线性代数课件_第四章_向量组的线性相关性——习题课
- 格式:ppt
- 大小:2.08 MB
- 文档页数:78
第四章习题课线性代数第四章向量组的线性相关性6.设21,a a 线性无关, b a b a ++21,线性相关,求向量b 用21,a a 线性表示的表示式.解由于b a b a ++21,线性相关, 所以存在不全为零的数21,k k ,使得2211212211)(0)()(a k a k b k k b a k b a k --=+?=+++.由于21,a a 线性无关,故021≠+k k ,否则由上式得, 00212211==?=+k k a k a k , 这与21,k k 不全为零矛盾.所以由221121)(a k a k b k k --=+得,.0,,,212122121211≠+∈+-+-=k k R k k a k k k a k k k b8.举例说明下列各命题是错误的:(1) 若向量组m a a a ,,,21 是线性相关的,则1a 可由m a a ,2线性表示.解设Te a )0,,0,0,1(11 ==, 032====m a a a满足m a a a ,,,21 线性相关, 但1a 不能由m a a ,,2 线性表示.(2) 若有不全为0的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ成立, 则m a a ,,1 线性相关, m b b ,,1 亦线性相关.解有不全为零的数m λλλ,,,21 使01111=+++++m m m m b b a a λλλλ原式可化为0)()(111=++++m m m b a b a λλ取m m m b e a b e a b e a -==-==-==,,,222111 ,其中m e e ,,1 为单位坐标向量,则上式成立,而m a a ,,1 ,m b b ,,1均线性无关.(3) 若只有当m λλλ,,,21 全为0时,等式01111=+++++m m m m b b a a λλλλ才能成立,则m a a ,,1 线性无关, m b b ,,1 亦线性无关.解由01111=+++++m m m m b b a a λλλλ (仅当01===m λλ )得0)()(111=++++m m m b a b a λλ (仅当01===m λλ ) m m ba b a b a +++?,,,2211 线性无关.取021====m a a a ,取m b b ,,1 为线性无关组(例如单位坐标向量m e e ,,1 ),满足以上条件,但不能说m a a a ,,,21 线性无关.(4) 若m a a ,,1 线性相关, m b b ,,1 亦线性相关,则有不全为0的数m λλλ,,,21 使0,01111=++=++m m m m b b a a λλλλ同时成立.解 T a )0,1(1= T a )0,2(2= T b )3,0(1= T b )4,0(2= ?-=?=+-=?=+21221121221134020λλλλλλλλb b a a 021==?λλ与题设矛盾.9.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组4321,,,b b b b 线性相关.证明设有4321,,,x x x x 使得044332211=+++b x b x b x b x则0)()()()(144433322211=+++++++a a x a a x a a x a a x0)()()()(443332221141=+++++++?a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k ,使得044332211=+++a k a k a k a k .取141k x x =+;221k x x =+;332k x x =+;443k x x =+; 由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,又044332211=+++b x b x b x b x 所以4321,,,b b b b 线性相关.(2) 若4321,,,a a a a 线性无关,则=+=+=+=+000043322141x x x x x x x x 011000110001110014321=??x x x x 由01100011000111001=知, 此齐次方程存在非零解, 所以有不全为零的4321,,,x x x x 使得044332211=+++b x b x b x b x ,则4321,,,b b b b 线性相关. 综合得证.10.设r r a a a b a a b a b +++=+== 2121211,,,,且向量组 r a a a ,,,21 线性无关,证明向量组r b b b ,,,21 线性无关.证明设02211=+++r r b k b k b k 则++++++++++p r p r r a k k a k k a k k )()()(2211 0=+r r a k因向量组r a a a ,,,21 线性无关,故==++=+++000221r r r k k k k k k=??????? ????????? ??0001001101121 r k k k因为0110011011≠= ,故方程组只有零解.则021====r k k k , 所以r b b b ,,,21 线性无关.12.利用初等行变换求下列矩阵的列向量组的一个最大无关组,并把其余列向量用最大无关组表示.(2)---140113130********211.解---==14011313021512012211),,,,(54321a a a a a A 14132~r r r r --??????? ??------222001512015120122114323~r r r r ?+?---00000222001512012211,所以第1、2、3列321,,a a a 构成一个最大无关组.把A 化成行最简形矩阵),,,,(54321b b b b b B =.~A ??---00000222001512012211--=00000111001301001001~B 由于方程0=Ax 与0=Bx 同解,所以向量54321,,,,a a a a a 之间与向量54321,,,,b b b b b 之间有相同的线性关系.由于3214301000010300010131b b b b -+=-??????? ??+??????? ??=??????? ??-= 325010000100110b b b +-=+??????? ??-=??????-= 所以32143a a a a -+=,325a a a +-=.13.设向量组=131a a ,????? ??=322b a ,????? ??=1213a ,????=1324a的秩为2,求b a ,.解由于43,a a 的对应分量不成比例,所以43,a a 线性无关,其秩为2. 从而4321,,,a a a a 的秩为2?21,a a 可由43,a a 线性表示0),,det(431=a a a 且0),,det(432=a a a . 因为a a a a -=2),,det(431,b a a a -=5),,det(432,所以4321,,,a a a a 的秩为2?2=a ,5=b .14.设n a a a ,,,21 是一组n 维向量,已知n 维单位坐标向量n e e e ,,,21 能由它们线性表示,证明n a a a ,,,21 线性无关.证明由于n 维单位坐标向量n e e e ,,,21 能由n a a a ,,,21 线性表示,不妨设:n nn n n n nn n n a k a k a k e a k a k a k e a k a k a k e +++=+++=+++= 22112222121212121111所以 ()()=nn n n n n n n k k kk k k k k k a a a e e e 2122212121112121两边取行列式,得()()==nn nn n n n n k k kk k k k k k a a a e e e E2122212121112121||,由=1||E ()021≠n a a a ,即n 维向量组n a a a ,,,21 所构成矩阵的秩为n ,故n a a a ,,,21 线性无关.15.设n a a a ,,,21 是一组n 维向量,证明它们线性无关的充分必要条件是:任一n 维向量都可由它们线性表示.证明必要性: 设b 为任一n 维向量, 则n 维向量组b a a a n ,,,,21 线性相关(其所含向量个数大于向量维数).因为n a a a ,,,21 线性无关,所以b 能n a a a ,,,21 线性表示.充分性: 因为任一n 维向量可由n a a a ,,,21 线性表示,所以单位坐标向量组n e e e ,,,21 能由n a a a ,,,21 线性表示.则na a a R n a a a R e e e R n n n n =?≤≤=),,,(),,,(),,,(212121 ,所以n a a a ,,,21 线性无关.16. 设向量组m a a a ,,,21 线性相关,且01≠a ,证明存在某个向量)2(m k a k ≤≤,使得k a可由121,,,-k a a a 线性表示.证明反证法,假设结论不成立.设02211=+++m m a k a k a k , )(* 因为m a 不能由121,,,-m a a a 线性表示,所以0=m k .)(*式变为0112211=+++--m m a k a k a k .因为1-m a 不能由221,,,-m a a a 线性表示,所以01=-m k .……同理可得, 0232====--k k k m m .所以)(*式变为011=a k . 由于01≠a ,所以01=k .综上可知, 021====m k k k ,所以m a a a ,,,21 线性无关,这与题设矛盾!从而假设不成立,原命题成立.17.设向量组:B r b b ,,1 能由向量组:A s a a ,,1 线性表示为K a a b b s r ),,(),,(11 =,其中K 为r s ?矩阵,且A 组线性无关. 证明B 组线性无关的充分必要条件是矩阵K 的秩r K R =)(.证明令),,(),,(11s r a a A b b B ==, 则有AK B =.必要性: 若B 组线性无关,则r B R =)(.由)()}(),(min{)()(K R K R A R AK R B R ≤≤=,故r K R ≥)(. 又K 为r s ?阶矩阵,则r K R ≤)(. 综上知,r K R =)(.充分性: 设r K R =)(.令02211=+++r r b x b x b x ,其中i x 为实数,r i ,,2,1 =.则有0),,,(121=r r x x b b b ,即00=?=AKx Bx .由于s a a a ,,,21 线性无关,所以s A R =)(,从而方程0=Ay 只有零解,故0=Kx .由于r K R =)(,则方程0=Kz 只有零解,所以0=x . 从而021====r x x x . 所以r b b b ,,,21 线性无关.20.求下列齐次线性方程组的基础解系: (3)02)1(121=++-+-n n x x x n nx .解系数矩阵为)1,2,),1(,( -n n ,秩是1,未知数个数是n ,所以基础解系应含有1-n 个解向量. 原方程组即为1212)1(------=n n x x n nx x 取121,,,-n x x x 为自由未知量,令=??????? ??-100,,010,001121 n x x x 得n x n -=,1+-n , ,2-.所以基础解系为-+--=-21100010001),,,(121n n n ξξξ.21.设--=82593122A ,求一个24?矩阵B,使O AB =,且2)(=B R .解由于A 有2阶非零子式,故2)(=A R ,所以齐次线性方程组0=Ax 的基础解系中应含有2个向量.设24?矩阵B 为),(21ξξ=B ,其中21,ξξ是4维列向量.O AB =,且2)(=B R01=ξA ,02=ξA ,且21,ξξ线性无关21,ξξ是齐次线性方程组0=Ax 的基础解系.对A 实施初等行变换化为行最简形矩阵:--=82593122A ~?---8118510818101令=???? ??10,0143x x ,得-?????? ??=???81181,858121x x .所以-=???????? ??=1081181,01858121ξξ.故所求矩阵-=1001811858181B .22.求一个齐次线性方程组,使它的基础解系为T T )0,1,2,3(,)3,2,1,0(11==ξξ.解显然原方程组的通解为+??????? ??=?01233210214321k k x x x x ,(R k k ∈21,) 即=+=+==1 4213212213223k x k k x k k x k x ,代入3,31241x k x k ==, 消去21,k k 得 ??=+-=+-023032431421x x x x x x , 此即所求的齐次线性方程组.26.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解系:(2)-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x解对增广矩阵实施初等行变换化为行最简形矩阵.--------=00000221711012179016124211635113251~初等行变换B 由于2)()(==B R A R ,所以方程组有解.原方程组等价于??--=++-=2217112179432431x x x x x x . 取43,x x 为自由未知数,令???? ??=???? ??0043x x ,得原方程组的一个解.0021??-=η对应的齐次线性方程组等价于??-=+-=43243121712179x x x x x x . 令,20,0743???? ??????=???? ??x x 得其基础解系.2011,071921??-=??????? ??-=ξξ27.设四元非齐次线性方程组的系数矩阵的秩为3,已知321,,ηηη是它的三个解向量.且=54321η,=+432132ηη 求该方程组的通解.解由于系数矩阵的秩为3=r ,134=-=-r n .故其对应的齐次线性方程组的基础解系含有一个向量.由于321,,ηηη均为方程组的解,由非齐次线性方程组解的结构性质得齐次解齐次解齐次解=??=-+-=+-6543)()()()()(23121321ηηηηηηη 为其基础解系向量,故此方程组的通解:+??????? ??=54326543k x ,)(R k ∈.30.设矩阵),,,(4321a a a a A =,其中432,,a a a 线性无关, 3212a a a -=,向量4321a a a a b +++=,求方程b Ax =的通解.解由于432,,a a a 线性无关,所以3)(≥A R .由3212a a a -=知321,,a a a 线性相关,故4321,,,a a a a 线性相关,从而3)(≤A R .综上可知, 3)(=A R .所以齐次方程0=Ax 的基础解系含有4-3=1个向量.022321321=+-?-=a a a a a a ,所以-=0121ξ是0=Ax 的一个非零解,从而构成其基础解系.又4321a a a a b +++=,故=1111η是b Ax =的一个解.所以方程b Ax =的通解是.,11110121R c c c x ∈+??????? ??-=+=ηξ31.设*η是非齐次线性方程组b Ax =的一个解,r n -ξξ,,1 是对应的齐次线性方程组的一个基础解系,证明: (1) r n -*ξξη,,,1 线性无关;(2) r n -***++ξηξηη,,,1 线性无关. 证明(1) 设有关系式:0110=+++--*r n r n C C C ξξη (1)由于*η为特解,r n -ξξ,,1 为基础解系,故得C A C C C C A r n r n 00110)(==+++*--*ηξξη而由(1)式可得0)(110=+++--*r n r n C C C A ξξη ,故00=b C .而该方程组为非齐次线性方程组,得0≠b ,所以00=C . 代入(1)式得.011=++--r n r n C C ξξ由于r n -ξξ,,1 是基础解系从而线性无关,故.01===-r n C C 所以010====-r n C C C , 故r n -*ξξη,,,1 线性无关.(2) 设有关系式:0)()(110=+++++-*-**r n r n C C C ξηξηη (2)即0)(1110=++++++--*-r n r n r n C C C C C ξξη .由题(1)知, r n -*ξξη,,,1 线性无关,故2110=====+++--r n r n C C C C C C 0210=====?-r n C C C C ,所以r n -***++ξηξηη,,,1 线性无关.32. 设s ηη,,1 是非齐次线性方程组b Ax =的s 个解,s k k ,,1 为实数,满足121=+++s k k k .证明s s k k k x ηηη+++= 2211也是它的解.证明由于s ηη,,1 是非齐次线性方程组b Ax =的s 个解. 故有 ),,1(s i b A i ==η 而s s s s A k A k A k k k k A ηηηηηη+++=+++ 22112211)(b k k b s =++=)(1所以s s k k k x ηηη+++= 2211也是方程b Ax =的解.33.设非齐次线性方程组b Ax =的系数矩阵的秩为r ,11,,+-r n ηη 是它的1+-r n 个线性无关的解(由题31知它确有1+-r n 个线性无关的解).试证它的任一解可表示为112211+-+-+++=r n r n k k k x ηηη (其中111=+++-r n kk ).证明设x 为b Ax =的任一解.由题设知:121,,,+-r n ηηη 线性无关且均为b Ax =的解.取11132121,,,ηηξηηξηηξ-=-=-=+--r n r n ,则它们均为0=Ax 的解.用反证法证明:r n -ξξξ,,,21 线性无关.假设它们线性相关,则存在不全为零的数r n l l l -,,,21 ,使得02211=+++--r n r n l l l ξξξ .即0)()()(11132121=-++-+-+--ηηηηηηr n r n l l l0)(13221121=+++++++-+---r n r n r n l l l l l l ηηηη由121,,,+-r n ηηη 线性无关知0)(2121=====+++---r n r n l l l l l l与r n l l l -,,,21 不全为零矛盾! 故假设不成立. r n -∴ξξξ,,,21 线性无关.由于b Ax =的系数矩阵的秩为r ,故齐次方程0=Ax 的基础解系应含有r n -个向量.r n -∴ξξξ,,,21 构成0=Ax 的基础解系.由于1,ηx 均为b Ax =的解,所以1η-x 为0=Ax 的解1η-?x 可由r n -ξξξ,,,21 线性表示.r n r n k k k x ---+++=-ξξξη123121)()()(111133122ηηηηηη-++-+-=+-+-r n r n k k k1133221321)1(+-+-+-++++----=r n r n r n k k k k k k x ηηηη令13211+-----=r n k k k k ,则11321=+++++-r n k k k k ,且112211+-+-+++=r n r n k k k x ηηη .34.设}0,,),,,({211211=+++∈==n n T n x x x R x x x x x x V 满足}1,,),,,({211212=+++∈==n n T n x x x R x x x x x x V 满足问21,V V 是不是向量空间?为什么?证明非空向量集V 成为向量空间只需满足条件:若V V ∈∈βα,,则V ∈+βα; 若R V ∈∈λα,,则V ∈λα.1V 是向量空间.由1)0,,0,0(V T∈ 知1V 非空.设121),,,(V T n ∈=αααα ,121),,,(V Tn ∈=ββββ ,R ∈λ. 则021=+++n ααα ,021=+++n βββ .由于T n n ),,,(2211βαβαβαβα+++=+ 且)()()(2211n n βαβαβα++++++ 0)()(2121=+++++++=n n βββααα故1V ∈+βα.又T n ),,,(21λαλαλαλα =且00)(2121=?=+++=+++λαααλλαλαλαn n故1V ∈λα.2V 不是向量空间.若221),,,(V T n ∈=αααα ,221),,,(V Tn ∈=ββββ , 则121=+++n ααα ,121=+++n βββ . 由于T n n ),,,(2211βαβαβαβα+++=+ 且)()()(2211n n βαβαβα++++++211)()(2121=+=+++++++=n n βββααα 故2V ?+βα. 又T n ),,,(21λαλαλαλα =且λλαααλλαλαλα=?=+++=+++1)(2121n n故当1≠λ时,2V ?λα.35.试证:由T T T a a a )0,1,1(,)1,0,1(,)1,1,0(321===所生成的向量空间就是3R .证明设),,(321a a a A =.11101110,,321==a a a A 02≠=于是3)(=A R ,故321,,a a a 线性无关.由于321,,a a a 均为三维向量,且秩为3,所以321,,a a a 是三维向量空间3R 的一组基, 故由321,,a a a 所生成的向量空间就是3R .36.由T T a a )1,1,0,1(,)0,0,1,1(21==所生成的向量空间记作1L ,由T T b b )1,1,1,0(,)3,3,1,2(21--=-=所生成的向量空间记作2L ,试证21L L =.证明因为21,a a 的对应分量不成比例,所以21,a a 线性无关,故2),(21=a a R .因为21,b b 的对应分量不成比例,所以21,b b 线性无关,故2),(21=b b R .---=1310131011010211),,,(2121b b a a ~--0000000013100211 所以2),,,(2121=b b a a R ,从而),,,(),(),(21212121b b a a R b b R a a R ==. 所以21,a a 与21,b b 等价,因此21L L =.37.验证T T T a a a )2,1,3(,)3,1,2(,)0,1,1(321==-=为3R 的一个基,并把T T v v )13,8,9(,)7,0,5(21---==用这个基线性表示.解设),,(321a a a A =,),(21v v V =.对),(V A 实施初等行变换化为行最简形矩阵.----=1372308011195321),(V A ~---211003301032001由于A ~E ,所以3),,(321=a a a R ,故321,,a a a 线性无关,则321,,a a a 为3R 的一个基. 因为---==-213332),,(),,(),(321132121a a a V A a a a v v所以321132a a a v -+=, 3212233a a a v --=.38.已知3R 的两个基为=1111a ,-=1012a , ??=1013a 及 ????? ??=1211b , ????? ??=4322b , ????? ??=3433b , 求由基321,,a a a 到基321,,b b b 的过度矩阵P .解设),,(321a a a A =, ),,(321b b b B =.因为321,,a a a 与321,,b b b 是3R 的基,所以B A ,是3阶可逆矩阵.B A P P a a a b b b 1321321),,(),,(-=?=.对),(B A 实施初等行变换化为行最简形矩阵.-=341111432001321111),(B A ~---101100010010432001 所以---==-1010104321B A P .。
第四章 向量组的线性相关性§4.1 向量及其运算1.向量:个数构成的有序数组, 记作n n a a a ,,,21L ),,,(21n a a a L =α, 称为维行向量.n –– 称为向量i a α的第i 个分量R ∈i a –– 称α为实向量(下面主要讨论实向量) 零向量 )0,,0,0(L =θ;负向量 ),,,()(21n a a a −−−=−L α 2.线性运算:),,,(21n a a a L =α, ),,,(21n b b b L =β相等:若, 称),,2,1(n i b a i i L ==βα=.加法:=+βα),,,(2211n n b a b a b a +++L数乘:),,,(21n ka ka ka k L =α减法:=−βα=−+)(βα),,,(2211n n b a b a b a −−−L 3.算律:),,,(21n a a a L =α,),,,(21n b b b L =β,),,,(21n c c c L =γ(1) αββα+=+ (5) αα=1(2) )()(γβαγβα++=++ (6) αα)()(l k l k =(3) αθα=+ (7) βαβαk k k +=+)((4) θαα=−+)( (8) αααl k l k +=+)(4.列向量:个数构成的有序数组, 记作, n n a a a ,,,21L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a M 21α或者, 称为维列向量.T 21),,,(n a a a L =αn 零向量: 负向量: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000M θ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−=−n a a a M 21)(α 5.内积:设实向量),,,(21n a a a L =α, ),,,(21n b b b L =β, 称 实数n n b a b a b a +++=L 2211],[βα为α与β的内积. 算律:),,,(21n a a a L =α,),,,(21n b b b L =β,),,,(21n c c c L =γ(1) ],[],[αββα=(2) ],[],[βαβαk k = (为常数)k (3) ],[],[],[γβγαγβα+=+(4) θα≠时, 0],[>αα;θα=时, 0],[=αα. (5)],[],[],[2ββααβα⋅≤证(5) R ∈∀t , 由0],[≥++βαβαt t 可得0],[],[2],[2≥++t t βββααα ⇒≤0Δ0],[],[4],[42≤⋅−ββααβα],[],[],[2ββααβα⋅≤⇒6.范数:设实向量α, 称实数],[ααα=为α的范数.性质:(1) θα≠时, 0>α;θα=时, 0=α.(2) αα⋅=k k )R (∈∀k(3) βαβα+≤+(4) βαβα−≤−证(3) ],[],[2],[],[2βββαααβαβαβα++=++=+()2222βαββαα+=++≤7.夹角:设实向量θα≠,θβ≠, 称 βαβαϕ],[arccos= )π0(≤≤ϕ为α与β之间的夹角. 正交:若0],[=βα, 称α与β正交, 记作βα⊥.(1) θα≠,θβ≠时, βα⊥2π=⇔ϕ; (2) θα=或θβ=时, βα⊥有意义, 而ϕ无意义.单位化:若θα≠, 称ααα10=为与α同方向的单位向量.§4.2 向量组的线性相关性1.线性组合:对n 维向量α及m αα,,1L , 若有数组使m k k ,,1L 得m m k k ααα++=L 11, 称α为m αα,,1L 的线性组合,或称α可由m αα,,1L 线性表示.例1 , , , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1011β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1112β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1133β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1354β 判断4β可否由321,,βββ线性表示?解 设3322114ββββk k k ++=,比较两端的对应分量可得, 求得一组解为.故 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−321111110311k k k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=135⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡120321k k k 3214120ββββ++=, 即4β可由321,,βββ线性表示.[注] 取另一组解时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡032321k k k 3214032ββββ++=. 2.线性相关:对n 维向量组m αα,,1L , 若有数组不全m k k ,,1L 为0, 使得 θαα=++m m k k L 11, 则称向量组m αα,,1L 线性相关;否则,称为线性无关.线性无关:对维向量组n m αα,,1L , 仅当数组全m k k ,,1L 为0时, 才有 θαα=++m m k k L 11, 称向量组m αα,,1L 线性无关;否则,称为线性相关.[注] 对于单个向量α:若θα=, 则α线性相关;若θα≠, 则α线性无关.例2 判断例1中向量组4321,,,ββββ的线性相关性. 解 设θββββ=+++44332211k k k k , 比较对应分量可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−0001111311053114321k k k k 即0=Ax .因为未知量的个数是4, 而4rank <A , 所以0=Ax 有非零解, 由定义知4321,,,ββββ线性相关.例3 已知向量组321,,ααα线性无关, 证明向量组211ααβ+=, 322ααβ+=, 133ααβ+= 线性无关.证 设 θβββ=++332211k k k , 则有θααα=+++++332221131)()()(k k k k k k 因为321,,ααα线性无关, 所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k , 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110011101321k k k 系数行列式 02110011101≠=, 该齐次方程组只有零解.故321,,βββ线性无关.例4 判断向量组 )0,,0,0,1(1L =e , )0,,0,1,0(2L =e , … ,)1,0,,0,0(L =n e 的线性相关性.解 设 θ=+++n n e k e k e k L 2211, 则有⇒=θ),,,(21n k k k L 只有0,,0,021===n k k k L 故线性无关.n e e e ,,,21L 例5 设向量组m ααα,,,21L 两两正交且非零, 证明该向量组线性无关.证 设 θααα=+++m m k k k L 2211, 两端与i α作内积可得 ],[],[],[],[11i i m m i i i i k k k αθαααααα=++++L L 当j i ≠时, 0],[=j i αα, 于是有⇒=0],[i i i k αα只有0=i k )(θα≠i Q上式对于m i ,,2,1L =都成立, 故m ααα,,,21L 线性无关.3.判定定理定理1 向量组)2(,,,21≥m m αααL 线性相关⇔其中至少有一个向量可由其余1−m 个向量线性表示.证 必要性.已知m ααα,,,21L 线性相关, 则存在m k k k ,,,21L 不全为零, 使得 θααα=+++m m k k k L 2211.不妨 设, 则有 01≠k m m k k k k ααα)()(12121−++−=L . 充分性.不妨设m m k k ααα++=L 221, 则有θααα=+++−m m k k L 221)1(因为不全为零, 所以m k k ,,,)1(2L −m ααα,,,21L 线性相关.定理2 若向量组m ααα,,,21L 线性无关, βααα,,,,21m L 线性相关, 则β可由m ααα,,,21L 线性表示, 且表示式唯一.证 因为βαα,,,1m L 线性相关, 所以存在数组不k k k m ,,,1L 全为零, 使得 θβαα=+++k k k m m L 11.若, 则 0=k θαα=++m m k k L 11, 从而有0,,01==m k k L 矛盾! 故, 从而有 0≠k m m kk k k ααβ)()(11−++−=L .下面证明表示式唯一:若 m m k k ααβ++=L 11, m m l l ααβ++=L 11 则有 θαα=−++−m m m l k l k )()(111L因为m ααα,,,21L 线性无关, 所以0,,011=−=−m m l k l k L ⇒m m l k l k ==,,11L 即β的表示式唯一.定理3 r αα,,1L 线性相关⇒)(,,,,,11r m m r r >+ααααL L线性相关.证 因为r αα,,1L 线性相关, 所以存在数组不全为r k k ,,1L 零, 使得 θαα=++r r k k L 11, 即θαααα=++++++m r r r k k 00111L L数组不全为零, 故0,,0,,,1L L r k k m r r αααα,,,,,11L L +线性相关.推论1 含零向量的向量组线性相关.推论2 向量组线性无关⇒任意的部分组线性无关.课后作业:习题四 1, 2, 3, 4, 5定理4 设m i a a a in i i i ,,2,1,),,,(21L L ==α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m A αααM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a L M M M L L 212222111211 (1) m ααα,,,21L 线性相关m A <⇔rank ;(2) m ααα,,,21L 线性无关m A =⇔rank .证 设 θααα=+++m m k k k L 2211比较等式两端向量的对应分量可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00021212221212111M M L M M M L L m mn n n m m k k k a a a a a a a a a 即 0T =x A .由定理3.5可得:m ααα,,,21L 线性相关0T =⇔x A 有非零解m A <⇔T rank m A <⇔rankn m 推论1 在定理4中, 当=时, 有(1) n ααα,,,21L 线性相关0det =⇔A ;(2) n ααα,,,21L 线性无关0det ≠⇔A .n m 推论2 在定理4中, 当<时, 有(1) m ααα,,,21L 线性相关A ⇔中所有的阶子式;m 0=m D (2) m ααα,,,21L 线性无关⇔A 中至少有一个阶子式m 0≠m D .推论3 在定理4中, 当时, 必有n m >m ααα,,,21L 线性相关.因为m n A <≤rank , 由定理4(1)即得.推论4 向量组:1T m i a a a ir i i i ,,2,1,),,,(21L L ==α向量组:2T m i a a a a in r i ir i i ,,2,1,),,,,,(1,1L L L ==+β若线性无关, 则线性无关.1T 2T 证 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×m r m A αααM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=r m m m r r a a a a a a a a a L M M M L L 212222111211 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×m n m B βββM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+++n m r m r m m n r r n r r a a a a a a a a a a a a L L M M M M L L L L 1,121,222111,1111 线性无关1T m A =⇒rank是A B 的子矩阵m A B =≥⇒rank rank⇒=⇒m B rank 2T 线性无关定理5 划分, 则有[]n m n m A βββαααL M 2121=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×(1) 中某个A ⇒≠0r D A 中“所在的”个行向量线性无关;r D r中“所在的”r 个列向量线性无关.A r D (2) 中所有中任意的r 个行向量线性相关; A A D r ⇒=0 中任意的个列向量线性相关.A r 证 只证“行的情形”:(1) 设位于的行, 作矩阵, 则有r D A r i i ,,1L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=×r i i nr B ααM 1 r i i r B αα,,rank 1L ⇒=线性无关.(2) 任取中个行, 设为行, 作矩阵,A r r i i ,,1L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=×r i i nr B ααM 1 则有r i i r B αα,,rank 1L ⇒<线性相关.[注] 称m ααα,,,21L 为的行向量组A 称n βββ,,,21L 为的列向量组A §4.3 向量组的秩与最大无关组1.向量组的秩:设向量组为T , 若(1) 在T 中有r 个向量r ααα,,,21L 线性无关;(2) 在T 中任意个向量线性相关.1+r (如果有个向量的话)1+r 称r ααα,,,21L 为向量组T 的一个最大线性无关组,称为向量组T 的秩, 记作 秩r r T =)(.[注](1) 向量组中的向量都是零向量时, 其秩为0.(2) 秩r T =)(时, T 中任意个线性无关的向量都是T 的r 一个最大无关组.例如, , , , 的秩为2. ⎥⎦⎤⎢⎣⎡=011α⎥⎦⎤⎢⎣⎡=102α⎥⎦⎤⎢⎣⎡=113α⎥⎦⎤⎢⎣⎡=224α 21,αα线性无关21,αα⇒是一个最大无关组31,αα线性无关31,αα⇒是一个最大无关组定理6 设, 则1rank ≥=×r A n m (1) 的行向量组(列向量组)的秩为;A r (2) 中某个中所在的r 个行向量(列向量)A A D r ⇒≠0r D 是的行向量组(列向量组)的最大无关组.A 证 只证“行的情形”:A r A ⇒=rank 中某个0≠r D , 而中所有 A 01=+r D 定理5中所在的r 个行向量线性无关A ⇒r D 中任意的A 1+r 个行向量线性相关由定义:的行向量组的秩为, 且中所在的r 个行向A r A r D 是的行向量组的最大无关组.A 例6 向量组T :, , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=2011β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0232β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=1123β, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5324β求T 的一个最大无关组.解 构造矩阵[]4321ββββ=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=510231202231 求得⇒=2rank A 秩2)(=T矩阵中位于1,2行1,2列的二阶子式A 022031≠= 故21,ββ是T 的一个最大无关组.[注] T 为行向量组时, 可以按行构造矩阵.A 定理7n m n m B A ××,(1) 若, 则“的列”线性相关(线性无关)B A 行→A k c c ,,1L 的充要条件是“B 的列”线性相关(线性无关); k c c ,,1L (2) 若, 则“的行”线性相关(线性无关)B A 列→A k r r ,,1L 的充要条件是“B 的行”线性相关(线性无关). k r r ,,1L 证 (1) 划分[]n n m A αααL 21=×, []n n m B βββL 21=× 由可得 B A 行→[][]k k c c c c ββααL L 11行→ 故方程组 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0011M M L k c c x x k αα 与方程组 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0011M M L k c c x x k ββ 同解.于是有 k c c αα,,1L 线性相关011=+ 存在不全为0, 使得⇔k x x ,,1L +k c k c x x αL α 存在不全为0, 使得⇔k x x ,,1L 011=++k c k c x x ββL ⇔k c c ββ,,1L 线性相关同理可证(2).[注] 通常习惯于用初等行变换将矩阵化为阶梯形矩阵A B ,当阶梯形矩阵B 的秩为时, r B 的非零行中第一个非零元素所在的个列向量是线性无关的.r 例如:求例6中向量组T 的一个最大无关组.构造矩阵[]4321ββββ=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=510231202231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→936031202231行B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→000031202231行 ⇒==2rank rank B A 秩2)(=TB 的1,2列线性无关的1,2列线性无关A ⇒21,ββ⇒是T 的一个最大无关组 例7 向量组T :,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=31111α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=15312α,, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−=21233c α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=c 10624α 求向量组T 的一个最大无关组.解 对矩阵[]4321αααα=A 进行初等行变换可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−−=c c A 2131015162312311⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−−−−→67401246041202311c c 行 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−−−→2900070041202311c c 行B c =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−−→2000070041202311行 (1) :2≠c 4rank rank ==B AB 的1,2,3,4列线性无关的1,2,3,4列线性无关 A ⇒ 故4321,,,αααα是T 的一个最大无关组;(2) :2=c 3rank rank ==B AB 的1,2,3列线性无关的1,2,3列线性无关 A ⇒ 故321,,ααα是T 的一个最大无关组.[注] 当m ααα,,,21L 为行向量组时, 为列向量组. T T 2T 1,,,mαααL 若矩阵[]T T 2T 1m A αααL = 的列向量组的一个最大无关 组为, 则是行向量组T T ,,1r c c ααL r c c αα,,1L m ααα,,,21L 的 一个最大无关组.课后作业:习题四 7,8 (理解、记忆定理1~7)。