极值点偏移问题的处理
- 格式:docx
- 大小:18.69 KB
- 文档页数:2
解决极值点偏移问题的六种方法Finding solutions to the problem of offsetting extreme points in data analysis is crucial for ensuring accurate results and avoiding misleading interpretations. There are six methods that can be employed to address this issue effectively.首先,一种常见的方法是通过对数据进行标准化或归一化来消除极值点的偏移影响。
这种方法可以确保数据集的分布更加均匀,减少极值点对整体数据分布的干扰。
通过将数据的范围限制在一定范围内,可以减少极值点对数据分析结果的影响,提高数据分析的准确性。
Another way to tackle the problem of extreme points offset is by using robust statistics, which are less sensitive to outliers. Robust statistical methods, such as median and quantile regression, are more resistant to the influence of extreme values compared to traditional mean-based approaches. By utilizing robust statistics, researchers can obtain more reliable estimates and draw more accurate conclusions from their data analysis.此外,引入正态化技术也是解决极值点偏移问题的有效方法之一。
极值点偏移四种解题方法极值点偏移是数学中一个重要的概念,它指的是极值点在函数图像上偏移的现象。
本文将介绍四种解决极值点偏移问题的解题方法。
下面是本店铺为大家精心编写的5篇《极值点偏移四种解题方法》,供大家借鉴与参考,希望对大家有所帮助。
《极值点偏移四种解题方法》篇1一、定义法定义法是解决极值点偏移问题的一种基本方法。
该方法的主要思路是利用函数的定义式,通过分析函数在某一点处的导数值,来判断该点是否为极值点。
如果函数在某一点处的导数值等于零,则该点为极值点。
如果函数在某一点处的导数值不存在,则该点也可能是极值点。
二、导数法导数法是解决极值点偏移问题的另一种基本方法。
该方法的主要思路是利用函数的导数,通过分析函数在某一点处的导数值,来判断该点是否为极值点。
如果函数在某一点处的导数值等于零,则该点为极值点。
如果函数在某一点处的导数值不存在,则该点也可能是极值点。
三、极值判定法极值判定法是解决极值点偏移问题的一种重要方法。
该方法的主要思路是利用函数的极值判定条件,通过分析函数在某一点处的极值条件,来判断该点是否为极值点。
如果函数在某一点处满足极值条件,则该点为极值点。
四、图像法图像法是解决极值点偏移问题的一种直观方法。
该方法的主要思路是通过绘制函数的图像,来判断函数的极值点是否偏移。
如果函数的图像在某一点处发生变化,则该点可能是极值点。
如果函数的图像在某一点处出现拐点,则该点可能是极值点。
综上所述,极值点偏移四种解题方法分别为定义法、导数法、极值判定法和图像法。
《极值点偏移四种解题方法》篇2极值点偏移是高中数学中常见的问题之一,通常出现在导数相关的题目中。
极值点偏移指的是,在可导函数的一个区间内,如果存在一个极值点,且该极值点左右两侧的增减速度不同,那么这个极值点可能会偏移到区间的中点,从而造成函数图像的不对称。
解决极值点偏移问题的方法有很多种,以下是四种常见的解题方法: 1. 构造函数法:该方法的本质是构造一个新的函数,使得新函数的导数与原函数的导数之间存在一定的关系。
极值点偏移是高中数学中的一个重要概念,也是学生们比较头疼的一个知识点。
在解决数学问题时,我们经常会遇到一些与极值点有关的题型,比如函数的极值问题、优化问题等。
而在解决这些问题时,极值点偏移方法是一种非常实用的解题技巧。
本文将从四种题型出发,对极值点偏移方法进行详细解析,并结合具体例题进行说明。
1. 函数的极值问题函数的极值问题是高中数学中的一个重要内容。
在解决这类问题时,我们常常会用到导数的概念,来求函数的极值点。
但有些情况下,我们可以通过极值点偏移方法更快地得到函数的极值点。
比如对于一些简单的函数,通过极值点的平移和对称性,可以用更简洁的方法求得函数的极值点。
举例说明:已知函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的极值点。
解:求导得 $f'(x)=3x^2-6x$。
令导数为零,得到 $x=0$ 或 $x=2$。
根据导数的符号,可知 $x=0$ 是极小值点,$x=2$ 是极大值点。
但通过极值点偏移方法,我们可以发现,当 $x=0$ 时,$f(x)=2$;而当$x=2$ 时,$f(x)=2$。
也就是说,极小值点 $x=0$ 对应的函数值和极大值点 $x=2$ 对应的函数值相等。
这就是极值点偏移的思想。
2. 优化问题优化问题是数学建模中常见的类型之一,也是考察学生综合运用数学知识解决实际问题的一种形式。
当我们遇到优化问题时,常常需要求解函数的极值点。
而极值点偏移方法可以帮助我们更快地找到函数的极值点,从而解决优化问题。
举例说明:一块长为20厘米的铁皮,可以做成一个底面积为 $x cm^2$ 的正方形盒子和一个底面积为 $y cm^2$ 的开口放平盒子,求怎样分割这块铁皮才能使总体积最大。
解:设正方形盒子的边长为 $a$,开口朝下的放平矩形盒子的底边长为 $b$,高为 $h$。
则根据题意可知,$b=a+2h$,且 $x=a^2$,$y=bh$。
问题转化为求 $x+y$ 的最大值。
⾼中数学:极值点偏移问题有什么好的解决办法?1. 所谓的极值点偏移,就是函数在极值点左右的增减速度不⼀样,导致函数的图象不具有对称性。
如果极值点左侧的增减速度快于右侧,则极值点左偏,反之,则极值点右偏。
2. 极值点偏移问题常常出现在⾼考数学的压轴题当中,这类题往往思维要求较⾼,过程较为繁琐,计算量较⼤,具有相当的难度,因此常常令考⽣望⽽⽣畏。
3. 解决极值点偏移问题,构造对称函数和利⽤对数平均不等式是两种典型的⽅法,⼆者各有千秋,独具特⾊。
4. 极值点偏移问题是近⼏年⾼考中的热点问题,在各地的⾼考模拟试卷中也时常出现,并由此衍⽣出⼀系列的压轴题,⽐如拐点偏移就是其中最典型的⼀种。
⼀·极值点偏移问题:⼆·构造对称函数:构造对称函数是处理极值点偏移问题的基本⽅法,其步骤总结如下:三·对数平均不等式:1·对数平均不等式:我们已经学习过算术平均数,⼏何平均数,调和平均数和平⽅平均数,由这些平均数之间构成的⼤⼩关系称之为均值不等式,⽽今天我们介绍的对数平均数不外乎是⼀种新的平均数,它是均值不等式中的⼀环⽽已。
【评注】对数平均不等式也称之为”A-L-G“不等式,它是均值不等式的加强版,其放缩功能更加精细,因此在⾼考压轴题中具有强⼤功效。
2·对数平均不等式的⼏何意义:对数平均不等式具有明确的⼏何意义,这⾥需要借助定积分加以说明,⽂科考⽣可以直接略过。
四·⾼考中的极值点偏移问题:对于极值点偏移问题,⽆论是构造对称函数,还是利⽤对数平均不等式,⼆者皆较为程式化,最终殊途同归。
以上,祝你好运。
导数压轴题分类(2)---极值点偏移问题(含答案)极值点偏移问题是在求解函数的极值点时,由于函数表达式的特殊性质,导致极值点位置发生偏移,需要采用特殊的解决方法。
常见的处理方法有以下几种:1.构造一元差函数F(x)=f(x)-f(2x-x)或F(x)=f(x+x)-f(x-x),其中x为函数y=f(x)的极值点。
2.利用对数平均不等式ab<a-b+a+b。
3.变换主元等方法lna-lnb^2<ln(a-b^2)。
接下来,我们以一个具体的例子来说明极值点偏移问题的解决方法。
题目:设函数f(x)=-alnx+x-ax(a∈R),试讨论函数f(x)的单调性;若f(x)=m有两解x1,x2(x12a。
解析:1.讨论函数f(x)的单调性由f(x)=-alnx+x-ax可知:f'(x)=-a/x+1-a=-(a/x+a-1)因为函数f(x)的定义域为(0,+∞),所以:①若a>0时,当x∈(0,a)时,f'(x)0,函数f(x)单调递增。
②若a=0时,当f'(x)=1/x>0在x∈(0,+∞)XXX成立,函数f(x)单调递增。
③若a0,函数f(x)单调递增。
2.求证x1+x2>2a因为f(x)=m有两解x1,x2(x1<x2),所以:alnx1+x1-ax=m,-alnx2+x2-ax=m将两式相减,整理得:lnx1-lnx2+ln(x1-x2)=a根据对数平均不等式,有:ln(x1-x2)<(lnx1-lnx2)/2代入上式得:a>-[(lnx1-lnx2)/2]化XXX:x1-x2<2e^-2a因为x1+x2>2x2>a,所以:x1+x2>2a综上所述,极值点偏移问题的解决方法包括构造一元差函数、利用对数平均不等式和变换主元等方法。
在具体求解中,需要根据函数表达式的特殊性质,选择合适的方法进行处理。
2(t-1)x2-1)/(4(t-1)2+1)为减函数,且在(1,∞)上递增,所以原不等式得证。
两招解决极值点偏移问题一、极值点偏移的含义众所周知,函数)(x f 满足定义域内任意自变量x 都有)2()(x m f x f -=,则函数)(x f 关于直线m x =对称;可以理解为函数)(x f 在对称轴两侧,函数值变化快慢相同,且若)(x f 为单峰函数,则m x =必为)(x f 的极值点.如二次函数)(x f 的顶点就是极值点0x ,若c x f =)(的两根的中点为221x x +,则刚好有0212x x x =+,即极值点在两根的正中间,也就是极值点没有偏移.若相等变为不等,则为极值点偏移:若单峰函数)(x f 的极值点为m ,且函数)(x f 满足定义域内m x =左侧的任意自变量x 都有)2()(x m f x f ->或)2()(x m f x f -<,则函数)(x f 极值点m 左右侧变化快慢不同.故单峰函数)(x f 定义域内任意不同的实数21,x x 满足)()(21x f x f =,则221x x +与极值点m 必有确定的大小关系:若221x x m +<,则称为极值点左偏;若221x x m +>,则称为极值点右偏.如函数x e x x g =)(的极值点10=x 刚好在方程c x g =)(的两根中点221x x +的左边,我们称之为极值点左偏.二、极值点偏移问题的一般题设形式:1.若函数)(x f 存在两个零点21,x x 且21x x ≠,求证:0212x x x >+(0x 为函数)(x f 的极值点);2.若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,求证:0212x x x >+(0x 为函数)(x f 的极值点);3.若函数)(x f 存在两个零点21,x x 且21x x ≠,令2210x x x +=,求证:0)('0>x f ;4.若函数)(x f 中存在21,x x 且21x x ≠满足)()(21x f x f =,令2210x x x +=,求证:0)('0>x f .二、运用判定定理判定极值点偏移的方法1、方法概述:(1)求出函数)(x f 的极值点0x ;(2)构造一元差函数)()()(00x x f x x f x F --+=;(3)确定函数)(x F 的单调性;(4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系.口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随.2、抽化模型答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+.(1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ;假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增.(2)构造)()()(00x x f x x f x F --+=;注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式.(3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系;假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+.(4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;接上述情况,由于0x x >时,)()(00x x f x x f ->+且201x x x <<,)()(21x f x f =,故)2()]([)]([)()(2002002021x x f x x x f x x x f x f x f -=-->-+==,又因为01x x <,0202x x x <-且)(x f 在),(0x -∞上单调递减,从而得到2012x x x -<,从而0212x x x <+得证.(5)若要证明02('21<+x x f ,还需进一步讨论221x x +与0x 的大小,得出221x x +所在的单调区间,从而得出该处函数导数值的正负,从而结论得证.此处只需继续证明:因为0212x x x <+,故0212x x x <+,由于)(x f 在),(0x -∞上单调递减,故0)2('21<+x x f .【说明】(1)此类试题由于思路固定,所以通常情况下求导比较复杂,计算时须细心;(2)此类题目若试题难度较低,会分解为三问,前两问分别求)(x f 的单调性、极值点,证明)(0x x f +与)(0x x f -(或)(x f 与)2(0x x f -)的大小关系;若试题难度较大,则直接给出形如0212x x x <+或0)2('21<+x x f 的结论,让你给予证明,此时自己应主动把该小问分解为三问逐步解题.题型二利用对数平均不等式两个正数a 和b 的对数平均定义:(),(,)ln ln ().a b a b L a b a b a a b -⎧≠⎪=-⎨⎪=⎩对数平均与算术平均、几何平均的大小关系:(,)2a b L a b +≤≤(此式记为对数平均不等式)取等条件:当且仅当a b =时,等号成立.只证:当a b ≠(,)2a b L a b +<<.不失一般性,可设a b >.证明如下:(I(,)L a b <……①不等式①1ln ln ln 2ln (1)a a b x x x bx ⇔-<<<-=其中构造函数1()2ln (),(1)f x x x x x =-->,则22211()1(1)f x x x x '=--=--.因为1x >时,()0f x '<,所以函数()f x 在(1,)+∞上单调递减,故()(1)0f x f <=,从而不等式①成立;(II )再证:(,)2a b L a b +<……②不等式②2(1)2()2(1)ln ln ln ln (1)(1)(1)a a b a x b a b x x a a b b x b---⇔->⇔>⇔>=+++其中构造函数2(1)()ln ,(1)(1)x g x x x x -=->+,则22214(1)()(1)(1)x g x x x x x -'=-=++.因为1x >时,()0g x '>,所以函数()g x 在(1,)+∞上单调递增,故()(1)0g x g <=,从而不等式②成立;综合(I )(II )知,对,a b R +∀∈(,)2a b L a b +≤≤成立,当且仅当a b =时,等号成立.。
极值点偏移问题的处理策略所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。
若函数()f x 在0x x =处取得极值,且函数()y f x =与直线y b =交于1(,)A x b ,2(,)B x b 两点,则AB 的中点为12(,)2x x M b +,而往往1202x xx +≠.如下图所示.极值点没有偏移此类问题在近几年高考及各种模考,作为热点以压轴题的形式给出,很多学生对待此类问题经常是束手无策。
而且此类问题变化多样,有些题型是不含参数的,而更多的题型又是含有参数的。
不含参数的如何解决?含参数的又该如何解决,参数如何来处理?是否有更方便的方法来解决?其实,处理的手段有很多,方法也就有很多,我们先来看看此类问题的基本特征,再从几个典型问题来逐一探索!【问题特征】【处理策略】一、不含参数的问题例1 已知函数()()xf x xe x R -=∈ ,如果12x x ≠,且12()()f x f x = ,证明:12 2.x x +>【解析】法一:()(1)xf x x e -'=-,易得()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,x →-∞时,()f x →-∞,(0)0f =,x →+∞时,()0f x →,函数()f x 在1x =处取得极大值(1)f ,且1(1)f e=,如图所示.由1212()(),f x f x x x =≠,不妨设12x x <,则必有1201x x <<<,构造函数()(1)(1),(0,1]F x f x f x x =+--∈,则21()(1)(1)(1)0x x xF x f x f x e e+'''=++-=->,所以()F x 在(0,1]x ∈上单调递增,()(0)0F x F >=,也即(1)(1)f x f x +>-对(0,1]x ∈恒成立.由1201x x <<<,则11(0,1]x -∈,所以11112(1(1))(2)(1(1))()()f x f x f x f x f x +-=->--==,即12(2)()f x f x ->,又因为122,(1,)x x -∈+∞,且()f x 在(1,)+∞上单调递减,所以122x x -<,即证12 2.x x +>法二:欲证122x x +>,即证212x x >-,由法一知1201x x <<<,故122,(1,)x x -∈+∞,又因为()f x 在(1,)+∞上单调递减,故只需证21()(2)f x f x <-,又因为12()()f x f x =,故也即证11()(2)f x f x <-,构造函数()()(2),(0,1)H x f x f x x =--∈,则等价于证明()0H x <对(0,1)x ∈恒成立.由221()()(2)(1)0x x xH x f x f x e e--'''=+-=->,则()H x 在(0,1)x ∈上单调递增,所以()(1)0H x H <=,即已证明()0H x <对(0,1)x ∈恒成立,故原不等式122x x +>亦成立.法三:由12()()f x f x =,得1212x x x ex e --=,化简得2121x x x e x -=…①, 不妨设21x x >,由法一知,121o x x <<<.令21t x x =-,则210,t x t x >=+,代入①式,得11tt x e x +=,反解出11t t x e =-,则121221t t x x x t t e +=+=+-,故要证:122x x +>,即证:221ttt e +>-,又因为10t e ->,等价于证明:2(2)(1)0t t t e +-->…②,构造函数()2(2)(1),(0)tG t t t e t =+-->,则()(1)1,()0ttG t t e G t te '''=-+=>,故()G t '在(0,)t ∈+∞上单调递增,()(0)0G t G ''>=,从而()G t 也在(0,)t ∈+∞上单调递增,()(0)0G t G >=,即证②式成立,也即原不等式122x x +>成立.法四:由法三中①式,两边同时取以e 为底的对数,得221211lnln ln x x x x x x -==-,也即2121ln ln 1x x x x -=-,从而221212121212221211111ln ln ()ln ln 1x x x x x x x x x x x x x x x x x x x x +-++=+==---,令21(1)x t t x =>,则欲证:122x x +>,等价于证明:1ln 21t t t +>-…③, 构造(1)ln 2()(1)ln ,(1)11t t M t t t t t +==+>--,则2212ln ()(1)t t t M t t t --'=-, 又令2()12ln ,(1)t t t t t ϕ=-->,则()22(ln 1)2(1ln )t t t t t ϕ'=-+=--,由于1ln t t ->对(1,)t ∀∈+∞恒成立,故()0t ϕ'>,()t ϕ在(1,)t ∈+∞上单调递增,所以()(1)0t ϕϕ>=,从而()0M t '>,故()M t 在(1,)t ∈+∞上单调递增,由洛比塔法则知:1111(1)ln ((1)ln )1lim ()limlim lim(ln )21(1)x x x x t t t t t M t t t t t→→→→'+++===+='--,即证()2M t >,即证③式成立,也即原不等式122x x +>成立.【点评】以上四种方法均是为了实现将双变元的不等式转化为单变元不等式,方法一、二利用构造新的函数来达到消元的目的,方法三、四则是利用构造新的变元,将两个旧的变元都换成新变元来表示,从而达到消元的目的.二、含参数的问题.例2.已知函数x ae x x f -=)(有两个不同的零点12,x x ,求证:221>+x x . 【解析】思路1:函数()f x 的两个零点,等价于方程xxea -=的两个实根,从而这一问题与例1完全等价,例1的四种方法全都可以用;思路2:也可以利用参数a 这个媒介去构造出新的函数.解答如下:因为函数()f x 有两个零点12,x x ,所以⎩⎨⎧==)2()1(2121x x aex ae x ,由)2()1(+得:)(2121xxe e a x x +=+, 要证明122x x +>,只要证明12()2x x a e e +>, 由)2()1(-得:1212()xxx x a e e -=-,即1212x x x x a e e -=-,即证:121212()2x x xx e e x x e e +->-211)(212121>-+-⇔--x x x x e e x x , 不妨设12x x >,记12t x x =-,则0,1t t e >>,因此只要证明:121t te t e +⋅>-01)1(2>+--⇔t t e e t , 再次换元令x t x e tln ,1=>=,即证2(1)ln 0(1,)1x x x x -->∀∈+∞+构造新函数2(1)()ln 1x F x x x -=-+,0)1(=F求导2'2214(1)()0(1)(1)x F x x x x x -=-=>++,得)(x F 在),1(+∞递增, 所以0)(>x F ,因此原不等式122x x +>获证.【点评】含参数的极值点偏移问题,在原有的两个变元12,x x 的基础上,又多了一个参数,故思路很自然的就会想到:想尽一切办法消去参数,从而转化成不含参数的问题去解决;或者以参数为媒介,构造出一个变元的新的函数。
三招解决极值点偏移问题极值点偏移问题简介:极值点偏移问题是咱们高中非常常见的导数问题,其中解法与题型也非常非常多,比如比值换元,差值换元,对称化构造,同构方程,对数均值不等式,切线夹,割线放缩,零点差一次拟合,飘带函数放缩,泰勒二次拟合,零点差一次拟合等等。
很多学生看了题不知道从哪里入手,在此总结了三大类题型,包括了大部分方法,看起来更加清晰明了,这三类题型也是必须掌握的题型,前两种较基础要掌握,最后一种难度偏高可以选择性记忆。
一.最常见的方法--构造函数极值点偏移模型:考点1.利用韦达定理,进行构造函数1已知函数f x =12x2+a ln x-4x a>0.(1)当a=3时,试讨论函数f x 的单调性;(2)设函数f x 有两个极值点x1,x2x1<x2,证明:f x1+f x2>ln a-10.2已知函数f x =ln x +x 2-ax a ∈R .(1)若a =1,求函数f x 图象在点1,f 1 处的切线方程;(2)设f x 存在两个极值点x 1,x 2且x 1<x 2,若0<x 1<12,求证:f x 1 -f x 2 >34-ln2.考点2. 利用分析法,进行对称构造3已知函数f (x )=ln x +m x -1.(1)若存在实数x ,使f (x )<-1成立,求实数m 的取值范围;(2)若f (x )有两个不同零点x 1,x 2,求证:x 1+x 2>2.4已知函数f x =ln x-a x-2a∈R.(1)讨论f x 的单调性;(2)若f x 有两个零点x1,x2x1<x2,证明:x1+3x2>3a+2.5已知函数f x =2ln x+ax a∈R(1)若f x ≤0在0,+∞上恒成立,求a的取值范围;(2)设g x =x3-f x ,x₁,x₂为函数g(x)的两个零点,证明:x₁x₂<1.二.对数均值不等式飘带函数模型:考点1.同构方程,利用比值换元构造函数6已知函数f x =x -2 e x -ax a ∈R .(1)若a =2,讨论f x 的单调性.(2)已知关于x 的方程f x =x -3 e x +2ax 恰有2个不同的正实数根x 1,x 2.(i )求a 的取值范围;(ii )求证:x 1+x 2>4.7已知函数f x =2ln x-ax2+2x-1,g x =f x -2ax+3a∈R.(1)若f1 =-1,求函数y=f x 的极值;(2)若关于x的不等式g x ≤0恒成立,求整数a的最小值;(3)当0<a<1时,函数g x 恰有两个不同的零点x1,x2,且x I<x2,求证:x1+x2>2a.考点2.和积转化(差积转化)8已知函数f x =xe x-ax+1,x∈-1,+∞,a>0,g x =bx-ln x x,(1)当b=1,f x 和g x 有相同的最小值,求a的值;(2)若g x 有两个零点x1,x2,求证:x1x2>e.考点3.消参减元9已知函数f x =ax2-ln x+1a∈R.(1)讨论函数f x 极值点的个数;(2)若函数f x 在定义域内有两个不同的零点x1,x2,①求a的取值范围;②证明:x1+x2>2a a.三.零点差--放缩法筷子夹汤圆模型:考点1.零点差,切线夹10已知函数f x =3x-e x+1,其中e=2.71828⋯是自然对数的底数.(1)设曲线y=f x 与x轴正半轴相交于点P x0,0,曲线在点P处的切线为l,求证:曲线y=f x 上的点都不在直线l的上方;(2)若关于x的方程f x =m(m为正实数)有两个不等实根x1,x2x1<x2,求证:x2-x1<2-34 m.11已知函数f x =x +b e x -a (b >0)在点-1,f -1 处的切线方程为e -1 x +ey +e -1=0.(1)求a 、b ;(2)设曲线y =f (x )与x 轴负半轴的交点为P ,曲线在点P 处的切线方程为y =h (x ),求证:对于任意的实数x ,都有f (x )≥h (x );(3)若关于x 的方程f x =m (m >0)有两个实数根x 1、x 2,且x 1<x 2,证明:x 2-x 1≤1+m 1-2e 1-e .考点2.割线放缩12已知f x =x ln x 与y =a 有两个不同的交点A ,B ,其横坐标分别为x 1,x 2(x 1<x 2).(1)求实数a 的取值范围;(2)求证:ae +1<x 2-x 1.考点3.二次拟合13已知m∈R,函数f(x)=xe x-m有两个不同的零点x1,x2.(I)证明:0<m<1e;(Ⅱ)证明:x2-x1>21-em.三招解决极值点偏移问题极值点偏移问题简介:极值点偏移问题是咱们高中非常常见的导数问题,其中解法与题型也非常非常多,比如比值换元,差值换元,对称化构造,同构方程,对数均值不等式,切线夹,割线放缩,零点差一次拟合,飘带函数放缩,泰勒二次拟合,零点差一次拟合等等。
极值点偏移问题处理策略
一、极值点偏移
已知函数y=f(x)是连续函数,f(x)在区间(x1,x2)内只有一个极值点x0,且f(x1)=f(x2),不少极值函数由于极值点左右的增减速度不同,函数的图像并不关于直线x =x0对称,即x0≠x1+x2
2。
这就是极值点偏移问题。
二、极值点偏移问题的解决方法之构造对称函数
首先构造F(x)=f(x0+x)−f(x0−x),其中x0为f(x)的极值点,求导判断单调性,结合F(0)=0确定F(x)的符号,即判断f(x0+x)>f(x0−x)还是
f(x0+x)<f(x0−x)。
设x1<x0<x2,根据上式,
判断f(x0+(x0−x1))>f(x0−(x0−x1)还是f(x0+(x0−x1))<f(x0−(x0−x1),即判断f(2x0−x1)> f(x1)还是 f(2x0−x1)< f(x1),结合
f(x1)= f(x2),由f(x)在x0左侧的单调性来判断2x0−x1>x2还是2x0−x1<
x2。
例如:已知f(x)=ln x−ax有两个零点x1,x2,求证x1+x2>2
a
.
首先求出f(x)的极大值为1
a ,构造F(x)=f(1
a
+x)−f(1
a
−x),求导可判断F(x)
为单调递增函数,结合结合F(0)=0确定F(x)>0,即f(1
a +x)>f(1
a
−x)。
设
x1<1
a <x2,根据上式,得到f(1
a
+(1
a
−x1))>f(1
a
−(1
a
−x1),即f(2
a
−x1)>
f(x1),结合f(x1)= f(x2),由f(x)在(1
a ,+∞)单调递减,判断2
a
−x1<x2,
即x1+x2>2
a
.
三、极值点偏移问题的解决方法之对数平均不等式
定义两个正数的对数平均数为L(a,b)={
a−b ln a−ln b
a(a=b)
(a≠b),称:√ab≤
a−b ln a−ln b ≤a+b
2
为对数平均不等式,当且仅当a=b时取等号。
例如上面的例题:已知f(x)=ln x−ax有两个零点x1,x2,求证x1+x2>2
a
.我们还可以借助对数平均不等式来解决。
主要步骤是利用f(x1)=f(x2)建立等式,有参数消参数,有指数取对数,再利用对数平均不等式求解。
由条件可
得:ln x1=ax1,ln x2=ax2,ln x1−ln x2= ax1− ax2,即x1− x2
ln x1−ln x2=1
a
,由对数
平均不等式得,1
a ≤x1+x2
2
,即x1+x2≥2
a。
实际上,上面利用对数平均不等式的解答方法对解决极值点偏移问题具有一般性,且解答都有类似的解题步骤,要而言之,就是首先根据f(x1)=f(x2)建立等式,如果等式含参,则消去参数,如果等式含有指数式,则通过换元或两边取对数进行等价转化,最后再通过恒等变形化为对数平均不等式问题,使问题得到有效的解决.。