山东省肥城市边院镇初级中学2015-2016学年北师大版七年级下册数学第二章 平行线与相交线练习题(有答案)
- 格式:doc
- 大小:610.00 KB
- 文档页数:10
第二章相交线与平行线1 两条直线的位置关系第1课时对顶角、余角和补角【知识与技能】在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题.【过程与方法】经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力.【情感态度】激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决.【教学重点】1.余角、补角、对顶角的概念.2.理解等角的余角相等、等角的补角相等、对顶角相等.【教学难点】对“在同一平面内的两条直线”含义的理解.理解等角的余角相等,等角的补角相等.一、情景导入,初步认知向同学们展示一些生活中的图片,让学生观察生活中的两条直线之间的位置关系.【教学说明】数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,体会数学与生活的联系,总结出同一平面内两条直线的基本位置关系,体会本章内容的重要性和在生活中的广泛应用,为引入新课做好准备.通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中学到有价值的数学.二、思考探究,获取新知探究1:相交线、平行线1.从上面的图片中,你能找出两条直线有几种位置关系吗?2.请各组同学每人拿出两支笔,用它们代表两条直线,在同一平面内,随意移动笔,观察笔与笔有几种位置关系?各种位置关系,分别叫做什么?.【归纳结论】同一平面内的两条直线的位置关系有平行和相交两种;若两条直线只有一个公共点,我们称这两条直线为相交线;同一平面内不相交的两条直线叫做平行线.【教学说明】让学生用两支笔动手操作,不但培养了学生的动手能力,还能让学生更深层次的体会到平行线的含义,进一步明确同一平面内两条直线的位置关系.探究2:对顶角的概念和性质请先画一画:两条直线直线AB和CD,交于点O,再回答下列问题1.观察:∠1和∠2的位置有什么关系?大小有何关系?为什么?小组合作交流,尝试用自己的语言描述对顶角的定义.2.剪刀可以看成两直线相交,那么剪刀在剪东西的过程中,∠1和∠2还保持相等吗?∠3和∠4呢?你有何结论?【归纳结论】两个角的两边互为反向延长线,则这两个角叫做对顶角.对顶角相等.探究3:余角、补角的概念和性质1.用量角器,量出∠1、∠2、∠3、∠4的度数,观察∠1与∠3有什么关系?2.图中还有哪些角,具有这种关系?【归纳结论】如果两个角的和是180°,那么称这两个角互为补角.类似的,如果两个角的和是90°,那么称这两个角互为余角.3.打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时∠1=∠2,将图抽象成几何图形,ON与DC交于点O,∠DON=∠CON=900,∠1=∠2.小组合作交流,解决下列问题:问题1:哪些角互为补角?哪些角互为余角?问题2:∠3与∠4有什么关系?为什么?问题3:∠AOC与∠BOD有什么关系?为什么?你还能得到哪些结论?【归纳结论】同角或等角的余角相等.同角或等角的补角相等.【教学说明】概括归纳得到猜想和规律,并加以验证,是创新的重要方法.结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,积累数学活动经验.三、运用新知,深化理解1.在下列4个判断中:①在同一平面内,不相交的两条线段一定平行;②不相交的两条直线一定平行;③在同一平面内,不平行的两条射线一定相交;④在同一平面内,不平行的两条直线一定相交.其中正确的个数是(D)A.4B.3C.2D.12.如果一个角的补角是150°,那么这个角的余角的度数是60°3.已知∠α=24°,且∠α与∠β互余,∠β与∠γ互余,则∠γ的余角和补角的度数分别为66°,156°.4.判断.(1)一个角有余角也一定有补角.()(2)一个角有补角也一定有余角.()(3)一个角的补角一定大于这个角.()答案:(1)√(2)×(3)×5.填表:从中,你发现一个锐角的补角比它的余角大.答案:表格第一行:58°,148°;第二行:27°37′,117°37′;第三行:90°-x,180°-x;空格:90°.6.已知一个角的补角是它的余角的4倍,求这个角的度数.分析:可以利用方程思想解决这道题.解:设这个角为x°,则180-x=4(90-x),∴x=60.答:这个角是60°.7.如图,E、F是直线DG上两点,∠1=∠2,∠3=∠4=90°,找出图中相等的角并说明理由.解:∠5=∠6,理由是:等角的余角相等.8.如图,已知AOB是一直线,OC是∠AOB的平分线,∠DOE是直角,图中哪些角互余?哪些角互补?哪些角相等?解:互余:∠1与∠2,∠1与∠4,∠2与∠3,∠4与∠3;互补:∠1与∠EOB,∠3与∠EOB,∠4与∠AOD,∠2与∠AOD,∠AOC 与∠BOC,∠AOC与∠DOE,∠BOC与∠DOE.相等:∠AOC=∠BOC=∠DOE,∠1=∠3,∠2=∠4.【教学说明】巩固本节课的知识点,检验学生的掌握程度.四、师生互动,课堂小结1.你学到了哪些知识点?2.你学到了哪些方法?3.你还有哪些困惑?五、教学板书1.布置作业:教材“习题2.1”中第1、2、3题.2.完成同步练习册中本课时的练习.本节的教学是非常成功的一节课,学生的积极性、主动性完全迸发,整个课堂完全就是和谐统一的有机整体.仔细想想,从中得出:对于新旧知识具有类似内容的情况可以用类比的方法,这样省时高效;对于几何命题的验证,可通过多种方法证明,如本节的“等角的余角相等”,可以通过测量、叠合法、逻辑证明等方法,这样可以让不同的学生得到清晰而深刻的理解;更重要的是通过本节学习知道说明一个几何命题的过程是怎样的,须经历“猜想—推理—结论”这样一个过程,为以后的学习做了铺垫.第2课时垂直【知识与技能】1.会用符号表示两直线垂直,并能借助三角板、直尺和方格纸画垂线.2.通过折纸、动手操作等活动探究归纳垂直的有关性质,会进行简单的应用.3.初步尝试进行简单的推理.【过程与方法】通过从生活中提炼、动手操作、观察交流、猜想验证、简单说理等活动,进一步发展学生的空间观念、推理能力和有条理表达的能力.【情感态度】激发学生学习数学的兴趣,体会“数学来源于生活反之又服务于生活”的道理,在解决实际问题的过程中了解数学的价值,通过“简单说理”体会数学的抽象性、严谨性.【教学重点】根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题.【教学难点】根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题.一、情景导入,初步认知观察下面三个图形,你能找出其中相交的直线吗?他们有什么特殊的位置关系?【教学说明】数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,既复习了上一节课的知识点——两条直线的位置关系,又体会到生活中存在大量特殊的相交线——垂直,在比较中发现新知,加深了学生对垂直和平行的感性认识,感受垂直“无处不在”.二、思考探究,获取新知1.在上面的三幅图形中,我们找出了一些相交的两条直线,那么它们有什么特殊的位置关系?这种位置关系我们称为什么呢?【归纳结论】两条直线相交成四个角,如果有一个角是直角,那么称这两条直线互相垂直(perpendicular),其中的一条直线叫做另一条直线的垂线.它们的交点叫做垂足.通常用“⊥”表示两直线垂直.如图1,记作:AB⊥CD;如图2,记作:l⊥m.2.思考:你能画出两条互相垂直的直线吗?你有哪些方法?(1)你能借助三角尺或者量角器,在一张白纸上画出两条互相垂直的直线吗?(2)如果只有直尺,你能在方格纸上画出两条互相垂直的直线吗?说出你的画法和理由.(3)你能用折纸的方法折出互相垂直的直线吗?试试看吧!请说明理由.3.动手画一画:(1)请画出直线m与点A,你有几种画法?(2)过点A画m的垂线,你能画几条?请用自己的语言概括你的发现.【归纳结论】平面内,过一点有且只有一条直线与已知直线垂直.4.动手画一画.请画出直线l与l外一点P,O是垂足,在l上取点A、B、C,比较PO、PA、PB、PC的长短,你发现了什么?【归纳结论】直线外一点与直线上各点连接的所有线段中垂线段最短.线段PO的长度,叫做点P到l的距离.【教学说明】通过动手画图,可以加深学生对知识的理解,能更好的关注知识的形成过程,这也是促使学生认真审题的重要策略.三、运用新知,深化理解1.如图,∠BAC=90°,AD⊥BC,则下列的结论中正确的个数是(C)①点B到AC的垂线段是线段AB;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.A.1个B.2个C.3个D.4个2.如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,其依据是(C)A.垂线最短B.过一点确定一条直线与已知直线垂直C.垂线段最短D.以上说法都不对3.已知线段AB=10cm,在同一平面内,点A,B到直线l的距离分别为6cm,4cm.符合条件的直线l有(C)A.1条B.2条C.3条D.4条4.如图,直线a⊥b,∠1=50°,则∠2=40度.解析:∵a⊥b,∴∠1与∠2互余,∵∠1=50°,∴∠2=90°-∠1=90°-50°=40°5.如图,OA⊥OB,OB平分∠MON,若∠AON=120°,求∠AOM的度数.解:∵OA⊥OB,∴∠AOB=90°,∵∠AON=120°,∴∠BON=120°-90°=30°,∵OB平分∠MON,∴∠MOB=∠NOB=30°,∴∠AOM=90°-30°=60°6.如图,一辆汽车在直线形公路AB上由A向B行驶,M,N是分别位于公路AB两侧的两所学校.(1)汽车在公路上行驶时,噪声会对两所学校教学都造成影响,当汽车行驶到何处时,分别对两所学校影响最大?请在图上标出来.(2)当汽车从A向B行驶时,在哪一段上对两学校影响越来越大?在哪一段上对两学校影响越来越小?在哪一段上对M学校影响逐渐减小而对N学校影响逐渐增大?解:(1)如图所示:过M作ME⊥AB,过N作NF⊥AB,当汽车行驶到点E处时,对M学校影响最大;当汽车行驶到点F处时,对N 学校影响最大;(2)由A向E行驶时,对两学校影响逐渐增大;由F向B行驶时,对两学校的影响逐渐减小;由E向F行驶时,对M学校影响逐渐减小而对N学校影响逐渐增大.【教学说明】可以满足不同层次学生学习的需要,能激发学生认知上的冲突,从而促使他们去探索,去对自身的认知结构进行调整和变革.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书1.布置作业:教材“习题2.2”中第2、3题.2.完成同步练习册中本课时的练习.本课时遵循“开放”的原则,在把握教材编写意图的基础上,进行了再创造.通过重组教材,恰当地创设情境,为学生构建了有效开放的学习环境.教学效果较好.2 探索直线平行的条件第1课时利用同位角判定两条直线平行【知识与技能】1.会识别由“三线八角”所成的同位角.2.掌握直线平行的条件,并能解决一些问题.【过程与方法】经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.【情感态度】进一步发展空间观念,推理能力和有条理表达的能力.【教学重点】会识别各种图形下的同位角,并掌握直线平行的条件是“同位角相等,两直线平行”.【教学难点】判断两直线平行的说理过程.一、情景导入,初步认知1.在同一平面内,两条直线的位置关系是.2.在同一平面内,的两条直线是平行线.3.如教材中P44彩图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹的角为多少度时才能使木条a与木条b平行?你能说明其中的道理吗?【教学说明】教师通过设置问题,层层设疑,在引导学生思考、层层释疑的基础上,既复习旧知识,又做好新知识学习的铺垫,同时也不断激活学生思维、生成新问题,引起认知冲突,从而自然引入新课.二、思考探究,获取新知1.动手操作移动活动木条,完成书中P44的做一做内容.2.改变图中∠1的大小,按照上面的方式再做一做,∠1与∠2的大小满足什么关系时,木条a与木条b平行?小组内交流.3.如图,直线AB,CD被直线l所截:具有∠1与∠2,这样位置关系的角,可以看作是在被截直线的同一侧,在截线的同一旁,相对位置是相同的角,我们把这样的角称为同位角.4.图中还有其他的同位角吗?这些角相等也可以得出两直线平行吗?【归纳结论】两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称“同位角相等,两直线平行”.两直线平行,用符号“∥”表示.如直线a与b平行,记作“a∥b”.5.想一想,如何利用三角板画平行线?小明是这样作的,你认为他作得对不对?你能说明其中的原理吗?6.动手画一画:①你能过直线AB外一点P画直线AB的平行线吗?能画几条?②在下图中,分别过C,D画直线AB的平行线EF、GH.那么EF与GH有怎样的位置关系?【教学说明】由浅入深,充分地让学生经历了解决问题的过程,较好的突出了重点,突破了难点.【归纳结论】过直线外一点有且只有一条直线与这条直线平行.平行于同一条直线的两条直线互相平行.几何语言:∵a∥b,a∥c,∴b∥c (平行于同一条直线的两条直线互相平行).三、运用新知,深化理解1.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是同位角相等,两直线平行.2.如图所示,FE⊥CD,∠2=26°,当∠1=64°时,AB∥CD.3.如图,当∠1=∠D时,可以得到AD∥BC,其理由是同位角相等,两直线平行.4.如图,已知∠1=∠2,试说明AB与CD的关系.解:AB∥CD.理由:∵∠1=∠2(已知)∠2=∠3(对顶角相等)∴∠1=∠3(等量代换)∴AB∥CD(同位角相等,两直线平行)5.如图,若∠1=∠4,∠1+∠2=180°,则AB、CD、EF的位置关系如何?解:∵∠1+∠2=180°,∠2+∠3=180°,∴∠1=∠3,∴AB∥CD.又∵∠1=∠4,∴AB∥EF,∴AB∥CD∥EF.6.如图,∠B=∠C,B、A、D三点在同一直线上,∠DAC=∠B+∠C,AE是∠DAC的平分线,则AE与BC平行吗?为什么?解:AE∥BC.理由:∵∠DAC=∠B+∠C,∠B=∠C,∴∠DAC=2∠B.∵AE是∠DAC的平分线,∴∠DAC=2∠1,∴∠B=∠1,∴AE∥BC.7.如图,BE平分∠FBD,∠ABC=∠C,那么直线FB与AC平行吗?试说明理由.解:FB∥AC.理由如下:∵BE平分∠FBD,∴∠DBE=∠FBE,∵∠DBE=∠ABC,∴∠FBE=∠ABC,∵∠ABC=∠C,∴∠FBE=∠C,∴FB∥AC.【教学说明】进一步激发学生的探究兴趣,学生学会用所学知识解释和解决实际生活中的问题,提高能力.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结,教师作以补充.五、教学板书1.布置作业:教材“习题2.3”中第1、2题.2.完成同步练习册中本课时的练习.整节课构建了“以问题研究和学生活动”为中心的课堂学习环境,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点.所以,合理把握教学问题,是保证学生自主、合作、探究的学习方式纵向发展的关键,要克服以完成教学任务为主要目标,不舍得给学生探究时间的倾向,要给学生提供较为充分的思维、探究的时间和空间.第2课时利用内错角、同旁内角判定两条直线平行【知识与技能】1.会识别由“三线八角”构成的内错角和同旁内角.2.经历探索直线平行条件的过程,掌握利用同位角相等、同旁内角互补判别直线平行的结论,并能解决一些问题.【过程与方法】经历观察、操作、想象、图例、交流等活动,体会利用操作、归纳获得数学结论的过程,进一步发展空间想象、推理能力和有条理表达的能力.【情感态度】使学生在参与探索、交流的数学活动中,进一步体验数学与实际生活的密切联系.【教学重点】弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”的结论.【教学难点】会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”的结论.一、情景导入,初步认知小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示).他只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?【教学说明】通过实际问题的引入,提高学生学习的兴趣.二、思考探究,获取新知1.如图,直线AB,CD被直线l所截如上图,∠4和∠5在截线的两侧,在被截线的内部,具有这样位置关系的角叫做内错角.∠4和∠7在截线的同旁,在被截线的内部,具有这种位置关系的角叫做同旁内角.2.请找出其他的内错角和同旁内角.3.议一议:(1)内错角满足什么关系时,两直线平行?为什么?(2)同旁内角满足什么关系时,两直线平行?为什么?【归纳结论】两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称“内错角相等,两直线平行”.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称“同旁内角互补,两直线平行”.【教学说明】本环节选取了课本的议一议,采取的方式是先独立思考、探究,再讨论交流,目的是充分发挥每一个学生的积极性,尽可能的找到多种方法,这样合作交流才有更充分的内容,才能够互相启发,博采众长.在学生交流的基础上,教师再利用课件展示,进一步验证结论,从而引导学生得出结论.三、运用新知,深化理解1.如图所示,∠1与∠2是内错角的是(D)2.如图所示,与∠C互为同旁内角的角有(C)A.1个B.2个C.3个D.4个3.如图所示,下列条件中不能判定DE∥BC的是(C)A.∠1=∠CB.∠2=∠3C.∠1=∠2D.∠2+∠4=180°4.如图所示,∠DCB和∠ABC是直线和被直线所截而成的角.答案:AB;CD;BC;同旁内.5.如图所示,∠1=∠2,则∥,理由是.答案:AB;CD;内错角相等,两直线平行.6.如图所示,AB⊥BC于点B,BC⊥CD于点C,∠1=∠2,那么EB∥CF吗?为什么?解:EB∥CF.理由如下:∵AB⊥BC于点B,BC⊥CD于点C,∴∠ABC=∠BCD=90°,∴∠1+∠3=∠2+∠4=90°,∵∠1=∠2,∴∠3=∠4,∴EB∥CF(内错角相等,两直线平行).7.如图所示,AB与CD相交于点O,∠A+∠1=110°,∠B+∠2=110°,判断AC与DB的位置关系,并说明理由.解:AC∥DB.理由如下:∵AB与CD相交于点O,∴∠1=∠2,∵∠A+∠1=110°,∠B+∠2=110°∴∠A=∠B,∴AC∥DB.(内错角相等,两直线平行).8.如图所示,BE是∠ABD的平分线,DE是∠BDC的平分线,且∠1+∠2=90°,那么直线AB,CD的位置关系如何?并说明理由.解:AB∥CD.理由如下:∵BE是∠ABD的平分线,DE是∠BDC的平分线,∴∠ABD=2∠1,∠BDC=2∠2,又∵∠1+∠2=90°,∴∠ABD+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行).【教学说明】通过练习及时巩固所学知识,并学会灵活应用.四、师生互动,课堂小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.五、教学板书1.布置作业:教材“习题2.4”中第1、2题.2.完成同步练习册中本课时的练习.通过本节课的学习,学生初步了解了内错角和同旁内角,但在三线八角图中,找同位角、内错角、同旁内角就有些混乱了,不过能通过观察内错角、同旁内角度数的变化发现“内错角相等,两直线平行”和“同旁内角互补,两直线平行”的结论.在实际应用中比较乱,容易出现“同旁内角相等,两直线平行”的错误. 所以在教学中要重点强调.3 平行线的性质第1课时平行线的性质【知识与技能】经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.【过程与方法】经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步增强分析、概括、表达能力.【情感态度】在自己独立思考的基础上,积极参与小组活动.在对平行线的性质进行的讨论中,敢于发表自己的看法,并从中获益.【教学重点】理解平行线的性质.【教学难点】学会利用平行线的性质解决实际问题.一、情景导入,初步认知窗户的内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?【教学说明】通过引入生活中的平行线,激发学生的求知欲.二、思考探究,获取新知1.现在我们反过来思考这个问题,如果先知道两条直线平行,对应的同位角、内错角、同旁内角会产生怎样的关系呢?2.已知直线a∥b,测量角的度数,把结果填入表内,并分析各角之间的关系.(1)图中有几对同位角?它们的大小有什么关系?为什么?(2)图中有几对内错角?它们的大小有什么关系?为什么?(3)图中有几对同旁内角?它们的大小有什么关系?为什么?(4)换一组平行线试一试,你能得到同样的结论吗?【教学说明】通过测量、猜想、验证,让学生在动手探索的过程中感知平行线的性质.【归纳结论】两条平行线被第三条直线所截,同位角相等.简称“两直线平行,同位角相等”.两条平行线被第三条直线所截,内错角相等.简称“两直线平行,内错角相等”.两条平行线被第三条直线所截,同旁内角互补.简称“两直线平行,同旁内角互补”.三、运用新知,深化理解1.如图,一把长方形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为(A)A.55°B.65°C.75°D.125°2.如图,直线c与直线a、b相交,且a//b,则下列结论:(1)∠1=∠2;(2)∠1=∠3;(3)∠3=∠2中正确的个数为(D)A.0B.1C.2D.33.如图,已知:DE∥BC,CD是∠ACB的平分线,∠B=70°,∠ACB=50°,求∠EDC和∠BDC的度数.解:∵CD是∠ACB的平分线,∴∠ACD=∠BCD.∵∠ACB=50°,∴∠BCD=25°.∵DE∥BC,∴∠EDC=∠BCD=25°.∵DE∥BC,∴∠BDE+∠B=180°.∴∠BDE=180°-∠B=110°.∴∠BDC=∠BDE-∠EDC=110°-25°=85°.【教学说明】通过练习及时巩固平行线的三条性质.四、师生互动,课堂小结通过刚才的应用,大家能谈一谈今天学习的平行线有哪些性质?五、教学板书1.布置作业:教材“习题2.5”中第1、2题.2.完成同步练习册中本课时的练习.平行线的性质是几何证明的基础,教学中注意基本的推理格式的书写,培养学生的逻辑思维能力,鼓励学生勇于尝试,在课堂上,力求体现学生的主体地位,把课堂放交给学生,让学生在动口、动手、动脑中学习.第2课时平行线的判定与性质的综合应用【知识与技能】经历掌握平行线性质与判定的过程,能用它们进行简单的推理和计算.【过程与方法】经历观察、测量、推理、交流等活动,进一步提高推理能力.【情感态度】通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既是普遍联系又是相互区别的辩证唯物主义思想.【教学重点】平行线的三条性质及简单应用.【教学难点】平行线的性质与平行线判定方法的区别.一、情景导入,初步认知在前几节课我们探究了如何去判别两条直线是平行的,即平行线的判定.下面我想请同学来回答一下有哪些方法可以判定两条直线平行?二、思考探究,获取新知请用学过的同位角、内错角、同旁内角的概念及两直线平行的条件填空:(1)因为∠1=∠5(已知);所以a∥b().(2)因为∠4=∠(已知);所以a∥b(内错角相等,两直线平行).(3)因为∠4+∠=180°(已知);所以a∥b().【教学说明】判定平行线的条件和平行线的性质是互逆的,对初学者来说易将它们混淆.因此,复习判定直线平行的条件能为后面学习性质做好准备.三、运用新知,深化理解1.见教材52例1、例2、例3,2.如果两条直线被第三条直线所截,那么一组内错角的平分线(D)A.互相垂直B.互相平行C.互相重合D.以上均不正确3.如图已知∠1=∠2,∠BAD=∠BCD,则下列结论(1)AB∥CD;(2)AD∥BC;(3)∠B=∠D;(4)∠D=∠ACB中正确的有(C)A.1个B.2个C.3个D.4个4.如图,如果∠1=∠2,那么∠2+∠3=180°吗?为什么?解:∵∠1=∠2,∴L1∥L2. ∴∠2+∠3=180°.5.如图,AB∥CD,BF∥CE,则∠B与∠C有什么关系?请说明理由.解:∵AB∥CD,∴∠B=∠1.∵BF∥CE,∴∠C=∠2.∵∠1+∠2=180°,∴∠B+∠C=180°.即∠B与∠C互补.6.如图,已知AB∥CD,∠1=∠2,试探索∠BEF与∠EFC之间的关系,并说明理由.解:∠BEF=∠EFC.理由如下:分别延长BE.DC相交于点G.。
第二章平行线与相交线2.1 台球桌面上的角Ⅰ学法导引互为余角、互为补角都是指两个角之间的数量关系,与它们的位置无关,理解和掌握余角、补角的性质对今后的学习很重要,对顶角是常见的几何图形,对顶角的性质在以后的几何学习中经常用到,要应用对顶角的性质,首先要理解,掌握对顶角的概念,通过辨析,认识对顶角.Ⅱ要点精讲1 重点:掌握互余、互补及对顶角的概念及其特征.2 难点:概念的理解和如何将理论和实际相结合,即怎样正确的运用.3 易错点:例如认为“∠1+∠2+∠3=180°,则∠1,∠2,∠3互为补角”是正确的,概念模糊,对对顶角的特点掌握不清楚.Ⅲ精典例题解析重点【例1】如图2-1-1,O是直线AB上一点,∠AOE=∠FOD=90°,OB平分∠COD,图中与∠DOE互余的角有哪些?与∠DOE互补的角有哪些?并说明理由.解析既要寻找与∠DOE相邻的角,又要注意不相邻的角.答案图中与∠DOE互余的角有∠EOF、∠BOD、∠BOC.(1)∵∠FOD=90°,∴∠DOE+∠EOF=90°;(2)∵∠AOE+∠BOE=180°,∠AOE=90°,∴∠BOE=90°∴∠DOE+∠BOD=90°(3)∵OB平分∠COD,∴∠BOC=∠BOD.∵∠BOD+∠DOE=90°,∴∠BOC+∠DOE=90°.图中与∠DOE互补的角有∠BOF,∠COE.(1)∵∠AOE=∠DOF,∴∠AOF+∠EOF=∠DOE+∠EOF,∴∠AOF=∠DOE,∵∠AOF+∠BOF=180°,∴∠DOE+∠BOF=180°;(2)∵∠BOC+∠DOE=∠EOF+∠DOE=90°,∴∠BOC=∠EOF,∴∠BOC+∠BOE=∠EOF+∠BOE,∴∠COE=∠BOF.∵∠DOE+∠BOF=180°,∴∠DOE+∠COE=180°.剖析难点【例2】如图2-1-2,AB与CD相交于点O,OE平分∠AOD,∠AOC=120°,求∠BOD、∠AOE的度数.解析∠BOD与∠AOC是对顶角,可得∠BOD度数,由于∠AOD与∠AOC互补,可知∠AOD度数,又OE平分∠AOD,可得∠AOE度数.答案∠BOD与∠AOC是对顶角,根据对顶角相等,可知∠BOD=120°.点击易错点【例3】如图2-l-3,∠1和∠2是对顶角的图形个数有() A.1个B.2个C.3个D.4个错解选B.错解分析选择B的原因是把图(2)中的∠1、∠2当成了对顶角.正解选AⅣ能力升级综合能力升级余角、补角知识与方程(组)知识相结合.应用创新能力升级利用余角、补角的知识解决“测建筑物高度”问题.【例5】雨后初晴,小明站在操场上点B的位置,看到大楼CD的顶部C在水泡E中的像(点B、E、D在同一直线上).已知∠1=∠2,∠A+∠2=90°,∠l=35°,求∠A的度数.(如图2-1-4)2.2 探索直线平行的条件Ⅰ学法导引识别同位角、内错角、同旁内角关键抓住“三线八角”,只有“三线”出现且必须是两线被第三线所截才能出现这三类角.判定两条直线平行时要正确判断出是什么角,什么关系,由此推出哪两条直线平行.Ⅱ要点精讲1 重点:掌握同位角、内错角、同旁内角在图形中的位置.2 难点:能正确识别同位角、内错角、同旁内角,因为它是识别平行线的基础,平行线是在以后的学习中经常出现的知识,它的识别对将来的学习有很大作用.3 易错点:对同位角、内错角、同旁内角的实质和特征掌握不熟.Ⅲ精典例题解析重点【例1】在下列图形中(如图2-2-1),∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④解析同位角、内错角、同旁内角的形成,都是由两条直线被第三条直线所截得到的,两个角应有一条边在同一直线上,①②④都具备同位角的特征,而③中的∠1与∠2不具备同位角的特征.答案应选C剖析难点【例2】如图2-2-2标有角号的8个角中共有同位角、内错角、同旁内角各几对?请分别写出来.答案同位角2对:∠1和∠3、∠5和∠8.内错角2对:∠3和∠6、∠4和∠7.同旁内角7对:∠1和∠8、∠2和∠3、∠2和∠7、∠3和∠7、∠4和∠5、∠4和∠6、∠5和∠6.点拨在图中角的个数较多的情况下,寻找同位角、内错角、同旁内角易发生遗漏.为避免遗漏,在寻找的过程中,应遵循先从最小数字的角开始,把与它有关的角都找出来;例如从∠1开始,把与它有关的角∠3与它是同位角;∠8与它是同旁内角,然后再去找与∠2有关的角,依次类推,就不会遗漏了.点击易错点[例3]如图2-2-3,∠1和∠2,∠3和∠4是内错角,问是哪两条直线被哪一条直线所截的?错解∠1和∠2是AD与BE被AC所截的内错角.∠3和∠4是AB与CD被BD所截的内错角.错解分析错解的原因是弄错了被截直线,具体找法:∠1和∠2公共边所在直线AC是截线,其余两边AB和CD是被截的两直线,∠3和∠4的截线是BD,被截两线是AD和BC.正解∠1和∠2是AB与CD被AC所截的内错角,∠3和∠4是AD 与BC被BD所截的内错角.Ⅳ能力升级综合能力升级既能正确识别同位角、内错角、同旁内角,又能正确运用平行线的三条判定定理.[例4]如图2-2-4,回答下列问题:①由∠C=∠2,可以得出哪两条直线平行?并说明理由.②由∠2=∠3,可以得出哪两条直线平行?并说明理由.③由∠D+∠C=180°,可以得出哪两条直线平行?并说明理由.答案①由∠2=∠C,可得DC∥EF,理由是同位角相等,两直线平行;②由∠2=∠3,可得EF∥AB,理由是内错角相等,两直线平行;③由∠D+∠C=180°,可得AD∥BC,理由是同旁内角互补,两直线平行.应用创新能力升级把两角关系转化成同位角、内错角、同旁内角的关系.[例5]如图2-2-5,直线a、b都与直线c相交,∠1=47°,∠2=133°,能判定a∥b吗?说明理由.解法1 ∵∠1+∠2=180°,∠2+∠3=180°,∴∠1=∠3,∴a∥b.解法2 ∵∠3=∠180°-∠2=47°,∠5=∠1=47°,∴∠3=∠5,∴a∥b.解法3 ∵∠3=180°-∠2=47°,∠4=180°-∠1=133°,∠3+∠4=180°,∴ a∥b2.3 平行线的特征Ⅰ学法导引本节应对照平行线的判定去学习,比较性质、判定之间的联系与区别更利于记忆和运用.Ⅱ要点精讲1 重点:掌握平行线的三个特征及它们的综合运用.2 难点:运用的过程中易与它的判定产生混淆.3 易错点:分不清条件结论,平行线的性质和判定相混淆.Ⅲ精典例题解析重点【例1】如图2-3-1,已知直线a∥b,直线c∥d,∠1=105°,求∠2、∠3的度数.解析由a∥b,可得∠1=∠2.从而求得∠2=105°,又由c∥d,可得∠3=∠2.从而求得∠3=105°.答案∵ a∥b(已知),∴∠2=∠1(两直线平行,内错角相等).又∵∠1=105°(已知),∴∠2=105°.∵ c∥d(已知),∴∠3=∠2(两直线平行,同位角相等).∴∠3=105°.剖析难点【例2】如图2-3-2,已知∠1=72°,∠2=72°,∠3=60°,求∠4的度数.解析本题是平行线的性质和判定的综合运用,由∠1=∠2可得出a ∥b,再由平行线的性质及对顶角相等可得出∠3=∠4.答案∵∠1=72°,∠2=72°,(已知)∴∠1=∠2(等式的性质),∴ a∥b(同位角相等,两直线平行).∵∠3=∠5(两直线平行,同位角相等),∵∠4=∠5(对顶角相等),∴∠3=∠4(等量代换),∵∠3=60°(已知),∴∠4=60°(等式性质).点击易错点【例3】同位角一定相等吗?错解相等.错解分析同位角、内错角、同旁内角仅仅反映两角之间的位置关系.它们没有确定的数量关系.如图2-3-3,∠l与∠2是同位角,但它们不相等.只有在两条平行线被第三条直线所截的前提下,同位角才相等.同样也只有在这个前提下,内错角相等,同旁内角互补.正解不一定相等.Ⅳ能力升级综合能力升级不仅要熟悉图形、性质,还要善于进行等量转化,把待求的角逐步和已知条件建立联系.【例4】如图2-3-4,已知DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠DEB的度数。
北师大初一下册数学第二章教案经受探究利用平方差公式进行因式分解的过程,进展同学的逆向思维,感受数学学问的完整性.一起看看北师大初一下册数学其次章教案!欢迎查阅!北师大初一下册数学其次章教案1教学目标1.学问与技能会应用平方差公式进行因式分解,进展同学推理力量.2.过程与方法经受探究利用平方差公式进行因式分解的过程,进展同学的逆向思维,感受数学学问的完整性.3.情感、态度与价值观培育同学良好的互动沟通的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领悟因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式, 对公式的应用首先要留意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采纳“问题解决”的教学方法,让同学在问题的牵引下,推动自己的思维.教学过程一、观看探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【同学活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【老师活动】引导同学完成下面的两道题目,并运用数学“互逆”的思想,查找因式分解的规律.1.分解因式:a2-25;2.分解因式16m2-9n.【同学活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【老师活动】引导同学完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观看中发觉1~5题均满意平方差公式的特征,可以使用平方差公式因式分解.【老师活动】启发同学从平方差公式的角度进行因式分解,请5位同学上讲台板演.【同学活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).北师大初一下册数学其次章教案2教学目标1.学问与技能领悟运用完全平方公式进行因式分解的方法,进展推理力量.2.过程与方法经受探究利用完全平方公式进行因式分解的过程,感受逆向思维的意义,把握因式分解的基本步骤.3.情感、态度与价值观培育良好的推理力量,体会“化归”与“换元”的思想方法,形成敏捷的应用力量.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:敏捷地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化, 达到能应用公式法分解因式的目的.教学方法采纳“自主探究”教学方法,在老师适当指导下完成本节课内容.教学过程一、回顾沟通,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【学问迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.【老师活动】引导同学完成下面两道题,并运用数学“互逆”的思想,查找因式分解的规律.3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.【同学活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4.【例2】假如x2+axy+16y2是完全平方,求a的值.【思路点拨】依据完全平方式的定义,解此题时应分两种状况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题.【探研时空】1.已知x+y=7,xy=10,求下列各式的值.(1)x2+y2;(2)(x-y)22.已知x+=-3,求x4+的值.四、课堂总结,进展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a2-b2=(a+b)(a-b);a2±ab+b2=(a±b)2.在运用公式因式分解时,要留意:(1)每个公式的形式与特点,通过对多项式的项数、 次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2) 在有些状况下,多项式不肯定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应当首先考虑提公因式, 然后再运用公式分解.五、布置作业,专题突破北师大初一下册数学其次章教案3教学目标:1、学问目标:使同学把握有理数的减法法则,娴熟地进行有理数的减法运算。
2.1余角与补角教学目标:1、经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力;2、在具体情景中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题.教学重点:1、余角、补角、对顶角的概念;2、理解等角的余角相等、等角的补角相等、对顶角相等.教学难点:理解等角的余角相等、等角的补角相等.判断是否是对顶角.教学准备:多媒体课件教学过程:内容一:展示桌球运动中球入袋的情景,观察图中各角与∠1之间的关系:∠ADF+∠1=180º;∠ADC+∠1=180º;∠BDC+∠1=180º;∠EDB+∠1=180º;∠2=∠1º……教学中要鼓励学生自己去寻找,但是不要求学生说出图中所有的角与∠1的关系.在对图中角的关系的充分讨论的基础上,概括出互为余角和互为补角的概念.教师提醒学生:互为余角、互为补角仅仅表明了两个角之间的度量关系,并没有对其位置关系作出限制.(为下面的对顶角的学习作铺垫)想一想:在右图中,(1)哪些互为余角?哪些互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF 与∠BDE 有什么关系?为什么?让学生探索出“同角或等角的余角相等,同角或等角的补角相等”的结论.鼓励学生用自己的语言表达,并说明理由.内容二: 议一议:(1)用剪刀剪东西的时候,哪对角同时变大或变小? (2)如果将剪刀简单的表示为右图,那么∠1和∠2有什么位置关系?它们的大小有什么关系?能试着说明理由吗?由此引出对顶角的概念和“对顶角相等”的结论.学生观察课件的演示过程,获得直观的体会,在观察中总结出对顶角的特征,并用自己的语言表达出来.思考:如图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数,你能说出所量角的度数是多少度吗?你的根据是什么?小结:(1)余角、补角的概念.(2)同角或等角的余角相等,同角或等角的补角相等. (3)对顶角的概念和“对顶角相等”. 作业:习题2.1:1、2、3.1 22.2探索直线平行的条件(1)教学目标:1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力;2、会认由三线八角所成的同位角;3、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.教学重点:会认各种图形下的同位角,并掌握直线平行的条件是“同位角相等,两直线平行”教学难点:判断两直线平行的说理过程教学准备:多媒体课件教学过程:(一)课前复习:(1)在同一平面内,两条直线的位置关系是_____________;(2)在同一平面内,___________两条直线的是平行线.(二)创设情景:如书中彩图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹的角为多少度时才能使木条a与木条b平行?(三)新课:1.学生动手操作移动活动木条,完成书中的做一做内容.2.改变图中∠1的大小,按照上面的方式再做一做,∠1与∠2的大小满足什么关系时,木条a与木条b平行?小组内交流.3.由∠1与∠2的位置引出同位角的概念,如图∠1与∠2、∠5与∠6、∠7与∠8、∠3与∠4等都是同位角 练习:如图,哪些是同位角?4、例:找出下图中互相平行的直线,并说明理由.5、完成第55页随堂练习1、2题(四)小结:本节课学习了两直线平行的条件是同位角相等.要特别注意数形结合.(五)作业: 习题2.2的1、2题ABCDEFGH50° 50°130°AB C DE F 12 3 4 567 8 2 ABCDE F1 3 4 5 67 82.2探索直线平行的条件(2)教学目标:1、经历观察、操作、想象、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力.2、经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.3、会用三角尺过已知直线外一点画这条直线的平行线.教学重点:弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”.教学难点:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”.准备活动:1、如图,a ∥b,数一数图中有几个角(不含平角) 2、写出图中的所有同位角. 教学过程: 一、引入:小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AB (如图所示).他只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?定义:1、内错角;2、同旁内角. 二、探索练习:观察三线八角,内错角的变化和同旁内角的变化,讨论:1 4 5 abc2 36 78(1)内错角满足什么关系时,两直线平行?为什么? (2)同旁内角满足什么关系时,两直线平行?为什么? ★结论:内错角相等,两直线平行.同旁内角互补,两直线平行.三、巩固练习:1、如右图,∵∠1=∠2∴_____∥_____,_____________________ ∵∠2=_____∴____∥____,同位角相等,两直线平行 ∵∠3+∠4=180º∴____∥_____,___________________________ ∴AC ∥FG ,_______________________________ 2、如右图,∵DE ∥BC∴∠2=_____,_______________________ ∴∠B +_____=180º,_________________ ∵∠B =∠4∴_____∥_____,_____________________∴____+_____=180º,两直线平行,同旁内角互补 小结:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”. 作业:习题2.3:1、2、3.A BCD EF G1 2 3 4 A BCD E F4 3 2 1 52.3平行线的特征教学目的:1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.2.使学生了解平行线的性质和判定的区别.重点难点:1.平行的三个性质,是本节的重点,也是本章的重点之一.2.怎样区分性质和判定,是教学中的一个难点.教学准备:多媒体课件教学过程:一、巩固旧知,问题引入.巩固平行线的判定方法,并引导学生分析平行线的判定是由一些角的关系得出平行的结论在学生分析的基础上,提出若交换判定中的条件与结论,能否由“两直线平行”得出“同位角相等”等一些角的关系,从而引入课题.二、实验验证,探索特征.1、教室的窗户的横格是平行的,请看老师用三角尺去检验一对同位角,看看结果怎样?(教师用三角尺在窗户上演示,学生观察并思考)2、学生实验(发印好平行线的纸单)(1)已知,a//b,任意画一条直线c与平行线a、b相交.(2)任选一对同位角,用适当的方法实验,看看这一对同位角有什么关系(要求学生多画几条截线试试,鼓励学生用多种方法进行探索)3、实验结论:两条平行线被第三条直线所截,同位角相等.简记为“两直线平行,同位角相等”识记该性质,并讨论在这个特征中,已知的是什么,结论是什么?它与前面学过的“同位角相等,两直线平行”有什么不同?4、问题讨论:我们知道两条平行线被第三条直线所截,不但形成有同位角,还有内错角、同旁内角.我们已经知道“两条平行线被第三条直线所截,同位角相等”.那么请同学们想一想:两条平行线被第三条直线所截,内错角、同旁内角有什么关系呢如图,已知直线a//b,思考∠1与∠2、∠2与∠3之间有什么关系?为什么?(小组讨论,给予充足的时间交流,可引导学生与同位角进行比较,从而得出结论,关注学生在此能否积极地、有条理地思考)结论: “两直线平行,内错角相等” “两直线平行,同旁内角互补”(识记这两个性质,并思考已知什么条件,得出什么结论,与“内错角相等,两直线平行”“同旁内角互补,两直线平行”有什么不同.)5、归纳平行线的三个性质及三个判定三、例题学习,实践运用.求一求例:如图,AD ∥BC ,AB ∥DC ,∠1=100º,求∠2,∠3的度数 (二)做一做:如图,一束平行光线AB 与DE 射向一个水平镜面后被反射,此时∠1=∠2,∠3=∠4,(1)∠1、∠3的大小有什么关系?∠2与∠4呢? (2)反射光线BC 与EF 也平行吗?A C D F BE1234先由学生回答,用自己的语言说理,然后再出示以下说理过程,由学生说明每一步的理由.四、课堂小结:1、说说平行线的三个性质是什么?2、平行线的性质与平行线的判定的区别:3、证平行,用判定;知平行,用性质. 五、课后作业:习题2.4的1、2、3题a bc4321A B C D 3212.4用尺规作线段和角(1)教学目标:会用尺规作一条线段等于已知线段;并了解它们在尺规作图中的简单应用.教学重点:1.作一条线段等于已知线段.2.作线段的和、差、倍数等.教学难点:作线段的和、差.教学准备:多媒体课件教学过程:一、新课:提出问题:如何作一条线段等于已知线段?你有什么办法?(让学生上讲台操作,自由发挥)在此基础上,提出:如果只有圆规和直尺这两个工具,你能按要求作出图形吗?教师向学生详细的讲授尺规作图法.(1)作射线A´C´;(2)以点A´为圆心,以AB的长为半径画弧,交射线A´C´于点B´.A ´B´就是所作的线段.教师强调注意事项:(1)解题前要写“解”;(2)严格按作图要求操作;(3)保留作图痕迹;(4)下结论.二、巩固练习:(一)用尺规作一条线段等于已知线段.(1)已知:线段AB,求作:线段A´B´,使得A´B´=AB.(二)用尺规作一条线段等于已知线段的倍数:(3)已知:线段AB,求作:线段A´B´,使得A´B´=2AB.(三)用尺规作一条线段等于已知线段的和:(5)已知:线段a,b求作:线段AD,使得AD=a+b.(6)已知:线段AB、CD、EF.求作:线段A´F´,使得A´F´=AB+CD+EF.(四)用尺规作一条线段等于已知线段的差:(7)已知:线段AB,CD.求作:线段A´D´,使得A´D´=AB-CD.通过练习,自己动手操作.体会作图过程.熟悉尺规作图.小结:(1)如何作一条线段等于已知线段,应该注意什么问题.(2)如何作线段的和、差以及倍数.作业:习题2.5:1、2.2.4用尺规作线段和角(2)教学目的:1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识.2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学重点:能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学难点:作图步骤和作图语言的叙述,及作角的综合应用.教学准备:多媒体课件教学过程:一、问题的提出:如图,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB.(1)请过点C画出与AB平行的另一条边(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?二、.新课:(师生一起,边讲边练)内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹哦!)(一)用尺规作一个角等于已知角.(1)已知:∠AOB,求作:∠A´O´B´,使∠A´O´B´=∠AOB.(2)已知:∠α,求作:∠AOB,使∠AOB=∠α.(二)用尺规作一个角等于已知角的倍数:(3)已知:∠1,求作:∠MON,使∠MON=2∠1;∠COD,使∠COD=3∠1.(三)用尺规作一个角等于已知角的和:(4)已知:∠1、∠2、∠3.求作:①∠AOB,使∠AOB=∠1+∠2;②∠POQ,使∠POQ=∠1+∠2+∠3;③∠MON,使∠MON=2∠1+∠2.(四)用尺规作一个角等于已知角的差:已知:∠α、∠β、∠γ.求作:①∠AOB,使∠AOB=∠α-∠β;②∠POQ,使∠POQ=∠α-∠β-∠γ;③求作一个角,使它等于2∠β-∠γ.(五)综合练习:(通过以下练习,意味着你掌握了作角的真本领,多动一下脑筋,你一定会完成得很出色的!)k(1)已知:线段AB、∠α、∠β.求作:分别过点A、点B作∠CAB=∠α、∠CBA=∠β.(2)如图,点P为∠ABC的边AB上的一点,过点P作直线EF//BC.(3)已知:直线L和L外一点P,求作:一条直线,使它经过点P,并与已知直线L平行.(4)已知:△ABC,求作:直线MN,使MN经过点A,且MN//BC.(5)如图,以点B为顶点,射线BA为一边,在∠ABC外再作一个角,使其等于∠ABC.三、小结:今天我们学习了用尺规作一个角等于已知角,它是一个基本的作图方法.四、作业:习题2.6的1(1)(2)。
北师大版七年级下册数学第二章 平行线与相交线练习题(A.B.C 卷)A 卷1.一定在△ABC 内部的线段是( )A .锐角三角形的三条高、三条角平分线、三条中线B .钝角三角形的三条高、三条中线、一条角平分线C .任意三角形的一条中线、二条角平分线、三条高D .直角三角形的三条高、三条角平分线、三条中线 2.下列说法中,正确的是( )A .一个钝角三角形一定不是等腰三角形,也不是等边三角形B .一个等腰三角形一定是锐角三角形,或直角三角形C .一个直角三角形一定不是等腰三角形,也不是等边三角形D .一个等边三角形一定不是钝角三角形,也不是直角三角形3.如图,在△ABC 中,D 、E 分别为BC 上两点,且BD =DE =EC ,则图中面积相等的三角形有( ) A .4对 B .5对 C .6对 D .7对 (注意考虑完全,不要漏掉某些情况)4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .无法确定5.若等腰三角形的一边是7,另一边是4,则此等腰三角形的周长是( ) A .18 B .15 C .18或15 D .无法确定6.两根木棒分别为5cm 和7cm ,要选择第三根木棒,将它们钉成一个三角形,如果第三根木棒长为偶数,那么第三根木棒的取值情况有( )种 A .3 B .4 C .5 D .6 A .180° B .360° C .720° D .540° 7.如图:(1)AD ⊥BC ,垂足为D ,则AD 是________的高,∠________=∠________=90°;(2)AE 平分∠BAC ,交BC 于点E ,则AE 叫________,X|k |B| 1 . c|O |m ∠________=∠________=21∠________,AH 叫________;(3)若AF =FC ,则△ABC 的中线是________;(4)若BG =GH =HF ,则AG 是________的中线,AH 是________的中线.8.在等腰△ABC 中,如果两边长分别为6cm 、10cm ,则这个等腰三角形的周长为________. 9.如图,△ABC 中,∠ABC 、∠ACB 的平分线相交于点I .(1)若∠ABC =70°,∠ACB =50°,则∠BIC =________;(2)若∠ABC+∠ACB=120°,则∠BIC=________;(3)若∠A=60°,则∠BIC=________;(4)若∠A=100°,则∠BIC=________;(5)若∠A=n°,则∠BIC=________.10.如图,在△ABC中,∠BAC是钝角.画出:(1)∠ABC的平分线;(2)边AC上的中线;(3)边AC上的高.11.如图,AB∥CD,BC⊥AB,若AB=4cm,2S,求△ABD中AB边上的高.=12cm∆ABC12.学校有一块菜地,如下图.现计划从点D表示的位置(BD∶DC=2∶1)开始挖一条小水沟,希望小水沟两边的菜地面积相等.有人说:如果D是BC的中点的话,由此点D 笔直地挖至点A就可以了.现在D不是BC的中点,问题就无法解决了.但有人认为如果认真研究的话一定能办到.你认为上面两种意见哪一种正确,为什么?13.一块三角形优良品种试验田,现引进四个良种进行对比实验,需将这块土地分成面积相等的四块.请你制订出两种以上的划分方案.14.一个三角形的周长为36cm,三边之比为a∶b∶c=2∶3∶4,求a、b、c.15.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G , (1)完成下面的证明:∵ MG 平分∠BMN ( ), ∴ ∠GMN =21∠BMN ( ),同理∠GNM =21∠DNM . ∵ AB ∥CD ( ), ∴ ∠BMN +∠DNM =________( ). ∴ ∠GMN +∠GNM =________. ∵ ∠GMN +∠GNM +∠G =________( ), ∴ ∠G = ________. ∴ MG 与NG 的位置关系是________.(2)把上面的题设和结论,用文字语言概括为一个命题:新课 标 第 一 网 _______________________________________________________________. 16.已知,如图D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E , ∠A =46°,∠D =50°.求∠ACB 的度数.17.已知,如图△ABC 中,三条高AD 、BE 、CF 相交于点O .若∠BAC =60°,求∠BOC 的度数.18.已知,如图△ABC 中,∠B =65°,∠C =45°,AD 是BC 边上的高,AE 是∠BAC 的平分线.求∠DAE 的度数.B 卷一、选择题(每题3分,共30分) 1.图中三角形的个数是( ) A .8 B .9 C .10 D .11 2.下面四个图形中,线段BE 是⊿ABC 的高的图是( )A B C D3.以下各组线段为边,能组成三角形的是( )A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm 4.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高, DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( )A 、3个B 、4个C 、5个D 、6个6.下面说法正确的个数有( )①如果三角形三个内角的比是1∶2∶3,那么这个三角形是直角三角形;②如果三角形的一个外角等于与它相邻的一个内角,则这么三角形是直角三角形;③如果一个三角形的三条高的交点恰好是三角形的一个顶点,那么这个三角形是直角三角形;④如果∠A=∠B=21∠C ,那么△ABC 是直角三角形;⑤若三角形的一个内角等于另两个内角之差,那么这个三角形是直角三角形;⑥在∆ABC 中,若∠A +∠B=∠C ,则此三角形是直角三角形。
A 、3个 B 、4个 C 、5个 D 、6个7.在∆ABC 中,C B ∠∠,的平分线相交于点P ,设,︒=∠x A 用x 的代数式表示BPC ∠的度数,正确的是( ) (A )x 2190+(B )x 2190- (C )x 290+ (D )x +90 8.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( ) A 、900 B 、1200 C 、1600 D 、1800 9.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个 10.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角 ③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( )第2题图 第1题图 第5题图第8题图A.1个B.2个C.3个D.4个 二、填空题(每题3分,共30分)11.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
12.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.13.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。
14.如图,∠1=_____.15.若三角形三个内角度数的比为2:3:4,则相应的外角比是 .16.如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度。
17.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到 一个三角形,那么a 的取值范围是 18.如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_____________。
19.如图,△ABC 中,∠A=1000,BI 、CI 分别平分∠ABC ,∠ACB ,则∠BIC= ,若BM 、CM 分别平分∠ABC ,∠ACB 的外角平分线,则∠M= 20.如图∆ABC 中,AD 是BC 上的中线,BE 是∆ABD 中AD 边上 的中线,若∆ABC 的面积是24,则∆ABE 的面积是________。
三、解答题(共60分) 21.(本题6分)有人说,自己的步子大,一步能走三米多,你相信吗?用你学过的数学知识说明理由。
22.(本题6分)小颖要制作一个三角形木架,现有两根长度为8m 和5m 的木棒。
如果要 求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少? 23.(本题7分)小华从点A 出发向前走10m ,向右转36°然后继续向前走10m ,再向右转36°,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回到点A 时共走多少米?若不能,写出理由。
24.(本题7分)⊿ABC 中,∠ABC 、∠ACB 的平分线相交于点O 。
C B A第11题图 第12题图 A B C D E第13题图第14题图 第16题图 A BCDE 第20题图1 2 B A E C D I19题图(1)若∠ABC = 40°,∠ACB = 50°,则∠BOC = 。
(2)若∠ABC +∠ACB =116°,则∠BOC = 。
(3)若∠A = 76°,则∠BOC = 。
(4)若∠BOC = 120°,则∠A = 。
(5)你能找出∠A 与∠BOC 之间的数量关系吗?25.(本题8分)一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BDC=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
26.(本题8分)已知,如图,在△ ABC 中,AD ,AE 分别是 △ ABC 的高和角平分线, 若∠B=30°,∠C=50°. (1)求∠DAE 的度数。