氯吡格雷反应变异性
- 格式:doc
- 大小:73.50 KB
- 文档页数:12
CYP2C19基因多态性与氯吡格雷抵抗的相关性氯吡格雷是一种常用的抗血小板药物,用于预防和治疗心脑血管疾病。
氯吡格雷的疗效在不同个体间存在很大差异,其中一个重要因素是CYP2C19基因的多态性。
CYP2C19是一种脂类药物代谢酶,主要在肝脏中发挥作用,对氯吡格雷进行代谢和活化。
CYP2C19基因存在多种等位基因,包括正常代谢型(wild-type)和变异型(allelic variants)。
这些变异型可引起CYP2C19酶功能的改变,从而影响氯吡格雷的代谢和药效。
CYP2C19基因多态性与氯吡格雷抗药性之间的关联已被广泛研究。
研究表明,CYP2C19等位基因的多态性可导致药物的代谢速率改变,进而影响氯吡格雷的疗效。
具体来说,携带变异型等位基因的个体,其CYP2C19酶活性较低,导致氯吡格雷的代谢和活化减少,因此会出现较高的抗血小板聚集反应和较低的疗效。
在亚洲人群中,CYP2C19基因多态性的频率较高,这也解释了为何亚洲人在接受氯吡格雷治疗时更容易出现抗药性。
根据一些研究,携带CYP2C19变异型等位基因的亚洲人患者,其血小板聚集抑制效果较差,与正常代谢型相比,出血并发症的风险增加。
在个体化用药中,了解患者的CYP2C19基因型信息,尤其是对于亚洲人群,可以对氯吡格雷治疗的疗效和安全性进行评估。
根据美国食品药品监督管理局(FDA)的建议,对于存在CYP2C19变异型基因的患者,建议减少氯吡格雷的剂量或考虑替代药物。
一些研究还发现,与CYP2C19等位基因的多态性相结合,其他基因的多态性也可能参与氯吡格雷抗药性的发生。
P2Y12受体基因(P2Y12 receptor gene)和ABCB1基因(ATP 结合盒子转运体B1基因)等,这些基因参与氯吡格雷的药物传输和信号通路。
多基因分析在个体化用药中也具有重要的意义。
CYP2C19基因的多态性是导致氯吡格雷抵抗的一个重要因素。
患者的基因型信息可以为个体化用药提供指导,从而提高氯吡格雷的疗效和安全性。
氯吡格雷抵抗随着社会的发展及人民生活水平的提高,冠心病(coronary artery disease,CAD)的发病率及死亡率明显升高,目前已成为威胁我国人民身体健康的重要疾病,急性冠脉综合症(acute coronary syndrome,ACS)是冠心病的重要类型,包括不稳定心绞痛(unstable angina,UA)、ST段抬高型心肌梗死(ST- elevition myocardia infarction)、非ST段抬高型心肌梗死(non-ST-elevition myocardia infarction)。
急性冠脉综合症发生的共同病理生理机制是不稳定的粥样硬化斑块破裂引起的血小板活化、聚集,以致凝血系统激活和血栓形成,进而导致心肌的缺血性损伤。
具体机制是,机械或自发因素导致动脉粥样硬化斑块破裂,血管内皮下胶原暴漏于循环血液中,引发血小板粘附,聚集的血小板激活血小板的活化,释放二磷酸腺苷(adenosine diphosphate,ADP),其诱导更多的血小板聚集,导致激活血小板凝血瀑布反应。
氯吡格雷作为一种新型的抗血小板治疗药物,其本身是一种无活性的前体药,需要经肝脏细胞色素酶(cytochrome CYP)P450系统(CYP2C19,CYP3A4)代谢转化成有活性的代谢底物,与血小板表面的ADP P2Y12受体特异性的不可逆的结合,从而抑制ADP诱导的血小板聚集,预防血栓形成,发挥抗血小板治疗作用。
在接受 PCI治疗期间动脉血栓形成是急性冠脉综合症及动脉血栓事件发生主要原因,血小板的活化聚集是血栓形成重要病理机制,研究证明单独使用氯吡格雷能有效阻止动脉粥样硬化性血管疾病患者缺血性事件发生,其联合阿司匹林这一抗血小板治疗方案,可明显减少PCI术后患者亚急性血栓发生率及非ST段抬高型急性冠脉综合症心血管事件,然而,在所有患者中氯吡格雷的抗血小板效应是不一致的。
相关研究表明,部分患者虽服用氯吡格雷但仍然存在较高的心血管事件发生率,即所谓的氯吡格雷抵抗,指未能充分抑制血小板聚集导致支架内血栓形成等严重不良事件发生,Muller等发现在105例接受经皮冠状动脉介入治疗(PCI)治疗患者中有5%发生支架内血栓,原因可能为氯吡格雷低或无反应,因此提出了氯吡格雷抵抗的概念;Jaremo等发现接受 PCI治疗的稳定性心绞痛患者对同等剂量氯吡格雷反应性不一;Lepantalo等研究观察 50例PCI治疗患者,结果显示:8%患者无反应约并有40%患者对氯吡格雷反应较差。
氯吡格雷代谢基因氯吡格雷是一种抗血小板药物,常用于预防心脑血管疾病,例如心脏病和中风。
然而,每个人对药物的反应不同,其中一部分原因可能是由于个体的代谢基因差异。
首先,氯吡格雷主要通过肝脏酶系统代谢。
酶是一种催化化学反应的蛋白质,它们帮助将药物分解为代谢产物,以便能够在体内被排出。
对于氯吡格雷来说,其中一个关键的代谢酶是CYP2C19。
这个酶的活性有可能受到个体基因的表达水平的影响。
研究表明,CYP2C19基因有多个变异型。
其中,CYP2C19*1型被认为是正常活性的基因,而CYP2C19*2和CYP2C19*3则是常见的变异型。
这些变异型导致CYP2C19酶的活性降低,从而使得氯吡格雷的代谢速率下降。
因此,携带CYP2C19*2或CYP2C19*3的个体可能需要更低的氯吡格雷剂量来达到相同的药效。
此外,还有其他一些CYP2C19变异型,如CYP2C19*4、CYP2C19*5和CYP2C19*17等。
这些变异型对CYP2C19酶的活性也产生了不同程度的影响。
其中,CYP2C19*17型的表达与酶的活性升高相关,这可能导致氯吡格雷的代谢速度加快,从而需要更高的剂量才能达到预期的治疗效果。
了解个体的氯吡格雷代谢基因类型可以为个体化药物治疗提供有益的信息。
一些研究发现,携带CYP2C19变异型的个体在接受氯吡格雷治疗时可能更容易出现药物耐受性和治疗失败。
因此,对于这些患者,可能需要调整药物剂量或尝试其他的抗血小板药物。
总结而言,氯吡格雷代谢基因的变异可能对个体对药物的反应产生影响。
了解个体的CYP2C19基因型可以为氯吡格雷的药物治疗提供指导。
未来,个体化药物治疗的发展将依赖于对代谢基因的深入了解,从而为患者提供更有效的个性化治疗方案。
氯吡格雷基因检测报告的解读主要涉及对检测结果的分析和理解。
以下是对氯吡格雷基因检测报告的一般解读:
1. 检测结果分类:氯吡格雷基因检测结果通常可以分为多态性、异常、特征型和正常型。
这些分类代表了不同的基因变异情况。
2. 变异类型:存在多种基因变异,如CYP2C19基因、CYP3A4基因、CYP2D6基因等。
这些基因变异与氯吡格雷的药物代谢和效果有关。
3. 检测结果解读:根据检测结果,可以判断患者是否存在氯吡格雷相关基因的变异。
如果存在变异,还需进一步分析变异的类型和程度,以评估其对氯吡格雷药物效果的影响。
4. 药物治疗调整:根据检测结果,医生可能会调整患者的药物治疗方案。
例如,如果检测结果显示患者存在氯吡格雷代谢相关的基因变异,医生可能会调整氯吡格雷的用量或更换其他抗血小板药物。
5. 临床意义:氯吡格雷基因检测的临床意义在于帮助评估个体药物安全性,协助制定药物用量,从而提高治疗效果并减少不良反应的风险。
需要注意的是,具体的解读方法和解读结果可能因不同的检测机构和医生而有所不同。
因此,在解读氯吡格雷基因检测报告时,最好咨询专业医生或遗传咨询师,以获得更准确和个性化的解读和建议。
氯吡格雷基因结果解读氯吡格雷是一种抗血小板药物,用于预防心血管疾病患者的血栓形成。
个体对氯吡格雷的反应存在遗传差异,部分人群可能会出现不良反应或缺乏疗效。
因此,进行氯吡格雷基因结果解读可以帮助医生更好地了解患者对该药物的遗传敏感性,从而制定个体化的治疗方案。
以下是关于氯吡格雷基因结果解读的详细内容:1.CYP2C19基因CYP2C19基因编码一种酶,参与氯吡格雷的代谢过程。
根据CYP2C19基因型的不同,个体可分为三个主要类型:正常代谢型(EM)、中间代谢型(IM)和缓慢代谢型(PM)。
-EM型:具有正常的酶活性,能有效代谢氯吡格雷。
-IM型:酶活性降低,代谢速度较慢。
-PM型:酶活性严重受损,代谢能力显著减弱。
根据多项研究表明,PM型患者在使用标准剂量氯吡格雷时,药物的抗血小板效应较弱,容易出现治疗失败和血栓再发。
因此,在进行氯吡格雷治疗前,了解患者的CYP2C19基因型非常重要。
2.ABCB1基因ABCB1基因编码一种P-糖蛋白(P-gp)转运蛋白,参与药物从细胞内转运到细胞外的过程。
该基因多态性可能会影响氯吡格雷的转运和清除。
有些研究表明,ABCB1基因中某些位点的多态性与氯吡格雷治疗的疗效和安全性相关。
例如,rs1045642位点的多态性可能与氯吡格雷在肝脏中的代谢和排泄有关。
不同基因型的个体在药物的吸收、分布和消除方面可能存在差异。
3.PON1基因PON1基因编码一种酯酶,参与氯吡格雷的代谢和解毒。
PON1基因的多态性可能会影响个体对氯吡格雷的敏感性。
一些研究表明,PON1基因的多态性与氯吡格雷的疗效和副作用有关。
例如,rs662位点的多态性与PON1酶活性的变化相关。
较低的酶活性可能导致氯吡格雷代谢减慢,从而增加出现不良反应的风险。
4.结果解读根据患者的基因检测结果,可以进行如下解读:-CYP2C19基因型:根据患者的基因型,确定其对氯吡格雷的代谢能力。
-EM型:正常代谢型,预计对氯吡格雷有良好的疗效和安全性。
CYP2C19基因多态性与氯吡格雷抵抗的相关性引言氯吡格雷(Clopidogrel)是一种常用的抗血小板药物,用于预防心脏血管疾病患者发生心脏事件。
一些临床研究显示,部分患者对氯吡格雷存在抵抗现象,即便在标准剂量下也无法取得预期的治疗效果。
这种抵抗现象可能与患者的遗传变异有关,而CYP2C19基因多态性是目前研究最深入的遗传变异之一。
本文旨在探讨CYP2C19基因多态性与氯吡格雷抵抗的相关性,以期为临床治疗提供更为准确有效的指导。
CYP2C19基因多态性CYP2C19是编码细胞色素P450酶家族成员之一的基因,该酶主要参与药物代谢的过程。
CYP2C19基因具有多态性,即存在多种不同的等位基因类型,导致不同的表型特征。
根据不同的基因型,个体对氯吡格雷的代谢速率和药效可能存在显著差异。
CYP2C19基因型与氯吡格雷代谢研究表明,CYP2C19基因型与氯吡格雷的代谢速率密切相关。
目前,已经明确CYP2C19*2、CYP2C19*3和CYP2C19*17等基因型与氯吡格雷代谢速率及药效的关系。
CYP2C19*2和CYP2C19*3等等位基因型被确认为大大降低了CYP2C19酶的活性,导致氯吡格雷的代谢过程受阻,从而影响了药物的疗效。
而CYP2C19*17等位基因型则会增加CYP2C19酶的活性,使氯吡格雷代谢加速,减少药物的疗效。
CYP2C19基因多态性与氯吡格雷抵抗临床研究发现,患者的CYP2C19基因型与氯吡格雷抵抗的发生率呈现一定的关联性。
针对CYP2C19*2等位基因型携带者的患者进行的研究显示,这部分患者存在显著增加的氯吡格雷抵抗风险。
相比之下,CYP2C19*17等位基因型携带者的患者则具有较低的氯吡格雷抵抗风险。
这一发现提示,CYP2C19基因多态性可以作为判断患者氯吡格雷抵抗风险的一个重要参考指标。
个体化治疗策略针对CYP2C19基因多态性与氯吡格雷抵抗的相关性,个体化治疗策略日益受到重视。
氯吡格雷(Clopidogrel),属于噻吩吡啶类抗血小板药物,第二代ADP受体拮抗剂。
氯吡格雷为无活性的药物前体,需经肝细胞内细胞色素P450酶系活化,其中约85%被酯化为无活性的代谢产物经肠道代谢,仅有约15%氯吡格雷被活化生成具有活性的代谢产物发挥其抗血小板药理作用。
主要机制:为选择性的、不可逆的抑制二磷酸腺苷(ADP)与血小板受体P2Y12的结合及继发ADP介导的糖蛋白GPIIIb/IIIa复合物的活化从而抑制血小板聚集。
火化后的氯吡格雷主要是与血小板P2Y12受体结合,阻断其与ADP结合位点,从而持久的抑制继发的腺苷酸环化酶的激活,抑制血小板的活性。
氯吡格雷反应多样性的定义:氯吡格雷在临床上作为抗血小板制剂其疗效使大多数患者明显受益,然而,仍有一部分患者不可避免的出现并发症,研究发现,不同患者对氯吡格雷的反应呈现明显的个体差异,这种对氯吡格雷呈现低应答(Low responder)或无应答(Clopidogrel nonresponse)的现象称之为氯吡格雷抵抗(Clopidogrel resistance,CR)。
目前学者们将临床上患者对氯吡格雷呈现不同应答状态的现象称之为氯吡格雷反应多样性(Clopidogrel Response Diversity,CRD)。
氯吡格雷反应多样性的定义:?CRD的相关因素:CYP2C19酶基因多态性、糖尿病、体重指数等因素有关。
脂溶性他汀类药物包括阿托伐他汀、辛伐他汀等和除泮托拉唑外的质子泵抑制剂可通过竞争性抑制影响氯吡格雷活化、增加氯吡格雷应答和无应答几率。
CYP2C19酶作为细胞色素P450药物代谢酶家族中的重要成员,在不同种族和人群中具有显著差异。
有研究指出,CYP2C19酶基因多态性与该酶活性密切相关。
不同研究对氯吡格雷翻一个多样性产生的机制看法不同,目前大多数学者认为导致氯吡格雷反应多样性的原因有以下几个方面:1、C YP2C19基因多态性与氯吡格雷反应多样性所谓基因多态性(polymorphism ),是指在一个生物群体编码的基因序列中,存在由一个或多个不连续等位基因(allele)发生突变。
血小板功能检测:临床推广时机已到?作者:史旭波随着探索血小板功能检测(Platelet Function Testing)研究报告的不断问世,临床医生对通过血小板功能检测手段判断抗栓治疗中患者对抗血小板药物的反应性的期待也日趋急迫。
然而,纵观这些研究数据,我们似乎很难得出一致的结论。
体外的血小板功能检测结果能否全面反映个体的血小板功能?通过这一手段预测临床事件并指导临床用药可行吗?史旭波首都医科大学附属北京同仁医院正方观点:血小板功能检测的临床时代已经到来内皮破损所导致的血小板活化及聚集是急性冠状动脉综合征(ACS)等血栓事件最基本的病理过程。
相对静脉系统而言,动脉系统血栓形成中血小板的作用更加突出,抗血小板治疗也就成为预防和治疗心、脑血栓事件的基石。
阿司匹林及氯吡格雷等药物单独应用相对力度不足,ACS及冠状动脉支架置入等许多情况需要在抗凝治疗的基础上再加上两种甚至三种抗血小板药物,抗栓力度的加强显著减少包括支架血栓在内的血栓事件。
另一个不容忽视的问题是,在血栓事件减少同时,出血事件增加。
而发生出血事件的患者临床预后往往不佳,资料显示与没有发生出血事件的ACS患者相比,发生出血事件患者的死亡率会增加3~5倍。
如何在强化抗栓减少血栓事件的同时尽量避免出血事件成为临床焦点的问题。
抗栓治疗的个体化途径解决当前心血管病抗栓治疗中这些棘手问题的最佳方法就是抗栓治疗的个体化,但目前抗栓治疗主要采用的是“群体化原则”,例如只要是急性ST段抬高心肌梗死患者确诊后即刻服用300mg阿司匹林及300mg氯吡格雷,而不考虑患者的身高、体重及对药物的反应性等个体差异,这种策略简便易操作,但相对粗放而不够精细。
很早人们就发现,接受阿斯匹林治疗的患者其疗效存在明显的个体差异,并提出了阿斯匹林抵抗的概念。
Gurbel于2003年首次报道了个体对氯吡格雷治疗也同样存在反应的变异性,并提出氯吡格雷抵抗的概念。
不同患者接受同样剂量的阿司匹林或氯吡格雷等抗血小板药物,由于种种原因必然会出现一部分患者抗栓力度不足,血栓事件的发生率增加,而另一部分患者抗栓过量而易出现出血事件,“抗栓治疗个体化”可根据患者对抗血小板药物或抗凝药物反应的差异而调整治疗方案,是未来抗栓治疗的方向。
·944· 中华老年多器官疾病杂志 2013年12月28日 第12卷 第12期 Chin J Mult Organ Dis Elderly, Vol.12, No.12, Dec 28, 2013收稿日期: 2013−06−18; 修回日期: 2013−07−18基金项目: 国家自然科学基金面上项目(30971259,30570736/C03030201); 解放军总医院临床扶持基金(2012FC-TSYS-3042) 通信作者: 卢才义, E-mail: cylu2000@; 尹 彤, E-mail: yintong2000@·综 述·氯吡格雷药物基因组学及个体化治疗研究进展与展望张蓝宁,卢才义*,尹 彤*(解放军总医院老年心血管病研究所,北京 100853)【摘 要】通过与阿司匹林联合应用,氯吡格雷已经成为治疗急性冠脉综合征和预防经皮冠状动脉介入术后支架内血栓形成和再发缺血事件的经典口服抗血小板药物。
尽管如此,氯吡格雷抗血小板的反应性和疗效存在显著的个体间差异。
近年来的研究证实,除临床环境因素外,遗传变异是导致氯吡格雷抗血小板反应性个体间差异的重要因素之一。
多项大规模临床药物基因组学研究发现,参与氯吡格雷代谢的关键酶——CYP2C19功能缺失型等位基因与氯吡格雷治疗期间高血小板反应性及心血管一级缺血终点事件的发生密切相关。
另外,与氯吡格雷代谢相关的其他基因变异型也被证实可能与氯吡格雷抗血小板反应性及不良心血管事件相关。
在此基础上,利用药物基因组学基因型检测指导氯吡格雷个体化抗血小板治疗,可能部分克服氯吡格雷治疗期间的高血小板反应性,但研究结果之间仍存在争议,尚需深入研究以提供更有力的证据。
除此之外,未来有必要进一步深入研究基因型检测联合血小板功能监测共同指导氯吡格雷抗血小板个体化治疗的效果。
【关键词】氯吡格雷;遗传药理学;CYP2C19;血小板反应性;心血管缺血事件;个体化医学【中图分类号】 R541.4 【文献标识码】 A 【DOI 】 10.3724/SP.J.1264.2013.00239Pharmacogenomics and individualized therapy of clopidogrel: evidence and perspectivesZHANG Lan-Ning, LU Cai-Yi *, YIN Tong *(Institute of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China)【Abstract 】 Dual antiplatelet therapy with aspirin and clopidogrel is the standard care to prevent stent thrombosis and recurrent ischemic events after acute coronary syndrome or stent placement. However, there is a large inter-individual variability in biological anti-platelet responsiveness and clinical outcomes in patients after clopidogrel treatment. Apart from clinical and environmental factors, recently accumulated evidence strongly confirms the pivotal role of genetic factors for the variability of clopidogrel responsiveness. Several large-scale pharmacogenomic studies found that the loss-of-function alleles of CYP2C19 and the key enzyme in clopidogrel metabolism are the predominant genetic mediators of low clopidogrel responsiveness and recurrent cardiovascular events. Other genetic polymorphisms related with clopidogrel metabolism may also contribute to the variability of clopidogrel efficacy. On the basis of these observations, it is still in controversy whether CYP2C19-genotype-guided individualized clopidogrel therapy could overcome the high on-treatment platelet reactivity to clopidogrel. In the future, it is necessary to combine genotyping and platelet function testing to guide the individualized clopidogrel therapy.【Key words 】 clopidogrel; pharmacogenetics; CYP2C19; platelet function; cardiovascular ischemic events; individualized medicineThis work was supported by the General Program of National Natural Science Foundation of China (30971259, 30570736/C03030201) and the Supporting Fund of People’s Liberation Army General Hospital (2012FC-TSYS-3042). Corresponding author: LU Cai-Yi, E-mail: cylu2000@; YIN Tong, E-mail: yintong2000@通过与阿司匹林联合应用,氯吡格雷(clopidogrel )已经成为治疗急性冠脉综合征(acute coronary syndrome ,ACS )和预防经皮冠状动脉介入(percutaneous coronary intervention ,PCI )术后支架内血栓形成和再发缺血事件的经典口服抗血小板药物[1,2],但氯吡格雷抗血小板反应性和疗效存在显著的个体差异。