数据库基础 第六章 结构化程序设计基础
- 格式:ppt
- 大小:494.00 KB
- 文档页数:48
用于结构化程序设计的三种基本结构
结构化程序设计是指一种面向过程的高级程序设计方法,它把程序的有机结构划分为独立的小步骤,每个步骤都可以独立考虑,用顺序、分支和循环等结构控制衔接这些步骤,从
而把一个复杂任务划分为一个个较容易解决的子任务。
在结构化程序设计中,主要有顺序、分支和循环三种基本结构,它们可以相结合使用,实现更复杂的功能。
首先,顺序结构是将一个任务分解成一系列步骤,按照一定顺序执行,每一步骤之间用流
程控制语句连接起来,组成一个完整的程序片段。
传统的程序实现大都依赖于这种结构,
它是最常用的编程基础,任何程序都要以它为主,以它为核心。
其次,分支结构可以让程序实现一种“判断并选择”的功能,它根据某种条件的真假来决
定程序的执行路径,有不同的分支结构,如IF-THEN-ELSE,SWITCH-CASE等等,它可以增强程序的复杂性。
最后,循环结构可以实现对一系列操作重复执行的功能,它通过循环控制语句对某些操作
重复执行,与此同时,循环控制语句也包含了循环终止的条件以及保证总有终止点的机制。
常见的循环结构有FOR,WHILE等,它们可以让程序更高效、更有弹性。
综上所述,结构化程序设计的三种基本结构分别为顺序结构、分支结构和循环结构,可以实现程序从简单到复杂的结构和功能,交织组合上述三种结构可以随意实现更加具体的程序功能。
所以,这三种基本结构,无论在程序设计的原理还是实际的应用中,都是至关重
要的!。
可编辑修改精选全文完整版《数据库应用基础——Visual FoxPro》教学大纲课程的性质课程设置的目的与要求课程要求的内容与考核目标授课及实验学时分配课程实验要求考试方式及考试成绩有关说明与实施要求《数据库应用基础——Visual FoxPro》教学大纲一、课程名称《数据库应用基础——Visual FoxPro》二、课程性质1.教学对象:本课程既是计算机与信息技术学科专业的一门专业基础课,也是普通高等院校非计算机专业文理科计算机公共基础课,是中等职业教育计算机及应用专业国家规划教材。
该课程为3学分,实行学分制。
2. 课程特点:课程内容主要介绍了Visual FoxPro 9.0 数据库应用系统的开发工具和开发方法,学习和掌握程序设计方法与技巧,以及数据库的应用和可视化程序设计技巧。
通过该课程的学习,即要求学生具有一定的数据库开发和设计能力,同时还要求了解和掌握可视化软件工具的开发应用方法。
3.与其他课程的关系:计算机文化基础、数学、英语是本课程的前序课程,其后序课程为应用计算机程序设计与数据库技术的专业课程或非计算机专业的专业基础课程、专业课中有数据处理要求的的相关课程。
三、课程教学目的本书以初学数据库的学生为教学对象,以初步掌握Windows95/98基础知识为教学起点,以中文VisualFoxPro6.0为蓝本,详细介绍关系数据库管理系统的基础和基本操作方法。
教材内容在第一版的基础上增加了关系数据库语言SQL命令,适当增加了面向对象程序设计方法的应用,删除了用户自定义函数的内容。
本书是中等职业学校计算机及应用专业国家规划教材《数据库应用基础VisualFoxpro》第2版,在原有国家规划教材基础上修订。
本书依据教育部中等职业学校计算机及应用专业数据库应用基础课程教学基本要求编写,同时根据中等职业教育和计算机技术的发展对内容进行了适当的调整,编写过程中还参照了教育部考试中心颁发的全国计算机等级考试大纲。
数据库系统基础教程第六章答案数据库系统基础教程第六章答案【篇一:数据库系统基础教程答案ch7】>数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案数据库系统基础教程答案a)create table movies ( titlechar(100), yearint, length int,gee char(10),studioname char(30), producerc# int,primary key (title, year),foreign key (producerc#) references movieexec(cert#) ); orcreate table movies ( titlechar(100), yearint, length int,gee char(10),studioname char(30),producerc# int references movieexec(cert#), primary key (title, year) ); b)create table movies ( titlechar(100), yearint, length int,gee char(10),studioname char(30),producerc# int references movieexec(cert#) on delete set null on update set null,primary key (title, year) );c)create table movies ( titlechar(100), yearint, length int,gee char(10),studioname char(30),producerc# int references movieexec(cert#) on delete cascade on update cascade,primary key (title, year) ); d)create table starsin (movietitle char(100)references movie(title), movieyear int,starname char(30),primary key (movietitle, movieyear, starname) );e)create table starsin (movietitle char(100)references movie(title) on delete cascade, movieyear int,starname char(30),primary key (movietitle, movieyear, starname) ); to declare such a foreign-key constraint between the relations movie and starsin, values of the referencing attributes in movie should appear inmoviestar as unique values. however, based on primary key declaration in relation starin, the uniqueness of movies is guaranteed with movietitle, movieyear, and starname attributes. even with title and year as referencing attributes there is no way of referencing unique movie from starsinwithout starname information. therefore, such a constraint can not be expressed using a foreign-key constraint.alter table productadd primary key (model);alter table pcadd foreign key (model) references product (model); alter table laptopadd foreign key (model) references product(model); alter table printeradd foreign key (model) references product (model);alter table classesadd primary key (class); alter table shipsadd primary key (name); alter table shipsadd foreign key (class) references classes(calss); alter table battlesadd primary key (name); alter table outcomes add foreign key (ship) references ships (name); alter table outcomesadd foreign key (battle) references battles (name);a)alter table shipsadd foreign key (class) references classes (class) on delete set null on update set null;in addition to the above declaration, class must be declared the primary key for classes. b)alter table outcomeadd foreign key (battle) references battles (name) on delete set null on update set null; c)alter table outcomesadd foreign key (ship) references ships (name) on delete set null on update set null; a)yearint check (year = 1915)b)length int check (length = 60 and length = 250) c)studioname char(30)check (studioname in (?disney?, fox?, ?mgm?, ?paramount?) ) a)create table laptop ( …speed decimal(4,2) check (speed = ) … ); b) create table printer ( …type varchar(10)check (type in (?laser?, ?ink-jet?, ?bubble-jet?)) … ); c)create table product ( …type varchar(10)check (type in(?pc?, ?laptop?, ?printer?)) … );d)create table product ( …model char(4)check (model in (select model from pc union all select model from laptop union allselect model from printer)) … );* note this doesn?t check the attribute constraint violation caused by deletions from pc, laptop, or printera)【篇二:数据库原理教程习题答案(全)】t>第1章数据库系统概述习题参考答案税务局使用数据库存储纳税人信息、纳税人缴纳税款信息等。
结构化程序设计方法的基本要点简介结构化程序设计方法是一种用于构建大型程序的系统性方法。
它通过将程序分解为一系列小的、可管理的模块,以及规定了模块之间的交互方式,从而降低程序的复杂性,提高程序的可维护性和可读性。
本文将从以下几个方面详细介绍结构化程序设计方法的基本要点。
1. 模块化模块化是结构化程序设计方法的核心思想之一。
模块化将程序分解为多个功能相对独立的模块,每个模块负责完成一个特定的任务。
模块化有助于提高程序的可读性,可维护性和可重用性。
1.1 模块划分在进行模块划分时,可以按照功能划分原则,将程序划分为几个不同的功能模块,每个模块负责完成一个特定的功能。
也可以按照数据划分原则,将程序划分为几个处理不同数据的模块。
模块应该具有清晰的职责和界限,不同模块之间的功能和数据交互应该通过接口进行。
1.2 接口设计模块之间的接口设计是模块化的关键。
接口应该明确定义模块之间的输入和输出,以及数据的传递方式。
良好的接口设计可以降低模块之间的耦合度,提高代码的可复用性,使得模块可以独立开发和测试。
1.3 函数与过程模块可以通过函数或过程来实现。
函数是一段可重用的代码,用于执行特定的计算或操作,并返回一个结果。
过程是一段可重用的代码,用于执行一系列操作,不返回结果。
函数和过程有助于将程序划分为更小的单元,提高程序的可读性和可维护性。
2. 控制结构控制结构是结构化程序设计方法的另一个重要要点。
控制结构用于控制程序的执行流程,改变程序的执行顺序或执行条件。
2.1 顺序结构顺序结构是程序从上到下按照顺序执行的控制结构。
顺序结构是程序的基础,所有的程序都是从顺序结构开始进行。
2.2 选择结构选择结构用于根据条件选择执行不同的代码块。
常见的选择结构包括if语句和switch语句。
if语句用于判断一个条件是否成立,如果条件成立,则执行其中的代码块;否则执行其他代码块。
switch语句可以根据一个表达式的值选择执行不同的代码块。
第六章习题(1)复习题1、简述自然语言与形式语言的概念以及区别、汇编语言与机器语言的概念及区别。
自然语言是某一社会发展中形成的一种民族语言,而形式语言是进行形式化工作的元语言,它是以数学和数理逻辑为基础的科学语言。
用机器指令形式编写的程序称为机器语言,用带符号或助记符的指令和地址代替二进制代码成为语言进化的目标。
这些使用助记符语言的语言后来就被称之为汇编语言。
(P135P136)2、什么是高级程序设计语言?它有什么特点?高级语言是汇编语言的一种抽象。
高级语言的设计目标就是使程序员摆脱汇编语言细节的繁琐。
高级语言同汇编语言都有一个共性,那就是:它们必须被转化为机器语言,这个转化的过程称为解释或编译。
(1)高级语言接近算法语言,易学、易掌握;(2)高级语言设计出来的程序可读性好,可维护性强,可靠性高;(3)高级语言与具体的计算机硬件关系不大,其程序可移植性好,重用率高;(4)高级语言自动化程度高,开发周期短,利于提高程序的质量。
(P138)3、列举程序设计语言的几种范型。
程序语言大致分为命令式程序设计语言、面向对象的程序设计语言、函数式程序设计语言和逻辑型程序设计语言等范型。
(P138-140)4、简述语言虚拟机。
提示:语言虚拟机是某种语言的解释器。
语言虚拟机是建立在硬件和操作系统之上,针对不同的硬件和操作系统有不同的虚拟机,通过语言虚拟机屏蔽掉硬件的差异。
这样使得硬件系统能够支持这种语言编写的程序的有效执行。
目前最流行的语言虚拟机是Java虚拟机。
(P147)5、计算机执行用高级语言编写的程序有哪些途径?它们之间的主要区别是什么?提示:主要有编译、解释等方式,也有两种方式的混合使用的形式。
编译是使用编译器将高级语言编写的源程序转换成计算机可以执行的机器语言可执行程序,也可以理解为用编译器产生可执行程序的动作。
编译方式是一次编译,然后执行程序可以反复多次执行。
解释是另一种将高级语言转换为可执行程序的方式。
《计算机应用基础》各章课后习题答案计算机应用基础各章课后习题答案第一章计算机基础知识1.1 选择题答案解析1. A2. B3. C4. A1.2 填空题答案解析1. 计算机2. 高效、精确、快速1.3 简答题答案解析1. 计算机是一种能够按照预定程序进行自动运算的现代化智能工具。
2. 计算机的主要组成部分包括硬件和软件两个方面。
硬件包括中央处理器(CPU)、内存、输入设备、输出设备和存储设备等。
软件分为系统软件和应用软件两个层次。
第二章计算机网络基础1. B2. C3. A4. D2.2 填空题答案解析1. 局域网2. 广域网2.3 简答题答案解析1. 计算机网络是指将多台计算机通过通信设备互相连接起来,实现资源共享和信息传输的系统。
2. 网络通信传输常用协议有TCP/IP协议和UDP协议。
第三章操作系统基础3.1 选择题答案解析1. C2. D3. A4. B1. 内存管理2. 文件管理3.3 简答题答案解析1. 操作系统是控制和管理计算机硬件与软件资源,合理组织计算机工作流程的系统软件。
2. 操作系统的主要功能包括进程管理、内存管理、文件管理和设备管理等。
第四章数据库基础4.1 选择题答案解析1. B2. C3. A4. D4.2 填空题答案解析1. 数据库管理系统2. 结构化查询语言4.3 简答题答案解析1. 数据库是按照数据模型组织、存储和管理数据的集合。
2. 数据库管理系统是用于建立、管理和使用数据库的软件。
第五章网页设计基础5.1 选择题答案解析1. C2. B3. D4. A5.2 填空题答案解析1. HTML2. CSS5.3 简答题答案解析1. 网页设计是指通过使用HTML、CSS等技术创建网页的过程。
2. HTML是超文本标记语言,用于创建和组织网页的结构。
CSS是层叠样式表,用于定义网页的样式和布局。
第六章程序设计基础6.1 选择题答案解析1. B2. A3. D4. C6.2 填空题答案解析1. 结构化程序设计2. 面向对象程序设计6.3 简答题答案解析1. 程序设计是指按照一定的算法和规则编写计算机程序的过程。
结构化程序设计结构化程序设计是一种编程范式,它强调使用结构化控制语句来编写程序,以提高代码的可读性、可维护性和可靠性。
这种设计方法最早由E.W. Dijkstra和C.A.R. Hoare等人在20世纪60年代提出,并逐渐成为软件开发中的主流方法。
定义与原则结构化程序设计的核心是将程序分解为一系列结构化的单元,每个单元只执行一种逻辑功能。
这些单元通过控制语句(如顺序、选择和循环)相互连接。
其主要原则包括:1. 自顶向下设计:从整体到部分,逐步细化程序结构。
2. 模块化:将程序划分为独立的模块,每个模块完成特定的任务。
3. 逐步细化:将复杂问题分解为更小、更易于管理的问题。
4. 使用结构化控制语句:避免使用非结构化的控制语句,如GOTO。
结构化控制语句结构化程序设计主要使用以下三种控制语句:1. 顺序结构:按照代码的书写顺序执行。
2. 选择结构:根据条件选择不同的执行路径,如`if-else`语句。
3. 循环结构:重复执行一段代码直到满足特定条件,如`for`、`while`和`do-while`循环。
优点1. 提高代码可读性:结构化的代码更容易理解和维护。
2. 减少错误:结构化设计减少了程序中的错误和异常情况。
3. 易于测试和调试:模块化的设计使得测试和调试更加容易。
4. 增强代码重用性:模块化的设计允许代码重用,提高开发效率。
缺点1. 灵活性降低:严格的结构化设计可能限制了某些特定情况下的灵活性。
2. 过度设计:在某些简单问题上,结构化设计可能导致不必要的复杂性。
实践方法1. 需求分析:明确程序需要完成的功能和性能要求。
2. 设计:使用伪代码或流程图来设计程序的逻辑结构。
3. 编码:根据设计文档编写代码,确保使用结构化控制语句。
4. 测试:对每个模块进行测试,确保其正确执行。
5. 维护:对程序进行持续的维护和优化。
应用领域结构化程序设计广泛应用于软件开发的各个领域,包括但不限于:- 商业软件:如会计、库存管理等。
第六章专题二Python语言基础知识一、单选题1.结构化程序设计的三种基本结构不包括(C)。
A.顺序结构B.选择结构C.树型结构D.循环结构2.以下不属于选择语句的是( D )。
A.if B.else C.elif D.def3.设计判断一元二次方程有几个解的程序,其结构应用使用(B)。
A.顺序结构B.分支结构C.循环结构D.混合结构4.以下程序代码执行后,输出的结果是( B )。
a=1;b=2if b<a:b=a+1print(b)A.1 B.2 C.3 D.45.运行下列Python程序,输出结果为True,则空白处应填入(A)。
m=10;n=12if :print(True)else:print(False)A.m<n B.m>n C.m==n D.m>=n 6.已知a=6,b=7,以下程序段执行后变量c的值为( D )。
if (a%3==0)or(b%3==0):c=a*belse:c=a+bA.6 B.7 C.13 D.427.执行以下程序段后,输出的结果是( B )。
a,b=1,2if b<2:a=-1else:a=0print(a)A.-1 B.0 C.1 D.28.10以内的奇数可用列表函数表示为( C )。
A.range(10,2) B.range(1,10) C.range(1,10,2) D.range(0,11,2)9.语句“i=i+1”的意思是( D )。
A.没有意义B.既是赋值语句也是判断语句C.判断i与i+1是否相等D.将i的原值加1再赋给i,即i自增110.下列语句用于计算s=1+3+…+19并输出结果。
①for i in range(1,20,2): ②print(s) ③s=0 ④s=s+i正确的语句顺序是( C )。
A.①②③④B.①②④③C.③①④②D.③④②①11.下列语句用于在屏幕上输出10个“★”,其中横线处应该填入( D )。