50×0.97=48.5(米);在Rt△ADC中,tan∠DAC=CDAC,∴CD=AC•tan∠DAC=AC•tan38°≈48.5×0.78-37.83(米);∴BD=CD-BC≈37.83-11=26.83≈27(米),答:宝塔BD的高约为27米.30.解:设CH为x m,由题意得:∠AHC=90°,∠CBH=45°,∠A=30°,∴BH=CH=xm,AH=√3CH=√3x m,∵AH-BH=AB,∴√3x-x=20,解得:x=10(√3+1)≈27.3(m),答:“一心阁”CH的高度约为27.3m.。
01选择题-2021中考数学真题知识点分类汇编-锐角三角形(含答案,30题)一.锐角三角函数的定义(共1小题)1.(2021•云南)在△ABC中,∠ABC=90°.若AC=100,sin A=,则AB的长是( )A.B.C.60D.80二.特殊角的三角函数值(共3小题)2.(2021•株洲)某限高曲臂道路闸口如图所示,AB垂直地面l1于点A,BE与水平线l2的夹角为α(0°≤α≤90°),EF∥l1∥l2,若AB=1.4米,BE=2米,车辆的高度为h (单位:米),不考虑闸口与车辆的宽度:①当α=90°时,h小于3.3米的车辆均可以通过该闸口;②当α=45°时,h等于2.9米的车辆不可以通过该闸口;③当α=60°时,h等于3.1米的车辆不可以通过该闸口.则上述说法正确的个数为( )A.0个B.1个C.2个D.3个3.(2021•天津)tan30°的值等于( )A.B.C.1D.24.(2021•泸州)在锐角△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:===2R(其中R为△ABC的外接圆半径)成立.在△ABC中,若∠A=75°,∠B=45°,c=4,则△ABC的外接圆面积为( )A.B.C.16πD.64π三.计算器—三角函数(共3小题)5.(2021•烟台)如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下:按键的结果为m;按键的结果为n;按键的结果为k.下列判断正确的是( )A.m=n B.n=k C.m=k D.m=n=k 6.(2021•威海)若用我们数学课本上采用的科学计算器计算sin36°18′,按键顺序正确的是( )A.B.C.D.7.(2021•东营)如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC 的长,则下列按键顺序正确的是( )A.B.C.D.四.解直角三角形(共8小题)8.(2021•玉林)如图,△ABC 底边BC 上的高为h 1,△PQR 底边QR 上的高为h 2,则有( )A .h 1=h 2B .h 1<h 2C .h 1>h 2D .以上都有可能9.(2021•宜昌)如图,△ABC 的顶点是正方形网格的格点,则cos ∠ABC 的值为( )A .B .C .D .10.(2021•巴中)如图,点A 、B 、C 在边长为1的正方形网格格点上,下列结论错误的是( )A .sinB =B .sinC =C .tan B =D .sin 2B +sin 2C =111.(2021•淄博)如图,在Rt △ABC 中,∠ACB =90°,CE 是斜边AB 上的中线,过点E 作EF ⊥AB 交AC 于点F .若BC =4,△AEF 的面积为5,则sin ∠CEF 的值为( )A .B .C .D .12.(2021•黑龙江)如图,在△ABC 中,∠ACB =90°,点D 在AB 的延长线上,连接CD ,若AB =2BD ,tan ∠BCD =,则的值为( )A.1B.2C.D.13.(2021•宜宾)如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan∠OBD的值是( )A.B.2C.D.14.(2021•广东)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC 于点D,CD=1,则⊙O的直径为( )A.B.2C.1D.215.(2021•绍兴)如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD 为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为( )A.B.C.D.2五.解直角三角形的应用(共5小题)16.(2021•呼和浩特)如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘徽的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计π的值,下面d及π的值都正确的是( )A.d=,π≈8sin22.5°B.d=,π≈4sin22.5°C.d=,π≈8sin22.5°D.d=,π≈4sin22.5°17.(2021•长春)如图是净月潭国家森林公园一段索道的示意图.已知A、B两点间的距离为30米,∠A=α,则缆车从A点到达B点,上升的高度(BC的长)为( )A.30sinα米B.米C.30cosα米D.米18.(2021•十堰)如图,小明利用一个锐角是30°的三角板测操场旗杆的高度,已知他与旗杆之间的水平距离BC为15m,AB为1.5m(即小明的眼睛与地面的距离),那么旗杆的高度是( )A.(15+)m B.5m C.15m D.(5+)m19.(2021•随州)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A处,底端落在水平地面的点B处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知sinα=cosβ=,则梯子顶端上升了( )A.1米B.1.5米C.2米D.2.5米20.(2021•温州)图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=α,则OC2的值为( )A.+1B.sin2α+1C.+1D.cos2α+1六.解直角三角形的应用-坡度坡角问题(共4小题)21.(2021•德州)某商场准备改善原有楼梯的安全性能,把坡角由37°减至30°,已知原楼梯长为5米,调整后的楼梯会加长( )(参考数据:sin37°≈,cos37°≈,tan37°≈).A.6米B.3米C.2米D.1米22.(2021•潍坊)如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是( )A.15°B.30°C.45°D.60°23.(2021•衡阳)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB的倾斜角为37°,大厅两层之间的距离BC为6米,则自动扶梯AB的长约为(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)( )A.7.5米B.8米C.9米D.10米24.(2021•金华)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为( )A.4cosα米B.4sinα米C.4tanα米D.米七.解直角三角形的应用-仰角俯角问题(共6小题)25.(2021•济南)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)A.188m B.269m C.286m D.312m 26.(2021•日照)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m 到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:,且点A,B,C,D,E在同一平面内,小明同学测得古塔AB的高度是( )A.(10+20)m B.(10+10)m C.20m D.40m 27.(2021•深圳)如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为( )A.15sin32°B.15tan64°C.15sin64°D.15tan32°28.(2021•泰安)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)( )A.136.6米B.86.7米C.186.7米D.86.6米29.(2021•重庆)如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA和ND.甲在山脚点C处测得通信基站顶端M的仰角为60°,测得点C距离通信基站MA的水平距离CB 为30m;乙在另一座山脚点F处测得点F距离通信基站ND的水平距离FE为50m,测得山坡DF的坡度i=1:1.25.若ND=DE,点C,B,E,F在同一水平线上,则两个通信基站顶端M与顶端N的高度差为(参考数据:≈1.41,≈1.73)( )A.9.0m B.12.8m C.13.1m D.22.7m 30.(2021•重庆)如图,在建筑物AB左侧距楼底B点水平距离150米的C处有一山坡,斜坡CD的坡度(或坡比)为i=1:2.4,坡顶D到BC的垂直距离DE=50米(点A,B,C,D,E在同一平面内),在点D处测得建筑物顶点A的仰角为50°,则建筑物AB的高度约为( )(参考数据:sin50°≈0.77;cos50°≈0.64;tan50°≈1.19)A.69.2米B.73.1米C.80.0米D.85.7米参考答案与试题解析一.锐角三角函数的定义(共1小题)1.(2021•云南)在△ABC中,∠ABC=90°.若AC=100,sin A=,则AB的长是( )A.B.C.60D.80【解析】解:∵AC=100,sin A=,∴BC=60,∴AB==80,【答案】D.二.特殊角的三角函数值(共3小题)2.(2021•株洲)某限高曲臂道路闸口如图所示,AB垂直地面l1于点A,BE与水平线l2的夹角为α(0°≤α≤90°),EF∥l1∥l2,若AB=1.4米,BE=2米,车辆的高度为h (单位:米),不考虑闸口与车辆的宽度:①当α=90°时,h小于3.3米的车辆均可以通过该闸口;②当α=45°时,h等于2.9米的车辆不可以通过该闸口;③当α=60°时,h等于3.1米的车辆不可以通过该闸口.则上述说法正确的个数为( )A.0个B.1个C.2个D.3个【解析】解:由题知,限高曲臂道路闸口高度为:1.4+2×sinα,①当α=90°时,h<(1.4+2)米,即h<3.4米即可通过该闸口,故①正确;②当α=45°时,h<(1.4+2×)米,即h<1.4+米即可通过该闸口,∵2.9>1.4+,∴h等于2.9米的车辆不可以通过该闸口,故②正确;③当α=60°时,h<(1.4+2×)米,即h<1.4米即可通过该闸口,∵3.1<1.4+,∴h等于3.1米的车辆可以通过该闸口,故③不正确;【答案】C.3.(2021•天津)tan30°的值等于( )A.B.C.1D.2【解析】解:tan30°=.【答案】A.4.(2021•泸州)在锐角△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,有以下结论:===2R(其中R为△ABC的外接圆半径)成立.在△ABC中,若∠A=75°,∠B=45°,c=4,则△ABC的外接圆面积为( )A.B.C.16πD.64π【解析】解:∵∠A+∠B+∠C=180°,∴∠C=180°﹣∠A﹣∠B=180°﹣75°﹣45°=60°,∵=2R,∴2R===,∴R=,∴S=πR2=π()2=π,【答案】A.三.计算器—三角函数(共3小题)5.(2021•烟台)如图所示,若用我们数学课本上采用的科学计算器进行计算,其按键顺序及结果如下:按键的结果为m;按键的结果为n;按键的结果为k.下列判断正确的是( )A.m=n B.n=k C.m=k D.m=n=k【解析】解:m=23﹣=8﹣4=4;n=﹣22=4﹣4=0;k=﹣cos60°=﹣=4;∴m=k,【答案】C.6.(2021•威海)若用我们数学课本上采用的科学计算器计算sin36°18′,按键顺序正确的是( )A.B.C.D.【解析】解:采用的科学计算器计算sin36°18′,按键顺序正确的是D选项中的顺序,【答案】D.7.(2021•东营)如图,在△ABC中,∠C=90°,∠B=42°,BC=8,若用科学计算器求AC 的长,则下列按键顺序正确的是( )A.B.C.D.【解析】解:在△ABC中,因为∠C=90°,所以tan B=,因为∠B=42°,BC=8,所以AC=BC•tan B=8×tan42°.【答案】D.四.解直角三角形(共8小题)8.(2021•玉林)如图,△ABC底边BC上的高为h1,△PQR底边QR上的高为h2,则有( )A.h1=h2B.h1<h2C.h1>h2D.以上都有可能【解析】解:如图,分别作出△ABC底边BC上的高为AD即h1,△PQR底边QR上的高为PE 即h2,在Rt△ADC中,h1=AD=5×sin55°,在Rt△PER中,h2=PE=5×sin55°,∴h1=h2,【答案】A.9.(2021•宜昌)如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为( )A.B.C.D.【解析】解:法一、如图,在Rt△ABD中,∠ADB=90°,AD=BD=3,∴AB===3,∴cos∠ABC===.【答案】B.法二、在Rt△ABD中,∠ADB=90°,AD=BD=3,∴∠ABD=∠BAD=45°,∴cos∠ABC=cos45°=.【答案】B.10.(2021•巴中)如图,点A、B、C在边长为1的正方形网格格点上,下列结论错误的是( )A.sin B=B.sin C=C.tan B=D.sin2B+sin2C=1【解析】解:由勾股定理得:AB=,AC=,BC=,∴BC2=AB2+AC2,∴△ABC是直角三角形,∠BAC=90°,∴sin B=,sin C=,tan B=,sin2B+sin2C=,【答案】A.11.(2021•淄博)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF ⊥AB交AC于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为( )A.B.C.D.【解析】解:连接BF,∵CE是斜边AB上的中线,EF⊥AB,∴EF是AB的垂直平分线,∴S△AFE=S△BFE=5,∠FBA=∠A,∴S△AFB=10=AF•BC,∵BC=4,∴AF=5=BF,在Rt△BCF中,BC=4,BF=5,∴CF==3,∵CE=AE=BE=AB,∴∠A=∠FBA=∠ACE,又∵∠BCA=90°=∠BEF,∴∠CBF=90°﹣∠BFC=90°﹣2∠A,∠CEF=90°﹣∠BEC=90°﹣2∠A,∴∠CEF=∠FBC,∴sin∠CEF=sin∠FBC==,【答案】A.12.(2021•黑龙江)如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为( )A.1B.2C.D.【解析】解:过点D作DM⊥BC,交CB的延长线于点M,∵∠ACB=∠DMB=90°,∠ABC=∠DBM,∴△ABC∽△DBM,∴==,∵AB=2BD,∴===,在Rt△CDM中,由于tan∠MCD==,设DM=2k,则CM=3k,又∵==,∴BC=2k,AC=4k,∴==2,【答案】B.13.(2021•宜宾)如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan∠OBD的值是( )A.B.2C.D.【解析】解:如图:作OF⊥AB于F,∵AB=AC,AD平分∠BAC.∴∠ODB=90°.BD=CD=6.∴根据勾股定理得:AD==8.∵BE平分∠ABC.∴OF=OD,BF=BD=6,AF=10﹣6=4.设OD=OF=x,则AO=8﹣x,在Rt△AOF中,根据勾股定理得:(8﹣x)2=x2+42.∴x=3.∴OD=3.在Rt△OBD中,tan∠OBD===.法二:在求出AF=4后∵tan∠BAD==.∴=.∴OF=3.∴OD=OF=3.∴tan∠OBD==.【答案】A.14.(2021•广东)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC 于点D,CD=1,则⊙O的直径为( )A.B.2C.1D.2【解析】解:如图,过点D作DT⊥AB于T.∵AB是直径,∴∠ACB=90°,∴DC⊥BC,∵DB平分∠CBA,DC⊥BC,DT⊥BA,∴DC=DT=1,∵AC=3,∴AD=AC﹣CD=2,∴AD=2DT,∴∠A=30°,∴AB===2,解法二:AD=2DT由此处开始,可以在Rt△ADT中用勾股定理得AT=,再由垂径定理可得AB=2AT得解.【答案】B.15.(2021•绍兴)如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD 为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为( )A.B.C.D.2【解析】解:设DE交AC于T,过点E作EH⊥CD于H.∵∠BAC=90°,BD=DC,∴AD=DB=DC,∴∠B=∠DAB,∵∠B=∠ADE,∴∠DAB=∠ADE,∴AB∥DE,∴∠DTC=∠BAC=90°,∵DT∥AB,BD=DC,∴AT=TC,∴EA=EC=ED,∴∠EDC=∠ECD,∵EH⊥CD,∴CH=DH,∵DE∥AB,∴∠EDC=∠B,∴∠ECD=∠B,∴cos∠ECH=cos B=,∴=,∴==2,【答案】D.五.解直角三角形的应用(共5小题)16.(2021•呼和浩特)如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘徽的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计π的值,下面d及π的值都正确的是( )A.d=,π≈8sin22.5°B.d=,π≈4sin22.5°C.d=,π≈8sin22.5°D.d=,π≈4sin22.5°【解析】解:如图,连接AD,BC交于点O,过点O作OP⊥BC于点P,则CP=PD,且∠COP=22.5°,设正八边形的边长为a,则a+2×a=4,解得a=4(﹣1),在Rt△OCP中,OC==,∴d=2OC=,由πd≈8CD,则π≈32(﹣1),∴π≈8sin22.5°.【答案】C.17.(2021•长春)如图是净月潭国家森林公园一段索道的示意图.已知A、B两点间的距离为30米,∠A=α,则缆车从A点到达B点,上升的高度(BC的长)为( )A.30sinα米B.米C.30cosα米D.米【解析】解:由图可知,在△ABC中,AC⊥BC,∴sinα==,∴BC=30sinα米.【答案】A.18.(2021•十堰)如图,小明利用一个锐角是30°的三角板测操场旗杆的高度,已知他与旗杆之间的水平距离BC为15m,AB为1.5m(即小明的眼睛与地面的距离),那么旗杆的高度是( )A.(15+)m B.5m C.15m D.(5+)m【解析】解:由题意可得,四边形ABCD是矩形,BC=15m,AB=1.5m,∴BC=AD=15m,AB=CD=1.5m,在Rt△ADE中,∠EAD=30°,AD=15m,∴DE=AD•tan∠EAD=15×=5(m),∴CE=CD+DE=(5+1.5)(m).【答案】D.19.(2021•随州)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A处,底端落在水平地面的点B处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知sinα=cosβ=,则梯子顶端上升了( )A.1米B.1.5米C.2米D.2.5米【解析】解:如图所示,在Rt△ABC中,AC=sinα×AB==6(米);在Rt△DEC中,DC=cosβ×DE==6(米),EC===8(米);∴AE=EC﹣AC=8﹣6=2(米).【答案】C.20.(2021•温州)图1是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC.若AB=BC=1,∠AOB=α,则OC2的值为( )A.+1B.sin2α+1C.+1D.cos2α+1【解析】解:∵AB=BC=1,在Rt△OAB中,sinα=,∴OB=,在Rt△OBC中,OB2+BC2=OC2,∴OC2=()2+12=.【答案】A.六.解直角三角形的应用-坡度坡角问题(共4小题)21.(2021•德州)某商场准备改善原有楼梯的安全性能,把坡角由37°减至30°,已知原楼梯长为5米,调整后的楼梯会加长( )(参考数据:sin37°≈,cos37°≈,tan37°≈).A.6米B.3米C.2米D.1米【解析】解:在Rt△BAD中,AB=5米,∠BAD=37°,则BD=AB•sin∠BAD≈5×=3(米),在Rt△BCD中,∠C=30°,∴BC=2BD=6(米),则调整后的楼梯会加长:6﹣5=1(米),【答案】D.22.(2021•潍坊)如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是( )A.15°B.30°C.45°D.60°【解析】解:如图,作CD⊥平面镜,垂足为G,交地面于D.∵EF⊥平面镜,∴CD∥EF,∴∠CDH=∠EFH=α,根据题意可知:AG∥DF,∴∠AGC=∠CDH=α,∴∠AGC=α,∵∠AGC=AGB=×60°=30°,∴α=30°.【答案】B.23.(2021•衡阳)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB的倾斜角为37°,大厅两层之间的距离BC为6米,则自动扶梯AB的长约为(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)( )A.7.5米B.8米C.9米D.10米【解析】解:在Rt△ABC中,∠ACB=90°,BC=6米,∵sin∠BAC==sin37°≈0.6=,∴AB≈BC=×6=10(米),【答案】D.24.(2021•金华)如图是一架人字梯,已知AB=AC=2米,AC与地面BC的夹角为α,则两梯脚之间的距离BC为( )A.4cosα米B.4sinα米C.4tanα米D.米【解析】解:过点A作AD⊥BC于点D,∵AB=AC=2米,AD⊥BC,∴BD=DC,∴cosα==,∴DC=2cosα(米),∴BC=2DC=2×2cosα=4cosα(米).【答案】A.七.解直角三角形的应用-仰角俯角问题(共6小题)25.(2021•济南)无人机低空遥感技术已广泛应用于农作物监测.如图,某农业特色品牌示范基地用无人机对一块试验田进行监测作业时,在距地面高度为135m的A处测得试验田右侧边界N处俯角为43°,无人机垂直下降40m至B处,又测得试验田左侧边界M处俯角为35°,则M,N之间的距离为( )(参考数据:tan43°≈0.9,sin43°≈0.7,cos35°≈0.8,tan35°≈0.7,结果保留整数)A.188m B.269m C.286m D.312m【解析】解:由题意得:∠N=43°,∠M=35°,AO=135m,BO=AO﹣AB=95m,在Rt△AON中,tan N==tan43°,∴NO=≈150m,在Rt△BOM中,tan M==tan35°,∴MO=≈135.7m,∴MN=MO+NO=135.7+150≈286m.【答案】C.26.(2021•日照)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m 到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:,且点A,B,C,D,E在同一平面内,小明同学测得古塔AB的高度是( )A.(10+20)m B.(10+10)m C.20m D.40m【解析】解:过D作DF⊥BC于F,DH⊥AB于H,∴DH=BF,BH=DF,∵斜坡的斜面坡度i=1:,∴=1:,设DF=xm,CF=xm,∴CD==2x=20m,∴x=10,∴BH=DF=10m,CF=10m,∴DH=BF=(10+30)m,∵∠ADH=30°,∴AH=DH=×(10+30)=(10+10)m,∴AB=AH+BH=(20+10)m,【答案】A.27.(2021•深圳)如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为( )A.15sin32°B.15tan64°C.15sin64°D.15tan32°【解析】解:∵∠CED=64°,∠F=32°,∠CED=∠F+∠EDF,∴∠EDF=∠CED﹣∠F=64°﹣32°=32°,∴∠EDF=∠F,∴DE=EF,∵EF=15米,∴DE=15米,在Rt△CDE中,∵sin∠CED=,∴CD=DE sin∠CED=15sin64°,【答案】C.28.(2021•泰安)如图,为了测量某建筑物BC的高度,小颖采用了如下的方法:先从与建筑物底端B在同一水平线上的A点出发,沿斜坡AD行走130米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端C的仰角为60°,建筑物底端B的俯角为45°,点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4.根据小颖的测量数据,计算出建筑物BC的高度约为(参考数据:≈1.732)( )A.136.6米B.86.7米C.186.7米D.86.6米【解析】解:如图作DH⊥AB于H,延长DE交BC于F.在Rt△ADH中,AD=130米,DH:AH=1:2.4,∴DH=50(米),∵四边形DHBF是矩形,∴BF=DH=50(米),在Rt△EFB中,∠BEF=45°,∴EF=BF=50(米),在Rt△EFC中,FC=EF•tan60°,∴CF=50×≈86.6(米),∴BC=BF+CF=136.6(米).【答案】A.29.(2021•重庆)如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA和ND.甲在山脚点C处测得通信基站顶端M的仰角为60°,测得点C距离通信基站MA的水平距离CB 为30m;乙在另一座山脚点F处测得点F距离通信基站ND的水平距离FE为50m,测得山坡DF的坡度i=1:1.25.若ND=DE,点C,B,E,F在同一水平线上,则两个通信基站顶端M与顶端N的高度差为(参考数据:≈1.41,≈1.73)( )A.9.0m B.12.8m C.13.1m D.22.7m【解析】解:在Rt△MCB中,∠MCB=60°,CB=30m,tan∠MCB=,∴MB=CB•tan∠MCB=30×≈51.9(m),∵山坡DF的坡度i=1:1.25,EF=50m,∴DE=40(m),∵ND=DE,∴ND=25(m),∴两个通信基站顶端M与顶端N的高度差=40+25﹣51.9=13.1(m),【答案】C.30.(2021•重庆)如图,在建筑物AB左侧距楼底B点水平距离150米的C处有一山坡,斜坡CD的坡度(或坡比)为i=1:2.4,坡顶D到BC的垂直距离DE=50米(点A,B,C,D,E在同一平面内),在点D处测得建筑物顶点A的仰角为50°,则建筑物AB的高度约为( )(参考数据:sin50°≈0.77;cos50°≈0.64;tan50°≈1.19)A.69.2米B.73.1米C.80.0米D.85.7米【解析】解:∵斜坡CD的坡度(或坡比)为i=1:2.4,∴DE:CE=5:12,∵DE=50米,∴CE=120米,∵BC=150米,∴BE=150﹣120=30(米),∴AB=tan50°×30+50≈85.7(米).【答案】D.。
中考数学复习《锐角三角函数》专项练习题-附带有答案一、选择题1.已知α是锐角,若sinα=12,则α的度数是()A.30°B.45°C.60°D.75°2.如图,在Rt△ABC中,BC=3,斜边AC=5,则下列等式正确的是()A.sinC=35B.cosC=43C.tanA=34D.sinA=453.在Rt△ABC中,∠C=90°,sinA= 513,则tanB的值为()A.1213B.512C.1312D.1254.如图所示,河堤横断面迎水坡AB的坡比是1:2,堤高BC=4m,则坡面AB的长度是()mA.8 B.16 C.4√5D.4√35.如图所示,△ABC的顶点是正方形网格的格点,则sin∠A的值为()A.12B.√1010C.√55D.2√556.如图,点A到点C的距离为100米,要测量河对岸B点到河岸AD的距离.小明在A点测得B在北偏东60°的方向上,在C点测得B在北偏东30°的方向上,则B点到河岸AD的距离为()A.100米B.50米C.200√33米D.50√3米7.图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若 AB=BC=1,∠AOB=α,则 OC2的值为()A.sin2α+1B.1sin2α+1C.cos2α+1D.1cos2α+18.如图所示,正方形ABCD中AB=4,点E为BC中点,BF⊥AE于点G,交CD边于点F,连接DG,则DG长为()A.95√5B.4 C.165D.85√5二、填空题9.已知∠A是锐角tanA=√32,则sinA=.10.平放在地面上的直角三角形铁板ABC的一部分被沙堆掩埋,其示意图如图所示,量得∠A为54°,∠B 为36°,边AB的长为2m,BC边上露出部分BD的长为0.9m,则铁板BC边被掩埋部分CD的长是m.(参考数据:sin54°≈0.8,cos54°≈0.6,tan54°≈1.4).11.如图,在⊙O中,弦AB的长为12√3,圆心到弦AB的距离为6,则∠BOC的度数为.12.如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,√3),且∠ABC=90°,∠A=30°,则顶点A的坐标是.13.如图,正方形AFEB和正方形BEDC的边长相等,点A、B、C在同一条直线上.连接AD、BD,那么cos ∠ADB的值为.三、解答题14.计算:2sin30°+cos30°•tan60°.15.先化简,再求值:xx2−1÷(1−1x+1),其中x=√2sin45°+2tan60°.16.为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动.如图,在一个坡度(或坡比)i=1:2.4的山坡AB上发现有一棵古树CD.测得古树底端C到山脚点A的距离AC=26米,在距山脚点A水平距离6米的点E处,测得古树顶端D的仰角∠AED=48°(古树CD与山坡AB的剖面、点E在同一平面上,古树CD与直线AE垂直),则古树CD的高度约为多少米?(参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)17.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB 由A 向B 移动,已知点C 为一海港,在A 处测得C 港在北偏东45°方向上,在B 处测得C 港在北偏西60°方向上,且 AB =400+400√3 千米,以台风中心为圆心,周围600千米以内为受影响区域.(1)海港C 受台风影响吗?为什么?(2)若台风中心的移动速度为20千米/时,则台风影响该海港持续的时间有多长?(结果保留整数,参考数据 √2≈1.41 √3≈1.73 √5≈2.24 )18.如图所示,已知BC 是⊙O 的直径,A 、D 是⊙O 上的两点,连接AD 、AC 、CD ,线段AD 与直径BC 相交于点E.(1)若∠ACB =60°,求sin∠ADC 的值.(2)当CD ⌢=12AC ⌢时 ①若CE =√2,BC⋅CE AB =2求∠COD 的度数.②若CD =1,CB =4求线段CE 的长.参考答案1.A2.C3.D4.C5.C6.D7.B8.B9.√217 10.0.711.60°12.(4,√3)13.3√101014.解:原式=2× 12 + √32× √3 =1+ 32= 5215.解: x x 2−1÷(1−1x+1)=x (x+1)(x−1)÷x+1−1x+1 =x (x+1)(x−1)⋅x+1x=1x −1 当x =√2sin45°+2tan60°=√2×√22+2×√3=1+2√3时 1x −1=11+2√3−1=12√3=√36原式=√36. 16.解:延长DC 交EA 的延长线于点F ,则CF ⊥EF∵山坡AC上坡度i=1:2.4∴令CF=km,则AF=2.4km在Rt△ACF中,由勾股定理得CF2+AF2=AC2∴k2+(2.4k)2=262解得k=10∴AF=24m,CF=10m∴EF=30m在Rt△DEF中,tanE=DFEF∴DF=EF•tanE=30×tan48°=30×1.11=33.3(m)∴CD=DF﹣CF=23.3m因此,古树CD的高度约为23.3m.17.(1)解:如下图,过点C作CH⊥AB交AB于点H设CH=x在Rt△ACH中在Rt△BCH中∴AB=(√3+1)x=400+400√3∴x=400,∴CH=400∵400<600,海港C受台风影响(2)解:如下图,以CP=600千米为半径画弧交AB于P、Q两点,此时台风在PQ之间时,海港受到影响在 Rt △PCH 中∴PH =√CP 2−CH 2=200√5∴PQ =2PH =400√5则时间: t =400√520=20√5≈45 (小时)答:台风影响该海港持续的时间有45小时.18.(1)解:∵BC 是⊙O 的直径∴∠BAC =90°∵∠ACB =60°∴∠B =30°∵AC ⌢=AC ⌢∴∠ADC =∠B =30°∴sin∠ADC =sin30°=12所以sin∠ADC 的值为12;(2)解:①∵CE =√2 BC⋅CE AB =2∴BC AB =√2∵∠BAC =90°∴cos∠B =AB BC =√22∴∠B =45°∵CD ⌢=12AC ⌢∴∠CAD =12∠B =22.5°∴∠COD =2∠CAD =45°即∠COD 的度数为45°;②∵CD ⌢=12AC ⌢∵∠ADC=∠COD,∠OCD=∠DCE ∴△OCD∽△DCE∴CDOC =CECD∵BC=4∴OC=2∴12=CE1∴CE=12∴线段CE的长为12.。
一、锐角三角函数真题与模拟题分类汇编(难题易错题)1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.64400.77400.84sin cos tan ︒≈︒≈︒≈,,.2 1.41,3 1.73≈≈)【答案】AB 的长约为0.6m . 【解析】 【分析】作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可. 【详解】解:作BF CE ⊥于F ,在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,3.85CF BC cos BCF ⋅∠≈=,在Rt ADE ∆E 中,3 1.73tan 3AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=由勾股定理得,22BH AH 0.6(m)AB =+≈, 答:AB 的长约为0.6m .【点睛】考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.2.在正方形ABCD中,对角线AC,BD交于点O,点P在线段BC上(不含点B),∠BPE=12∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图1).求证:△BOG≌△POE;(2)通过观察、测量、猜想:BFPE=,并结合图2证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图3),若∠ACB=α,求BF PE的值.(用含α的式子表示)【答案】(1)证明见解析(2)12BFPE=(3)1tan2BFPEα=【解析】解:(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB="OP" ,∠BOC=∠BOG=90°.∵PF⊥BG ,∠PFB=90°,∴∠GBO=90°—∠BGO,∠EPO=90°—∠BGO.∴∠GBO=∠EPO .∴△BOG≌△POE(AAS).(2)BF1PE2=.证明如下:如图,过P作PM//AC交BG于M,交BO于N,∴∠PNE=∠BOC=900,∠BPN=∠OCB.∵∠OBC=∠OCB =450,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=900—∠BMN , ∠NPE=900—∠BMN ,∴∠MBN=∠NPE . ∴△BMN ≌△PEN (ASA ).∴BM=PE .∵∠BPE=12∠ACB ,∠BPN=∠ACB ,∴∠BPF=∠MPF . ∵PF ⊥BM ,∴∠BFP=∠MFP=900.又∵PF=PF , ∴△BPF ≌△MPF (ASA ).∴BF="MF" ,即BF=12BM . ∴BF=12PE , 即BF 1PE 2=. (3)如图,过P 作PM//AC 交BG 于点M ,交BO 于点N ,∴∠BPN=∠ACB=α,∠PNE=∠BOC=900.由(2)同理可得BF=12BM , ∠MBN=∠EPN . ∵∠BNM=∠PNE=900,∴△BMN ∽△PEN .∴BM BNPE PN=. 在Rt △BNP 中,BN tan =PN α, ∴BM =tan PE α,即2BF=tan PEα. ∴BF 1=tan PE 2α. (1)由正方形的性质可由AAS 证得△BOG ≌△POE .(2)过P 作PM//AC 交BG 于M ,交BO 于N ,通过ASA 证明△BMN ≌△PEN 得到BM=PE ,通过ASA 证明△BPF ≌△MPF 得到BF=MF ,即可得出BF 1PE 2=的结论. (3)过P 作PM//AC 交BG 于点M ,交BO 于点N ,同(2)证得BF=12BM , ∠MBN=∠EPN ,从而可证得△BMN ∽△PEN ,由BM BN PE PN =和Rt △BNP 中BNtan =PNα即可求得BF 1=tan PE 2α.3.已知Rt △ABC 中,AB 是⊙O 的弦,斜边AC 交⊙O 于点D ,且AD=DC ,延长CB 交⊙O 于点E .(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.①若CF=CD时,求sin∠CAB的值;②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)【答案】(1)AE=CE;(2)①;②.【解析】试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于AD=DC,根据垂直平分线的性质可得AE=CE;(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD•AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.试题解析:(1)AE=CE.理由:连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD•AF.①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC•3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;②当CF=aCD(a>0)时,sin∠CAB=.∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC•(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED==.考点:1.圆的综合题;2.探究型;3.存在型.4.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【解析】试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.试题解析:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO=,∴,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD=,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【考点】二次函数综合题.5.如图(1),已知正方形ABCD在直线MN的上方BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(2)连接FC,观察并直接写出∠FCN的度数(不要写出解答过程)(3)如图(2),将图中正方形ABCD改为矩形ABCD,AB=6,BC=8,E是线段BC上一动点(不含端点B、C),以AE为边在直线MN的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由B向C运动时,∠FCN的大小是否总保持不变,若∠FCN的大小不变,请求出tan∠FCN的值.若∠FCN的大小发生改变,请举例说明.【答案】(1)见解析;(2)∠FCN =45°,理由见解析;(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43.理由见解析. 【解析】 【分析】(1)根据三角形判定方法进行证明即可.(2)作FH ⊥MN 于H .先证△ABE ≌△EHF ,得到对应边相等,从而推出△CHF 是等腰直角三角形,∠FCH 的度数就可以求得了.(3)解法同(2),结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE ,得出EH=AD=BC=8,由三角函数定义即可得出结论. 【详解】(1)证明:∵四边形ABCD 和四边形AEFG 是正方形, ∴AB =AD ,AE =AG =EF ,∠BAD =∠EAG =∠ADC =90°, ∴∠BAE +∠EAD =∠DAG +∠EAD ,∠ADG =90°=∠ABE , ∴∠BAE =∠DAG , 在△ADG 和△ABE 中,ADG ABE DAG BAE AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ADG ≌△ABE (AAS ). (2)解:∠FCN =45°,理由如下: 作FH ⊥MN 于H ,如图1所示:则∠EHF =90°=∠ABE , ∵∠AEF =∠ABE =90°,∴∠BAE +∠AEB =90°,∠FEH +∠AEB =90°, ∴∠FEH =∠BAE ,在△EFH 和△ABE 中,EHF ABE FEH BAE AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFH ≌△ABE (AAS ), ∴FH =BE ,EH =AB =BC , ∴CH =BE =FH , ∵∠FHC =90°, ∴∠FCN =45°.(3)当点E 由B 向C 运动时,∠FCN 的大小总保持不变,理由如下: 作FH ⊥MN 于H ,如图2所示:由已知可得∠EAG =∠BAD =∠AEF =90°,结合(1)(2)得:△EFH ≌△GAD ,△EFH ∽△ABE , ∴EH =AD =BC =8, ∴CH =BE , ∴EH FH FHAB BE CH==; 在Rt △FEH 中,tan ∠FCN =8463FH EH CH AB ===, ∴当点E 由B 向C 运动时,∠FCN 的大小总保持不变,tan ∠FCN =43. 【点睛】本题是四边形综合题目,考查了正方形,矩形的判定及全等三角形的判定方法等知识点的综合运用,其重点是通过证三角形全等或相似来得出线段的相等或成比例.6.如图,在平面直角坐标系xOy 中,抛物线y =﹣14x 2+bx +c 与直线y =12x ﹣3分别交x 轴、y 轴上的B 、C 两点,设该抛物线与x 轴的另一个交点为点A ,顶点为点D ,连接CD 交x 轴于点E .(1)求该抛物线的表达式及点D 的坐标; (2)求∠DCB 的正切值;(3)如果点F 在y 轴上,且∠FBC =∠DBA +∠DCB ,求点F 的坐标.【答案】(1)21y 234x x =-+-,D (4,1);(2)13;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣14x 2+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB•sin ∠OBC =5,CE =32,则CH =5,即可求解;(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可. 【详解】 (1)y =12x ﹣3,令y =0,则x =6,令x =0,则y =﹣3, 则点B 、C 的坐标分别为(6,0)、(0,﹣3),则c =﹣3, 将点B 坐标代入抛物线y =﹣14x 2+bx ﹣3得:0=﹣14×36+6b ﹣3,解得:b =2, 故抛物线的表达式为:y =﹣14x 2+2x ﹣3,令y =0,则x =6或2, 即点A (2,0),则点D (4,1); (2)过点E 作EH ⊥BC 交于点H ,C 、D 的坐标分别为:(0,﹣3)、(4,1), 直线CD 的表达式为:y =x ﹣3,则点E (3,0), tan ∠OBC =3162OC OB ==,则sin ∠OBC 5,则EH =EB•sin ∠OBC 5CE=32,则CH=5,则tan∠DCB=13 EHCH=;(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),则BC=35,∵OE=OC,∴∠AEC=45°,tan∠DBE=164-=12,故:∠DBE=∠OBC,则∠FBC=∠DBA+∠DCB=∠AEC=45°,①当点F在y轴负半轴时,过点F作FG⊥BG交BC的延长线与点G,则∠GFC=∠OBC=α,设:GF=2m,则CG=GFtanα=m,∵∠CBF=45°,∴BG=GF,即:5=2m,解得:m=5CF22GF CG+5=15,故点F(0,﹣18);②当点F在y轴正半轴时,同理可得:点F(0,1);故:点F坐标为(0,1)或(0,﹣18).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3),确定∠FBC =∠DBA+∠DCB =∠AEC =45°,是本题的突破口.7.已知AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F ,切点为G ,连接AG 交CD 于K . (1)如图1,求证:KE =GE ; (2)如图2,连接CABG ,若∠FGB =12∠ACH ,求证:CA ∥FE ; (3)如图3,在(2)的条件下,连接CG 交AB 于点N ,若sin E =35,AK =10,求CN 的长.【答案】(1)证明见解析;(2)△EAD 是等腰三角形.证明见解析;(3201013【解析】 试题分析:(1)连接OG ,则由已知易得∠OGE=∠AHK=90°,由OG=OA 可得∠AGO=∠OAG ,从而可得∠KGE=∠AKH=∠EKG ,这样即可得到KE=GE ;(2)设∠FGB=α,由AB 是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE 可得∠EKG=90°-α,这样在△GKE 中可得∠E=2α,由∠FGB=12∠ACH 可得∠ACH=2α,这样可得∠E=∠ACH ,由此即可得到CA ∥EF ; (3)如下图2,作NP ⊥AC 于P ,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AHHK=,10a ,结合10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH , 在Rt △APN 中,由tan ∠CAH=43PN AP=,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP =tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G , ∴OG ⊥EF ,∴∠AGO+∠AGE=90°, ∵CD ⊥AB 于H , ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG , ∴∠AGO=∠OAG , ∴∠AGE=∠AKH , ∵∠EKG=∠AKH , ∴∠EKG=∠AGE , ∴KE=GE . (2)设∠FGB=α, ∵AB 是直径, ∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE ﹣∠EKG=2α,∵∠FGB=12∠ACH , ∴∠ACH=2α, ∴∠ACH=∠E , ∴CA ∥FE .(3)作NP ⊥AC 于P . ∵∠ACH=∠E , ∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a , 则224AC CH a -=,tan ∠CAH=43CH AH =, ∵CA ∥FE , ∴∠CAK=∠AGE , ∵∠AGE=∠AKH ,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH=AHHK =3,AK=2210AH HK a+=,∵AK=10,∴1010a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH=43PNAP=,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN=PNCP=3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=513,∴CN=22PN CP+=410b⋅=2010 13.8.如图,AB为⊙O的直径,P是BA延长线上一点,CG是⊙O的弦∠PCA=∠ABC,CG⊥AB,垂足为D(1)求证:PC是⊙O的切线;(2)求证:PA AD PC CD;(3)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若sin∠P=35,CF=5,求BE的长.【答案】(1)见解析;(2)BE=12.【解析】【分析】(1)连接OC,由PC切⊙O于点C,得到OC⊥PC,于是得到∠PCA+∠OCA=90°,由AB为⊙O的直径,得到∠ABC+∠OAC=90°,由于OC=OA,证得∠OCA=∠OAC,于是得到结论;(2)由AE∥PC,得到∠PCA=∠CAF根据垂径定理得到弧AC=弧AG,于是得到∠ACF=∠ABC,由于∠PCA=∠ABC,推出∠ACF=∠CAF,根据等腰三角形的性质得到CF=AF,在R t△AFD中,AF=5,sin∠FAD=35,求得FD=3,AD=4,CD=8,在R t△OCD中,设OC=r,根据勾股定理得到方程r2=(r-4)2+82,解得r=10,得到AB=2r=20,由于AB为⊙O的直径,得到∠AEB=90°,在R t△ABE中,由sin∠EAD=35,得到BEAB=35,于是求得结论.【详解】(1)证明:连接OC,∵PC切⊙O于点C,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠OCA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠OAC=90°,∵OC=OA,∴∠OCA=∠OAC,∴∠PCA=∠ABC;(2)解:∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴弧AC=弧AG,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴CF=AF,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=35,∴sin∠FAD=35,在R t△AFD中,AF=5,sin∠FAD=35,∴FD=3,AD=4,∴CD=8,在R t△OCD中,设OC=r,∴r2=(r﹣4)2+82,∴r=10,∴AB=2r=20,∵AB为⊙O的直径,∴∠AEB=90°,在R t△ABE中,∵sin∠EAD=35,∴35BEAB,∵AB=20,∴BE=12.【点睛】本题考查切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,解题关键是连接OC构造直角三角形.9.我市在创建全国文明城市的过程中,某社区在甲楼的A处与E处之间悬挂了一副宣传条幅,在乙楼顶部C点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼之间的水平距离BD为12米,求条幅AE的长度.(结果保留根号)【答案】AE 的长为(123)+ 【解析】 【分析】在Rt ACF 中求AF 的长, 在Rt CEF 中求EF 的长,即可求解. 【详解】过点C 作CF AB ⊥于点F 由题知:四边形CDBF 为矩形12CF DB ∴==在Rt ACF 中,45ACF ∠=︒tan 1AFACF CF∴∠== 12AF ∴=在Rt CEF 中,30ECF ∠=︒ tan EFECF CF∴∠= 3123EF ∴=43EF ∴=1243AE AF EF ∴=+=+∴求得AE 的长为(1243+【点睛】本题考查了三角函数的实际应用,中等难度,作辅助线构造直角三角形是解题关键.10.已知:如图,在Rt △ABO 中,∠B =90°,∠OAB =30°,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题: (发现)(1)MN 的长度为多少;(2)当t =2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积.(探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.【答案】【发现】(1)MN 的长度为π3;(23P 的坐标为10(,);或230)或230();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.【解析】 【分析】发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论; (2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论; 探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;拓展:先找出MN 和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】 [发现](1)∵P (4,0),∴OP =4. ∵OA =3,∴AP =1,∴MN 的长度为6011803ππ⨯=. 故答案为3π; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°. ∵∠PQA =90°,∴PQ 12=PA 12=,∴AQ =AP ×cos30°3=∴S 重叠部分=S △APQ 12=PQ ×AQ 3= 即重叠部分的面积为38. [探究]①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1; ∴点P 的坐标为(1,0);②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =,∴OP 123303cos ==︒,∴点P 的坐标为(233,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 233=; ∴点P 的坐标为(233-,0);[拓展]t 的取值范围是2<t ≤3,4≤t <5,理由:如图5,当点N 运动到与点A 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =2; 当t >2,直到⊙P 运动到与AB 相切时,由探究①得:OP =1,∴t 411-==3,MN 与Rt △ABO 的边有两个公共点,∴2<t ≤3.如图6,当⊙P 运动到PM 与OB 重合时,MN 与Rt △ABO 的边有两个公共点,此时t =4; 直到⊙P 运动到点N 与点O 重合时,MN 与Rt △ABO 的边有一个公共点,此时t =5; ∴4≤t <5,即:t 的取值范围是2<t ≤3,4≤t <5.【点睛】本题是圆的综合题,主要考查了弧长公式,切线的性质,锐角三角函数,三角形面积公式,作出图形是解答本题的关键.。
锐角三角函数——2021年中考数学真题专项汇编
1.【2021年天津,2】tan30︒的值等于( )
A. B. C. 1 D. 2
2.【2021年重庆,10】如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和ND .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,
测得山坡DF 的坡度1:1.25i =.若58ND DE =,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N 的高度差为(参考数据:2 1.41,3 1.73≈≈)( )
A.9.0m
B.12.8m
C.13.1m
D.22.7m
3.【2021年福建,3】如图,某研究性学习小组为测量学校A 与河对岸工厂B 之间的距离,在学校附近选一点C ,利用测量仪器测得60A ∠=︒,90C ∠=︒,2km AC =.据此,可求得学校与工厂之间的距离AB 等于( )
A.2km
B.3km
C.
D.4km 4.【2021年四川泸州,8】锐角ABC 中,A ∠,B ∠,C ∠所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinC
a c
b R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若75A ∠=︒,45B ∠=︒,4
c =,则ABC 的外接圆面积为( )
A.16π3
B.64π3
C.16π
D.64π
5.【2021年福建,9】如图,AB 为O 的直径,点P 在AB 的延长线上,PC ,PD 与O 相切,
切点分别为C ,D .若6AB =,4PC =,则sin CAD ∠等于( )
A.35
B.25
C.34
D.45
6.【2021年四川宜宾,9】如图,在ABC 中,点O 是角平分线AD 、BE 的交点,若10AB AC ==,12BC =,则tan OBD ∠的值是( )
A.12
B.2 7.【2021年广东,16】如图,在ABCD 中,5AD =,12AB =,4sin 5A =.过点D 作4sin 5A =,垂足为E ,则sin BCE ∠=______.
8.【2021年四川乐山,14】如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30°,她朝石碑前行5米到达点D 处,又测得石碑顶A 点的仰角为60°,那么石碑的高度AB 的长=___________米.(结果保留根号)
9.【2021年天津,22】如图,一艘货船在灯塔C 的正南方向,距离灯塔257海里的A 处遇
险,发出求救信号.一艘救生船位于灯塔C的南偏东40︒方向上,同时位于A处的北偏东60︒方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长(结果取整数).参考数
︒≈ 1.73.
据:tan400.84
10.【2021年河南,19】开凿于北魏孝文帝年间的龙门石窟是中国石刻艺术瑰宝,卢舍那佛像是石窟中最大的佛像.某数学活动小组到龙门石窟景区测量这尊佛像的高度.如图,他们选取的测量点A与佛像BD的底部D在同一水平线上.已知佛像头部BC为4 m,在A处测得佛像头顶部B的仰角为45°,头底部C的仰角为37.5°,求佛像BD的高度(结果精确到0.1 m.参考数据:sin37.50.61
︒=).
︒=,tan37.50.77
︒=,cos37.50.79
11.【2021年安徽,17】学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD为矩形,点B、C分别在EF、DF上,90
∠=︒,
BAD
∠=︒,53
ABC
BC=.求零件的截面面积.参考数据:sin530.80
AB=,6cm
10cm
︒≈.
︒≈,cos530.60
12.【2021年陕西,21】一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索AB的长度.他们测得ABD
∠为30°,由于B、D两点间的距离不易测得,发现ACD
∠恰好为45°,点B与点C之间的距离约为16 m.已知B、C、D共线(结果保留根号)
13.【2021年广东,20】如图,在Rt ABC中,90
A
∠=︒,作BC的垂直平分线交AC于点D,延长AC至点E,使CE AB
=.
(1)若1
AE=,求ABD的周长;
(2)若
1
3
AD BD
=,求tan ABC
∠的值.
14.【2021年江苏南京,23】如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D,测得80m
CD=,90
ACD
∠=︒,45
BCD
∠=︒,1917
ADC
∠=︒',5619
BDC
∠=︒'.设A,B,C,D在同一平面内,求A,B两点之间的距离.
(参考数据:tan19170.35
︒'≈,tan5619 1.50
︒'≈.)
15.【2021年四川遂宁,22】小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A 处看到B、C处各有一棵被湖水隔开的银杏树,他在A处测得B在北偏西45°方向,C在北偏东30°方向,他从A处走了20米到达B处,又在B处测得C在北偏东60°方向.
(1)求C
的度数;
(2)求两颗银杏树B、C之间的距离(结果保留根号).
答案以及解析
1.答案:A
2.答案:C
3.答案:D
4.答案:A
5.答案:D
6.答案:A
7.
8.9.答案:AB 的长约为168海里.
10.答案:佛像的高度约为17.4 m
11.答案:如图,四边形AEFD 为矩形,53BAD ∠=︒,
//AD EF ∴,90E F ∠=∠=︒,
53BAD EBA ∴∠=∠=︒,
在Rt ABE 中,90E ∠=︒,10AB =
53EBA ∠=︒,
sin 0.80AE EBA AB ∴∠=
≈, cos 0.60BE EBA AB
∠=≈, 8AE ∴=,6BE =,
90ABC =︒∠,
9037FBC EBA ∴∠=-∠=︒︒,
9053BCF FBC ∴∠=-∠=︒︒,
在Rt BCF 中,90F ∠=︒,6BC =,
sin 0.80BF BCF BC ∴∠=
≈, cos 0.60FC BCF BC ∠=
≈, 245BF ∴=,185
FC =, 2454655
EF ∴=+=, 54432855EFDA S AE EF ∴=⋅=⨯
=四边形, 11862422ABE S
AE BE =⋅⋅=⨯⨯=, 112418216225525
BCF S BF CF =⋅⋅=⨯⨯=, ∴截面的面积()243221619=2453cm 52525
ABE BCF EFDA S S S --=--=四边形. 12.答案:解:在ADC 中,设AD x =, AD BD ⊥,45ACD ∠=︒,
CD AD x ∴==,
在ADB 中,AD BD ⊥,
tan30AD BD ∴=⋅︒,
即)x x +,
解得:8x =+,
728)16AB AD ∴==⨯=,
∴钢索AB 的长度约为16)m .
13.答案:(1)如图,连接BD ,设BC 垂直平分线交BC 于点F ,
DF 为BC 垂直平分线,
BD CD ∴=,
ABD C AB AD BD =++
AB AD DC =++
AB AC =+,
AB CE =,
1ABD C AC CE AE ∴=+==
(2)设AD x =,3BD x ∴=, 又BD CD =,4AC AD CD x ∴=+=,
在Rt ABD 中,AB =.
tan
AC ABC AB ∴∠===. 14.答案:52m
15.答案:方法一:
解:(1)由题得:BE AD BE AD 且160∠=︒
2160∴∠=∠=︒
2C CAD ∠=∠+∠且30CAD ∠=︒ 230C CAD ∴∠=∠-∠=︒
(2)过点B 作BG AD ⊥于G .
BG AD ⊥
90AGB BGD ∴∠=∠=︒
在Rt AGB 中,20AB =米,45BAG ∠=︒
20sin 45AG BG ==⨯︒=米 在Rt BGD 中,260∠=︒
sin 60BG BD =
=︒米
tan 60BG DG ==︒米 30C CAD ∠=∠=︒
CD AD AG DG =∴==+米
BC BD CD =∴=+
答:两颗银杏树B 、C 之间的距离为. 方法二:
解:(1)由题得:AD BE ,160∠=︒,453075BAC ∠=︒+︒=︒ AD BE 且45BAD ∠=︒
345BAD ∴∠=∠=︒
160∠=︒
180604575ABC ︒-︒-∴︒=∠=︒ 75BAC ∠=︒
180757530C ︒-︒-=︒=∴∠︒
(2)延长EB ,CA 交于点F ,过点A 作AH BF ⊥于点H .
AH BF ⊥
90AHB AHF ∴∠=∠=︒
在Rt AHB 中,20AB =米,345∠=︒
20sin 45AH BH ∴==⨯︒= 160∠=︒且30C ∠=︒
603030F ∴∠=︒-=︒
在Rt AHF 中,AH =30F ∠=︒
tan30AH FH ∴==︒
30C F ∠=∠=︒
BC BF BH FH ∴===+
答:两颗银杏树B 、C 之间的距离为。