电磁感应的综合应用1
- 格式:doc
- 大小:186.00 KB
- 文档页数:6
电磁感应中的三大力学观点的综合性应用考情探究1.高考真题考点分布题型考点考查考题统计选择题单棒问题2024年贵州卷计算题含容单棒问题2024年北京卷计算题双棒问题2024年江西卷2.命题规律及备考策略【命题规律】高考对利用三大力学观点处理电磁感应问题的考查较为频繁,题目的形式有选择题也有计算题,不管那种题型,题目的难度都较大,多以压轴题的难度出现。
【备考策略】1.利用动力学的观点处理电磁感应问题。
2.利用能量的观点处理电磁感应问题。
3.利用动量的观点处理电磁感应问题。
【命题预测】重点关注电磁感应中利用三大力学观点处理框类问题、单棒问题和双棒问题。
考点梳理一、两种状态及处理方法状态特征处理方法平衡态加速度为零根据平衡条件列式分析非平衡态加速度不为零根据牛顿第二定律进行动态分析或结合功能关系进行分析二、力学对象和电学对象的相互关系三、电磁感应现象中的能量转化四、求解焦耳热Q的三种方法五、电磁感应中的能量与动量问题1.导体棒在磁场中做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题。
2.在相互平行的光滑水平轨道间的双导体棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,若不受其他外力,两导体棒的总动量守恒,解决此类问题应用动量守恒定律解答往往比较便捷。
考点精讲电磁感应中的动力学问题分析电磁感应现象中动力学问题的基本步骤考向1电磁感应中的平衡问题1.两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平内,另一边垂直于水平面。
质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,导轨电阻不计,每根杆的电阻均为R。
整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中。
当ab杆在平行于水平导轨的拉力F作用下以速度V1沿导轨匀速运动时,cd杆也正好以速度V2向下匀速运动(重力加速度为g)。
以下说法正确的是()A.ab 杆所受拉力F 的大小为μmg +B 2L 2V 1R B.cd 杆所受摩擦力为零C.回路中的电流大小为BL (V 1+V 2)RD.μ与V 1大小的关系为μ=2RmgB 2L 2V 1【答案】D【详解】C .cd 杆的速度方向与磁感应强度方向平行,只有ab 杆运动切割磁感线。
电磁感应综合应用1.掌握电磁感应与电路结合问题的分析方法2.掌握电磁感应动力学问题的重要求解内容3.能解决电磁感应与能量结合题型4.培养学生模型构建能力和运用科学思维解决问题的能力电磁感应中的电路问题1、分析电磁感应电路问题的基本思路对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.在闭合电路中,“相当于电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势.【例题1】用均匀导线做成的正方形线框边长为0.2m,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以10T/s的变化率增强时,线框中a、b两点间的电势差是()A.U ab=0.1V B.U ab=-0.1VC.U ab=0.2V D.U ab=-0.2V【演练1】如图所示,两个相同导线制成的开口圆环,大环半径为小环半径的2倍,现用电阻不计的导线将两环连接在一起,若将大环放入一均匀变化的磁场中,小环处在磁场外,a、b两点间电压为U1,若将小环放入这个磁场中,大环在磁场外,a、b两点间电压为U2,则()A.=1B.=2C.=4D.=【例题2】把总电阻为2R的均匀电阻丝焊接成一半径为a的圆环,水平固定在竖直向下的磁感应强度为B的匀强磁场中,如图所示,一长度为2a,电阻等于R,粗细均匀的金属棒MN放在圆环上,它与圆环始终保持良好的接触,当金属棒以恒定速度v向右移动经过环心O时,求:(1)棒上电流的大小和方向及棒两端的电压U MN;(2)圆环消耗的热功率和在圆环及金属棒上消耗的总热功率.【演练2】如图甲所示,固定在水平面上电阻不计的光滑金属导轨,间距d=0.5m.右端接一阻值为4Ω的小灯泡L,在CDEF矩形区域内有竖直向上的匀强磁场,磁感应强度B按如图乙规律变化.CF长为2m.在t=0时,金属棒从图中位置由静止在恒力F作用下向右运动到EF位置,整个过程中,小灯泡亮度始终不变.已知ab金属棒电阻为1Ω,求:(1)通过小灯泡的电流;(2)恒力F的大小;(3)金属棒的质量.电磁感应的动力学问题1.导体棒的两种运动状态(1)平衡状态——导体棒处于静止状态或匀速直线运动状态,加速度为零;(2)非平衡状态——导体棒的加速度不为零.2.两个研究对象及其关系电磁感应中导体棒既可看作电学对象(因为它相当于电源),又可看作力学对象(因为有感应电流而受到安培力),而感应电流I和导体棒的速度v是联系这两个对象的纽带.3.电磁感应中的动力学问题分析思路(1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I=.(2)受力分析:导体棒受到安培力及其他力,安培力F安=BIl=,根据牛顿第二定律:F合=ma.(3)过程分析:由于安培力是变力,导体棒做变加速运动或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力的平衡条件列方程:F合=0.4. 电磁感应中电量求解(1)利用法拉第电磁感应定律由整理得:若是单棒问题(2)利用动量定理单棒无动力运动时-BILΔt=mv2-mv1 又整理得:BLq= mv1-mv2【例题3】如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直于斜面向下.导轨和金属杆的电阻可忽略,让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图.(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小.(3)求在下滑过程中,ab杆可以达到的速度最大值.(4)若从开始下滑到最大速度时,下滑的距离为x,求这一过程中通过电阻R的电量q.【演练3】(多选)如图所示,电阻不计间距为L的光滑平行导轨水平放置,导轨左端接有阻值为R的电阻,以导轨的左端为原点,沿导轨方向建立x轴,导轨处于竖直向下的磁感应强度大小为B的匀强磁场中。
电磁感应的综合应用制作:张宝峰 审核:解鑫品 时间:1.19学习目标1.能认识电磁感应现象中的电路结构,并能计算电动势、电压、电流、电功等.2.会分析计算电磁感应中的安培力参与的导体的运动及平衡问题..3.会分析计算电磁感应中能量的转化与转移..4.能由给定的电磁感应过程判断或画出正确的图象或由给定的有关图象分析电磁感应过程,求解相应的物理量.一电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源.如:切割磁感线的导体棒、内有磁通量变化的线圈等.这种电源将其他形式能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成. 3.问题分类(1)确定等效电源的正负极、感应电流的方向、电势高低、电容器极板带电性质等问题. (2)根据闭合电路求解电路中的总电阻、路端电压、电功率等问题.(3)根据电磁感应的平均感应电动势求解电路中通过的电荷量:E =n ΔΦΔt ,I =E R 总,q =I Δt =n ΔΦR 总.特别提醒 1.判断感应电流和感应电动势的方向,都是利用“相当于电源”的部分根据右手定则或楞次定律判定的.实际问题中应注意外电路电流由高电势流向低电势,而内电路则相反.4.在闭合电路中,“相当于电源”的导体两端的电压与真实的电源两端的电压一样,等于路 端电压,而不等于感应电动势.例1 如图1(a)所示,水平放置的两根平行金属导轨,间距L =0.3 m ,导轨左端连接R =0.6 Ω的电阻,区域abcd 内存在垂直于导轨平面B =0.6 T 的匀强磁场,磁场区域宽D =0.2 m .细金属棒A 1和A 2用长为2D =0.4 m 的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为r =0.3 Ω.导轨电阻不计.使金属棒以恒定速度v =1.0 m/s 沿导轨向右穿越磁场.计算从金属棒A 1进入磁场(t =0)到A 2离开磁场的时间内,不同时间段通过电阻R 的电流强度,并在图(b)中画出.二电磁感应中的动力学问题分析导体两种状态及处理方法(1)导体的平衡态——静止状态或匀速直线运动状态.处理方法:根据平衡条件合外力等于零列式分析.(2)导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析例2 如图6所示,两根足够长的光滑直金属导轨MN、PQ平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L=1m,导轨的电阻可忽略.M、P两点间接有阻值为R的电阻.一根质量m=1 kg、电阻r=0.2 Ω的均匀直金属杆ab放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B=0.5 T的匀强磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab受到大小为F=0.5v+2(式中v为杆ab运动的速度,力F的单位为N)、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R的电流随时间均匀增大.g取10 m/s2,sin 37°=0.6.(1)试判断金属杆ab在匀强磁场中做何种运动,并请写出推理过程;(2)求电阻R的阻值;(3)求金属杆ab自静止开始下滑通过位移x=1 m所需的时间t.三电磁感应中的能量问题分析1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.求解思路(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.例3 电阻可忽略的光滑平行金属导轨长s =1.15 m ,两导轨间距L =0.75 m ,导轨倾角为30°,导轨上 端ab 接一阻值R =1.5 Ω的电阻,磁感应强度B =0.8 T 的 匀强磁场垂直轨道平面向上,如图9所示.阻值r =0.5Ω,质量m =0.2 kg 的金属棒与轨道垂直且接触良好,从轨道上端ab 处由静止开始下滑至底端,在此过程中金属棒产生的焦耳热Q 1=0.1 J .(取g =10 m/s 2)求: (1)金属棒在此过程中克服安培力的功W 安; (2)金属棒下滑速度v =2 m/s 时的加速度a ;(3)为求金属棒下滑的最大速度v m ,有同学解答如下:由动能定理,W G -W 安=12m v 2m ,.由此所得结果是否正确?若正确,说明理由并完成本小题;若不正确,给出正确的解.四 电磁感应中的图象问题 1问题概括图象 类型(1)随时间变化的图象如B -t 图象、Φ-t 图象、E -t 图象和i -t 图象(2)随位移x 变化的图象如E -x 图象和i -x 图象问题类型(1)由给定的电磁感应过程判断或画出正确的图象(画图象) (2)由给定的有关图象分析电磁感应过程,求解相应的物理量(用图象) 1应用知识左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿运动定律、函数图象知识等图62.思路导图3.分析方法对图象的分析,应做到“四明确一理解”:(1)明确图象所描述的物理意义;明确各种“+”、“-”的含义;明确斜率的含义;明确图象和电磁感应过程之间的对应关系.(2)理解三个相似关系及其各自的物理意义:v -Δv -Δv Δt ,B -ΔB -ΔB Δt ,Φ-ΔΦ-ΔΦΔt .解决图象问题的一般步骤:(1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者E -t 图象、i -t 图象等. (2)分析电磁感应的具体过程.(3)用右手定则或楞次定律确定方向对应关系.(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式. (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等. (6)画图象或判断图象.例4 如图6所示,两个相邻的有界匀强磁场区域,方向相反,且垂直纸面,磁感应强度的大小均为B ,以磁场区左边界为y 轴建 立坐标系,磁场区域在y 轴方向足够长,在x 轴方向宽度均为 a .矩形导线框ABCD 的CD 边与y 轴重合,AD 边长为a .线框从图示位置水平向右匀速穿过两磁场区域,且线框平面始终保持与磁场垂直,线框中感应电流i 与线框移动距离x 的关系图象正确的是(以逆时针方 向为电流的正方向)图10强化练习1.用相同导线绕制的边长为l 或2l 的四个闭合导体线框a 、b 、c 、d ,以相同的速度匀速进入右侧匀强磁场,如图9所示.在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d .下列判断正确的是A.U a <U b <U c <U dB.U a <U b <U d <U cC .U a =U b <U c =U dD .U b <U a <U d <U c2.如图10所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面且电阻均匀的正方形导体框abcd ,现将导体框分别朝两个方向以v 、3v 速度匀速拉出磁场,则导体框从两个方向移出 磁场的两过程中 ( ) A .导体框中产生的感应电流方向相同 B .导体框中产生的焦耳热相同C .导体框ad 边两端电势差相同D .通过导体框截面的电荷量相同3.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )4 如图4所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时A .电容器两端的电压为零B .电阻两端的电压为BL vC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2vR5 两根平行的长直金属导轨,其电阻不计,导线ab、cd跨在导轨上且与导轨接触良好,如图9所示,ab的电阻大于cd的电阻,当cd 在外力F1(大小)的作用下,匀速向右运动时,ab在外力F2(大小)的作用下保持静止,那么在不计摩擦力的情况下(U ab、U cd是导线与导轨接触间的电势差) ()A.F1>F2,U ab>U cd B.F1<F2,U ab=U cdC.F1=F2,U ab>U cd D.F1=F2,U ab=U cd6如图3,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF;OO′为∠EOF的角平分线,OO′间的距离为l;磁场方向垂直于纸面向里.一边长为l的正方形导线框沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则感应电流i与时间t的关系图线可能正确的是()图37 如图4甲所示,光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P两端接一阻值为R的定值电阻,阻值为r的金属棒ab垂直导轨放置,其他部分电阻不计.整个装置处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向上.t=0时对金属棒施加一平行于导轨的外力F,金属棒由静止开始沿导轨向上运动,通过R的感应电流I随时间t变化的关系如图乙所示.下列关于穿过回路abPMa的磁通量Φ和磁通量的瞬时变化率ΔΦΔt以及a、b两端的电势差U ab和通过金属棒的电荷量q随时间t变化的图象中,正确的是()8如图5所示,边长为L、总电阻为R的正方形线框abcd放置在光滑水平桌面上,其bc边紧靠磁感应强度为B、宽度为2L、方向竖直向下的有界匀强磁场的边缘.现使线框以初速度v0匀加速通过磁场,下列图线中能定性反映线框从开始进入到完全离开磁场的过程中,线框中的感应电流(以逆时针方向为正)的变化的是()9在竖直方向的匀强磁场中,水平放置一个面积不变的单匝金属圆线圈,规定线圈中感应电流的正方向如图11甲所示,取线圈中磁场B的方向向上为正,当磁场中的磁感应强度B随时间t如图乙变化时,下列图中能正确表示线圈中感应电流变化的是()10 .一矩形线圈abcd位于一随时间变化的匀强磁场内,磁场方向垂直线圈所在的平面向里(如图2甲所示),磁感应强度B随时间t变化的规律如图乙所示.以I表示线圈中的感应电流(图甲中线圈上箭头方向为电流的正方向),则下列选项中能正确表示线圈中电流I随时间t变化规律的是11 A和B是两个大小相同的环形线圈,将两线圈平行共轴放置,如图3(a)所示,当线圈A中的电流i1随时间变化的图象如图(b)所示时,若规定两电流方向如图(a)所示的方向为正方向,则线圈B中的电流i2随时间t变化的图象是图中的()(a)(b)12 如图5甲所示,正三角形导线框abc放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示,t=0时刻,磁感应强度的方向垂直纸面向里.下列选项中能表示线框的ab边受到的磁场力F随时间t的变化关系的是(规定水平向左为力的正方向)13 如图7所示, 电阻R =1 Ω、半径r 1=0.2 m 的单匝圆形导线框P 内有一个与P 共面的圆形磁场区域Q ,P 、Q 的圆心相同,Q 的半径r 2 =0.1 m .t =0时刻,Q 内存在着垂直于圆面向里的磁场,磁感应 强度B 随时间t 变化的关系是B =2-t T .若规定逆时针方向为电流 的正方向,则线框P 中感应电流I 随时间t 变化的关系图象应该是下 列选项中的14 如图8所示,有一个等腰直角三角形的匀强磁场区域.直角边长为L ,磁感应强度大小为B ,方向垂直纸面向外, 一边长为L 、总电阻为R 的正方形闭合导线框abcd ,从图示位置开始沿x 轴正方向以速度v 垂直磁场匀速穿过磁场区域.取电流沿a →b →c →d →a的方向为正,则图中表示线框中感应电流i 随bc 边位置坐标x 变化的图象正确的是 ( )15如图1所示,匀强磁场的磁感应强度为B ,方向竖直向下,在磁场中有一个边长为L 的正方形刚性金属框,ab 边的质量为m ,电阻为R ,其他三边的质量和电阻均不计.cd 边上装有固定的水平轴,将金属框自水平位置由静止释放,第一次转到竖直位置时,ab 边的速度为v ,不计一切摩擦,重力加速度为g ,则在这个过程中,下列说法正确的是A .通过ab 边的电流方向为a →bB .ab 边经过最低点时的速度v =2gLC .a 、b 两点间的电压逐渐变大D .金属框中产生的焦耳热为mgL -12m v 2D .在导轨的a 、c 两端用导线连接一个电容器16.(2011·福建理综·17)如图2所示,足够长的U 型光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电荷量为q 时,棒的速度大小为v ,则金属棒ab 在这一过程中 ( )A .运动的平均速度大小为12vB .下滑的位移大小为qRBL C .产生的焦耳热为qBL vD .受到的最大安培力大小为B 2L 2vR sin θ17.如图5所示,光滑的“Π”形金属导体框竖直放置,质量为m 的金属棒MN 与框架接触良好.磁感应强度分别为B 1、B 2的有界匀强磁场方向相反,但均垂直于框架平面,分别处在abcd 和cdef 区域.现从图示位置由静止释放金属棒MN ,当金属棒进入磁场B 1区域后,恰好做匀速运动.以下说法中正确的是 A .若B 2=B 1,金属棒进入B 2区域后将加速下滑 B .若B 2=B 1,金属棒进入B 2区域后仍将保持匀速下滑 C .若B 2<B 1,金属棒进入B 2区域后将先加速后匀速下滑 D .若B 2>B 1,金属棒进入B 2区域后将先减速后匀速下滑。
学案:电磁感应的综合应用【知识整合】一、电磁感应中的力学问题1.基本方法:通过导体的感应电流在磁场中将受到安培力作用,电磁感应往往和力学问题结合在一起。
(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向,(2)求回路中的电流大小;(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向)(4)列动力学方程或平衡方程求解。
2.电磁感应力学问题中,要抓好受力情况,运动情况的动态分析导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,循环结束时,加速度等于零,导体达稳定状态,抓住a=0时,速度v达最大值。
二、电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路相当于电源。
因此,电磁感应问题往往又和电路问题联系在一起,解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向(2)画等效电路图(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解三、电磁感应中的图象问题电磁感应中常涉及磁感应强度B、磁通量Φ、感应电动势E、感应电流I、安培力F安或外力F外随时间t变化的图象,即B—t图、Φ—t图、E—t图、I—t图、F—t图。
对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流I随位移x 变化的图象,即E—x图、I—x图等。
这些图象问题大体上可分类两类:(1)由给定的电磁感应过程选出或画出正确图象。
(2)由给定的有关图象分析电磁感应过程,求解相应的物理量。
不管是何种类型,电磁感应中的图象问题常需利用右手定则、左手定则,楞次定律和法拉第电磁感应定律等规律分析解决。
四、电磁感应中的能量问题产生感应电流的过程,就是能量转化的过程。
电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。
法拉第电磁感应的应用(一)【知识梳理】:电磁感应现象中的力学和能量问题;1.电磁感应中,导体运动切割磁感线而产生感应电流,感应电流在磁场中将受到安培力的作用,动态分析中,抓住“速度变化引起安培力的变化”,正确分析受力情况和运动情况.结合平衡问题和牛顿第二定律以及运动学公式求解.例题2.如图,光滑斜面的倾角α= 30°,在斜面上放置一矩形线框abcd ,ab 边的边长l 1 = l m ,bc 边的边长l 2= 0.6 m ,线框的质量m = 1 kg ,电阻R = 0.1Ω,线框通过细线与重物相连,重物质量M = 2 kg ,斜面上ef 线(ef ∥gh )的右方有垂直斜面向上的匀强磁场,磁感应强度B = 0.5 T ,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef 线和gh 的距离s = 11.4 m ,(取g = 10.4m/s 2),求:(1)线框进入磁场前重物M 的加速度; (2)线框进入磁场时匀速运动的速度v ;(3)ab 边由静止开始到运动到gh 线处所用的时间t ; (4)ab 边运动到gh 线处的速度大小和在线框由静止开始到运动到gh 线的整个过程中产生的焦耳热。
“思路分析”(1)线框进入磁场前,线框仅受到细线的拉力F T ,斜面的支持力和线框重力,重物M 受到重力和拉力F T 。
运用牛顿第二定律可得因为线框进入磁场的最初一段时间做匀速运动所以重物受力平衡(3)线框abcd 进入磁场前时,做匀加速直线运动;进磁场的过程中,做匀速直线运动;进入磁场后到运动到gh 线,仍做匀加速直线运动。
“解答” (1)对线框,由F T – mg sin α= ma .平向右或有水平向右的分量,但安培力若有竖直向上的分量,应小于导体棒所受重力,否则导体棒会向上跳起而不是向右摆,由左手定则可知,磁场方向斜向下或竖直向下都成立,A 错;当满足导体棒“向右摆起”时,若磁场方向竖直向下,则安培力水平向右,在导体棒获得的水平冲量相同的条件下,所需安培力最小,因此磁感应强度也最小,B 正确;设导体棒右摆初动能为E k ,摆动过程中机械能守恒,有E k = mgl (1–cos θ),导体棒的动能是电流做功而获得的,若回路电阻不计,则电流所做的功全部转化为导体棒的动能,此时有W = IEt = qE = E k ,得W = mgl (1–cos θ),(1cos )mglq Eθ=-,题设条件有电源内阻不计而没有“其他电阻不计”的相关表述,因此其他电阻不可忽略,那么电流的功就大于mgl (1–cos θ),通过的电量也就大于(1cos )mglEθ-,C 错D 正确.“解答”BD“解题回顾”安培力的冲量与通过导线的电量相关,“冲量→电量”、“做功→能量”是力电综合的二条重要思路。
电磁感应规律的综合应用(一) (电路)荥阳市第二高级中学1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于_____.(2)该部分导体的电阻或线圈的电阻相当于电源的_____,其余部分是_______.2.电源电动势和路端电压(1)电动势:E=____或E=___. (2)路端电压:U=IR=_____.电源的正、负极可用右手定则或楞次定律判定.【例证1】在同一水平面中的光滑平行导轨P、Q相距l=1 m,导轨左端接有如图所示的电路.其中水平放置的两平行板电容器两极板M、N间距d=10 mm,定值电阻R1=R2=12 Ω,R3=2 Ω,金属棒ab的电阻r=2 Ω,其他电阻不计,磁感应强度B=0.5 T的匀强磁场竖直穿过导轨平面,当金属棒ab沿导轨向右匀速运动时,悬浮于电容器两极板之间,质量m=1×10-14 kg,电荷量q=-1×10-14 C的微粒恰好静止不动.已知g=10 m/s2,在整个运动过程中金属棒与导轨接触良好,且运动速度保持恒定.试求:(1)匀强磁场的方向;(2)ab两端的电压;(3)金属棒ab运动的速度.【例证2】、如图所示,直角三角形导线框abc固定在匀强磁场中,ab是一段长为L、电阻为R的均匀导线,ac和bc的电阻可不计,ac长度为L/2 .磁场的磁感应强度为B,方向垂直纸面向里.现有一段长度为L/2 ,电阻为R/2 的均匀导体棒MN架在导线框上,开始时紧靠ac,然后沿ab方向以恒定速度v向b端滑动,滑动中始终与ac平行并与导线框保持良好接触,当MN滑过的距离为L/3时,导线ac中的电流为多大?方向如何?针对练习:1、用均匀导线做成的正方形线圈边长为l ,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以 t B∆∆的变化率增强时,则( )A.线圈中感应电流方向为acbdaB.线圈中产生的电动势22∙∆∆=t Bl EC.线圈中a 点电势高于b 点电势D.线圈中a 、b 两点间的电势差为22∙∆∆t Bl2、如图,两根足够长的金属导轨ab 、cd 竖直放置,导轨间距离为L ,电阻不计.在导轨上端并接两个额定功率均为P 、电阻均为R 的小灯泡.整个系统置于匀强磁场中,磁感应强度方向与导轨所在平面垂直.现将一质量为m 、电阻可以忽略的金属棒MN 从图示位置由静止开始释放.金属棒下落过程中保持水平, 且与导轨接触良好.已知某时刻后两灯泡保持正常发光,重力加速度为g.求:(1)磁感应强度的大小;(2)灯泡正常发光时导体棒的运动速率.3、如右图所示,MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40 m ,电阻不计,导轨所在平面与磁感应强度B 为0.50 T 的匀强磁场垂直.质量m 为6.0×10-3 kg ,电阻为1.0 Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有滑动变阻器和阻值为3.0 Ω的电阻R 1.当杆ab达到稳定状态时以速率为v 匀速下滑,整个电路消耗的电功率P 为0.27 W ,重力加速度取10 m/s2,试求速率v 和滑动变阻器接入电路部分的阻值R 2.4、两根光滑的长直金属导轨MN 、M'N'平行置于同一水平面内,导轨间距为l,电阻不计,M 、M'处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C 。
专题五 电磁感应及综合应用第1讲 直流电路和交流电路I 、基础知识回顾一、直流电路1.电功和电热(1) 对纯电阻电路, W =Q =U I t =I 2Rt =t R U 2. (2) 对非纯电阻电路(如电动机和电解槽):W>Q ,电功只能用W =U I t ,电热只能用Q =I 2Rt ,两式不能通用.2.闭合电路欧姆定律表达式:①E =U 外+U 内;②I =r R E +(I 、R 间关系); ③U =E -I r(U 、I 间关系);④U =E rR R +(U 、R 间关系). 3.电源的功率与效率(1) 电源的功率:P =I E(普遍适用);P =rR E +2=I 2(R +r)(只适用于外电路为纯电阻的电路). (2) 电源内阻消耗功率: P 内=I 2r.(3) 电源的输出功率: P 外=I U 外(普遍适用);P 外=I 2R =()22r R R E + (只适用于纯电阻电路). (4) 电源的效率:η=P外P =EI UI =E U =r R R + (5) 电源的输出功率(P 外)与外电阻R 的关系:P 外=()22r R RE +=()r Rr 4R E 22+-由P 外与R 的关系图象如图所示.由图可以看出:当R =r 时,电源的输出功率最大,P m =rE 42,此时电源效率η=50%. 4.含容电路电容器两极板间的电压等于与电容器并联的电阻两端的电压,与电容器串联的电阻两端的电压一定为零(有阻无流,则无电压).二、交变电流1.交变电流的描述(1) 最大值: E m =NBS ω.(2) 有效值:正弦式交流电E=2m E ,非正弦式必须根据电流的热效应。
(3) 瞬时值:e =NBS ωsin ωt.(4) 平均值:E=n t∆∆Φ,常用来计算通过电路的电荷量。
2.理想变压器(1) 功率关系:P 入=P 出(2) 电压关系:2121n n U U = (3) 电流关系: ①只有一个副线圈工作时,有U 1I 1=U 2I 2,.②若有两个以上的副线圈,则有:P 1=P 2+P 3+…,2121n n U U =、3232n n U U =…,n 1I 1=n 2I 2+n 3I 3+…. (4) 决定关系:在匝数比一定的情况下,理想变压器的输出电压由输入电压决定,输入电流由输出电流决定,输入功率由输出功率决定.II 、重点热点透析题型一、直流电路的动态分析例1 热敏电阻是传感电路中常用的电子元件,其电阻R 随温度t 变化的图线如图甲所示.如图乙所示电路中,热敏电阻R t 与其它电阻构成的闭合电路中,当R t 所在处温度升高时,两电表读数的变化情况是( )A .A 变大,V 变大B .A 变小,V 变小C .A 变小,V 变大D .A 变大,V 变小【规律总结】当传感器与电路问题结合在一起时,传感器实质是一变化的电阻,电路问题实质是电路的动态分析问题,通过题意分析并建立传感器的某一特性物理量与电学物理量(电压、电流、电阻等)之间的关系,是解决此类问题的关键。
电磁感应的综合应用电磁感应的综合问题为高考的热点,电磁感应定律的综合应用主要表现在以下几方面:1.电磁感应问题与电路问题的综合,解决这类电磁感应中的电路问题,一方面要考虑电磁学中的有关规律如右手定则、法拉第电磁感应定律等;另一方面还要考虑电路中的有关规律,如欧姆定律、串并联电路的性质等,有时可能还会用到力学的知识.2.电磁感应中切割磁感线的导体要运动,感应电流又要受到安培力的作用,因此,电磁感应问题又往往和力学问题联系在一起,解决电磁感应中的力学问题,一方面要考虑电磁学中的有关规律;另一方面还要考虑力学中的有关规律,要将电磁学和力学的知识综合起来应用.考点一、电磁感应与电路的综合电磁感应问题往往与电路问题联系在一起,解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画等效电路.(3)运用闭合电路欧姆定律,串、并联电路特点,电功率等公式联立求解.2.注意问题:(1)画等效电路时,要注意:切割磁感线的导体或磁通量变化的回路将产生感应电动势,该导体或回路相当于电源,与其它导体组成闭合回路.(2)在利用闭合电路欧姆定律时,一定要注意产生感应电动势相当于电源的那部分电路是否具有电阻(内电阻).【例1】如图12-1-2所示,竖直向上的匀强磁场,磁感应强度B =0.5T ,并且以tB ∆∆=0.1 T/s 在变化,水平轨道电阻不计,且不计摩擦阻力,宽0.5 m 的导轨上放一电阻R 0=0.1 Ω的导体棒,并用水平线通过定滑轮吊着质量M =0.2 kg 的重物,轨道左端连接的电阻R =0.4 Ω,图中的l =0.8m ,求至少经过多长时间才能吊起重物.解析:由法拉第电磁感应定律可求出回路感应电动势:E =tB S t ∆∆=∆∆Φ ① 由闭合电路欧姆定律可求出回路中电流I =RR E +0 ② 由于安培力方向向左,应用左手定则可判断出电流方向为顺时针方向(由上往下看).再根据楞次定律可知磁场增加,在t 时磁感应强度为: B ′ =(B +tB ∆∆·t ) ③ 此时安培力为:F 安=B ′Il ab ④; 由受力分析可知 F 安=mg ⑤由①②③④⑤式并代入数据:t =495 s[规律总结]错解分析:(1)不善于逆向思维,采取执果索因的有效途径探寻解题思路;(2)实际运算过程忽视了B 的变化,将B 代入F 安=BIl ab ,导致错解.[变式1]如图所示,两个互连的金属圆环,粗金属环的电阻为细金属环电阻的二分之一.磁场垂直穿过粗金属环所在区域,当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )112A. E B. E C. E D.E 233解析:如图所示,产生感应电动势的部分电路相当于电源,即粗环为内电路,而a 、b 两点间电势差为外电压.设粗环电阻为r ,细环电阻为R ,则r=1R 2①据闭合电路欧姆定律得金属环中的感应电流为E I r R=+②a 、b 两端的电压为U=IR ③ 联立①②③可得2U E 3=故C 选项正确.答案:C [变式2](2006上海物理)如图12-1-10所示,平行金属导轨与水平面成θ角,导轨与固定电阻R 1和R 2相连,匀强磁场垂直穿过导轨平面.有一导体棒ab ,质量为m ,导体棒的电阻与固定电阻R1和R 2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab 沿导轨向上滑动,当上滑的速度为V 时,受到安培力的大小为F 。
此时( )A .电阻R 1消耗的热功率为Fv/3B .电阻 R 1消耗的热功率为Fv/6C .整个装置因摩擦而消耗的热功率为μmgvcosθD .整个装置消耗的机械功率为(F +μmgcosθ)v答案。
BCD 。
解析:由法拉第电磁感应定律得BLv E =,回路总电流2/3R E I =,安培力BIL F =,所以电阻R 1的功率6)21(21Fv R I P ==,B 选项正确。
由于摩擦力θμμcos mg F =,故因摩擦而消耗的热功率为θμcos mgv ,整个装置消耗的机械功率为v mg F )cos (θμ+,故CD 两项也正确。
即本题应选BCD 。
考点二、电磁感应中的动力学问题:感应电流在磁场中受到 的作用,因此电磁感应问题往往跟 学问题联系在一起。
解决这类问题需要综合应用电磁感应规律(法拉第电磁感应定律)及力学中的有关规律(牛顿运动定律、动量守恒定律、动量定理、动能定理等),分析时要特别注意 、速度v 达 的特点。
电磁感应中产生的感应电流在磁场中将受到安培力的作用,从而影响导体棒的受力情况和运动情况。
这类问题的分析思路如下:[例2]如图12-1-3所示,电阻不计的平行金属导轨MN 和OP 放置在水平面内.MO 间接有阻值为R=3Ω的电阻.导轨相距d=lm ,其间有竖直向下的匀强磁场,磁感强度B=0.5T.质量为m=0.1kg ,电阻为r=l Ω的导体棒CD 垂直于导轨放置,并接触良好,现用平行于 MN 的恒力F=1N 向右拉动CD ,CD 受摩擦阻力f 恒为0.5N.求(1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少?(3)当CD 的速度为最大速度的一半时,CD 的加速度是多少?解析:(1)对于导体棒CD ,由安培定则得:F 0=BId根据法拉第电磁感应定律有:E=Bdv在闭合回路CDOM 中,由闭合电路欧姆定律得:I=E/(R+r)当v=v max 时,有:F=F 0+f由以上各式可解得:22()()8/m F f R r v m s B d -+== (2)当CD 达到最大速度时有E=Bdv max ,则可得I max =E max /(R+r)由电功率公式可得P max =I 2max R由以上各式可得电阻R 消耗的电功率是:W r R R V d B P m Rm 3)(2222=+= (3)当CD 的速度为最大速度的一半时2m v E Bd ¢=1分 回路中电流强度为:I=E //(R+r) ,CD 受到的安培力大小BId F =' 由牛顿第二定律得:F 合=F-F /-f ,代入数据可解得:a=2.5m/s 2[规律总结]分析综合问题时,可把问题分解成两部分——电学部分与力学部分来处理.电学部分思路:先将产生电动势的部分电路等效成电源,如果有多个,则应弄清它们间的(串、并联或是反接)关系.再分析内、外电路结构,作出等效电路图,应用欧姆定律理顺电学量间的关系.力学部分思路:分析通电导体的受力情况及力的效果,并根据牛顿定律、动量、能量守恒等规律理顺力学量间的关系.分析稳定状态或是某一瞬间的情况,往往要用力和运动的观点去处理.注意稳定状态的特点是受力平衡或者系统加速度恒定,稳定状态部分(或全部)物理量不会进一步发生改变.非稳态时的物理量,往往都处于动态变化之中,瞬时性是其最大特点.而“电磁感应”及“磁场对电流的作用” 是联系电、力两部分的桥梁和纽带,因此,要紧抓这两点来建立起相应的等式关系.[变式3]如图所示,矩形线框的质量m =0.016kg ,长L =0.5m ,宽d =0.1m ,电阻R =0.1Ω.从离磁场区域高h 1=5m 处自由下落,刚 入匀强磁场时,由于磁场力 运动导体所受的安培力 F=BIL 感应电流 确定电源(E ,r )r R E I +=临界状态态v 与a 方向关系 运动状态的分a 变化情况力作用,线框正好作匀速运动.(1)求磁场的磁感应强度;(2) 如果线框下边通过磁场所经历的时间为△t =0.15s ,求磁场区域的高度h 2.解:(1)刚进入磁场时,线框的速度v ==10 m/s 产生的感应电动势E =Bdv 受到的安培力F =BId =B2d2v/R 有线框匀速运动,得mg =F ,解得B =0.4 T (2)线框匀速下落l 用时t1=l/v =0.05 s ,剩下的时间t2=Δt -t1=0.1 s 内做初速度为v ,加速度为g 的匀加速运动,运动的位移s =vt2+gt22=1.05 m ,则磁场区域的高度h2=s +l =1.55 m 。
[变式4]如图12-3-22所示,在与水平方向成θ=30°角的平面内放置两条平行、光滑且足够长的金属轨道,其电阻可忽略不计。
空间存在着匀强磁场,磁感应强度B =0.20T ,方向垂直轨道平面向上。
导体棒ab 、cd 垂直于轨道放置,且与金属轨道接触良好构成闭合回路,每根导体棒的质量m =2.0×10-2kg 、电阻r =5. 0×10-2Ω,金属轨道宽度l =0.50m 。
现对导体棒ab 施加平行于轨道向上的拉力,使之沿轨道匀速向上运动。
在导体棒ab 运动过程中,导体棒cd 始终能静止在轨道上。
g 取10m/s 2, 求: (1)导体棒cd 受到的安培力大小; (2)导体棒ab 运动的速度大小; (3)拉力对导体棒ab 做功的功率。
解析:(1)导体棒cd 静止时受力平衡,设所受安培力为F 安,则F 安=mg sin θ,解得F 安=0.10N(2)设导体棒ab 的速度为v 时,产生的感应电动势为E ,通过导体棒cd 的感应电流为I ,则:E =Blv ,I =r E 2F 安=Bil ,联立上述三式解得v =222F r B l安 ,代入 数据得:v =1.0m/s (3)设对导体棒ab 的拉力为F ,导体棒ab 受力平衡,则:F =F 安+mg sin θ,解得:F =0.20N ,拉力的功率P =Fv ,解得:P = 0.20W针对训练:1.如图所示,在一磁感应强度B =0.5T 的匀强磁场中,垂直于磁场方向水平放置着两根相距为h =0.1m 的平行金属导轨MN 和PQ ,导轨电阻忽略不计,在两根导轨的端点N 、Q 之间连接一阻值R =0.3Ω的电阻。
导轨上跨放着一根长为L =0.2m ,每米长电阻r =2.0Ω/m 的金属棒ab ,金属棒与导轨正交放置,交点为c 、d ,当金属棒在水平拉力作用于以速度v =4.0m/s 向左做匀速运动时,试求:(1)电阻R 中的电流强度大小和方向;(2)使金属棒做匀速运动的拉力;(3)金属棒ab 两端点间的电势差;(4)回路中的发热功率。
解析:金属棒向左匀速运动时,等效电路如图所示。
在闭合回路中,金属棒cd部分相当图12-3-22于电源,内阻r cd=hr,电动势E cd=Bhv。
(1)根据欧姆定律,R中的电流强度为0.4A,方向从N经R到Q。
(2)使金属棒匀速运动的外力与安培力是一对平衡力,方向向左,大小为F=F安=BIh =0.02N。
(3)金属棒ab两端的电势差等于U ac、U cd与U db三者之和,由于U cd=E cd-Ir cd,所以U ab=E ab-Ir cd=BLv-Ir cd=0.32V。