数学发展史简介
- 格式:ppt
- 大小:1.17 MB
- 文档页数:23
中国数学发展史概述一、中国数学的起源与早期发展据《易·系辞》记载:「上古结绳而治,后世圣人易之以书契」。
在殷墟出土的甲骨文卜辞中有很多记数的文字。
从一到十,及百、千、万是专用的记数文字,共有13个独立符号,记数用合文书写,其中有十进制制的记数法,出现最大的数字为三万。
算筹是中国古代的计算工具,而这种计算方法称为筹算。
用算筹记数,有纵、横两种方式:表示一个多位数字时,采用十进位值制,各位值的数目从左到右排列,纵横相间﹝法则是:一纵十横,百立千僵,千、十相望,万、百相当﹞,并以空位表示零。
算筹为加、减、乘、除等运算建立起良好的条件。
筹算直到十五世纪元朝末年才逐渐为珠算所取代,中国古代数学就是在筹算的基础上取得其辉煌成就的。
在几何学方面《史记·夏本记》中说夏禹治水时已使用了规、矩、准、绳等作图和测量工具,并早已发现「勾三股四弦五」这个勾股定理﹝西方称勾股定理﹞的特例。
战国时期,齐国人着的《考工记》汇总了当时手工业技术的规范,包含了一些测量的内容,并涉及到一些几何知识,例如角的概念。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
著名的有《墨经》中关于某些几何名词的定义和命题。
墨家还给出有穷和无穷的定义。
《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
此外,讲述阴阳八卦,预言吉凶的《易经》已有了组合数学的萌芽,并反映出二进制的思想。
二、中国数学体系的形成与奠基这一时期包括从秦汉、魏晋、南北朝,共400年间的数学发展历史。
秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。
现传中国历史最早的数学专著是1984年在湖北江陵张家山出土的成书于西汉初的汉简《算数书》,与其同时出土的一本汉简历谱所记乃吕后二年,所以该书的成书年代至晚是公元前186年。
数学的历史介绍数学的历史发展和重要数学家数学作为一门古老而又深刻的学科,在人类文明的历史长河中扮演着重要的角色。
从古代至今,数学不断发展演变,培育出许多伟大的数学家,他们为数学的进步做出了巨大的贡献。
本文将为大家介绍数学的历史发展并重点介绍一些重要的数学家。
一、古希腊时期数学的发展古希腊是数学史上一个重要的里程碑,许多重要的数学思想和概念都在这个时期诞生。
最为人熟知的是毕达哥拉斯学派提出的一系列数学原理,包括著名的毕达哥拉斯定理。
另外,欧几里得的《几何原本》对后世数学发展起到了巨大的影响,成为许多数学家研究的基础。
二、中世纪数学的低谷与复兴中世纪数学的发展相对较慢,部分原因是欧洲的文化环境受到了战争和政治动荡的影响。
然而,阿拉伯数学家在这个时期对数学的发展做出了重要贡献。
他们将印度和希腊的数学知识引入阿拉伯世界,并进行了整理和发展,为欧洲数学的复兴打下了基础。
著名的《阿拉伯数学传统》成为了数学史上的重要文献之一。
三、文艺复兴时期的数学突破文艺复兴时期是欧洲数学复兴的重要时期,众多数学家在这个时期涌现出来。
其中,意大利数学家斯忒芬诺为代数学的发展做出了杰出贡献,他提出了方程三次及以上的根的求解方法。
另外,日耳曼数学家勒让德也是这个时期的重要人物,他以发展微积分理论而闻名。
四、近代数学的革命近代数学的革命主要发生在17至19世纪,这一时期见证了许多基础性数学理论的诞生。
哥德巴赫猜想、费马大定理等一系列重要的数学难题在这一时期得到了提出。
著名的数学家牛顿和莱布尼茨几乎同时独立发现了微积分学,为后来的物理学和工程学等学科提供了基础。
五、现代数学的拓展与应用20世纪以来,数学已经发展成为一门庞大而复杂的学科体系。
代数学、几何学、概率论、数论等各个分支都有了独立而深入的发展。
许多著名的数学家如高斯、黎曼、庞加莱等在这个时期做出了具有重要影响的贡献。
数学的应用也广泛渗透到自然科学、工程学与经济学等领域,为人类社会的进步做出了重要贡献。
数学发展简史数学发展史大致可以分为四个阶段。
一、数学形成时期(——公元前5 世纪)建立自然数的概念,创造简单的计算法,认识简单的几何图形;算术与几何尚未分开。
二、常量数学时期(前5 世纪——公元17 世纪)也称初等数学时期,形成了初等数学的主要分支:算术、几何、代数、三角。
该时期的基本成果,构成中学数学的主要内容。
1.古希腊(前5 世纪——公元17 世纪)毕达哥拉斯——“万物皆数”欧几里得——《几何原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元2 世纪——15 世纪)1)中国西汉(前2 世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3 世纪——5 世纪)——刘徽、祖冲之出入相补原理,割圆术,算π宋元时期(公元10 世纪——14 世纪)——宋元四大家杨辉、秦九韶、李冶、朱世杰天元术、正负开方术——高次方程数值求解;大衍总数术——一次同余式组求解2)印度现代记数法(公元8 世纪)——印度数码、有0;十进制(后经阿拉伯传入欧洲,也称阿拉伯记数法)数学与天文学交织在一起阿耶波多——《阿耶波多历数书》(公元499 年)开创弧度制度量婆罗摩笈多——《婆罗摩修正体系》、《肯特卡迪亚格》代数成就可贵婆什迦罗——《莉拉沃蒂》、《算法本源》(12 世纪)算术、代数、组合学3)阿拉伯国家(公元8 世纪——15 世纪)花粒子米——《代数学》曾长期作为欧洲的数学课本“代数”一词,即起源于此;阿拉伯语原意是“还原”,即“移项”;此后,代数学的内容,主要是解方程。
阿布尔.维法奥马尔.海亚姆阿拉伯学者在吸收、融汇、保存古希腊、印度和中国数学成果的基础上,又有他们自己的创造,使阿拉伯数学对欧洲文艺复兴时期数学的崛起,作了很好的学术准备。
3.欧洲文艺复兴时期(公元16 世纪——17 世纪)1)方程与符号意大利-塔塔利亚、卡尔丹、费拉里三次方程的求根公式法国-韦达引入符号系统,代数成为独立的学科2)透视与射影几何画家-布努雷契、柯尔比、迪勒、达.芬奇数学家-阿尔贝蒂、德沙格、帕斯卡、拉伊尔3)对数简化天文、航海方面烦杂计算,希望把乘除转化为加减。
数学史的发展脉络数学是一门古老而重要的学科,在人类文明的进程中发挥了重要的作用。
数学历经了几千年的发展,逐渐形成了今天我们所熟知的体系。
本文将从数学史的发展脉络角度,探讨数学的起源与发展,并介绍一些重要的数学里程碑。
1. 古代数学数学的起源可以追溯到公元前3000年左右的古代文明。
在古埃及、古巴比伦、古印度和古希腊等文明中,都有数学的雏形。
这些古代文明的数学主要集中在几何、代数以及计算等方面。
古埃及人发展了几何学,在建筑和土地测量中广泛应用。
他们创造了一种基于比例的方法来计算土地面积和三角形的面积。
另外,他们还用了一套类似于今天的分数系统。
古巴比伦人使用了类似于我们今天的十进制系统,并且开发了一些数学表格和算法来解决线性和二次方程。
这些成果对后来的数学发展具有重要影响。
古印度是数学发展的重要阶段,印度人在代数、几何和数字系统方面做出了许多贡献。
著名的印度数学家阿耶尔巴塔使用无穷级数来计算圆周率,他也发现了二次方程的解法,这对于后来的代数学发展产生了重大影响。
古希腊数学以其严谨的几何学而闻名,欧几里得的《几何原本》被视为古希腊几何学最重要的著作之一。
希腊人还对数学的逻辑和证明做出了重要贡献,他们开创了公理化证明的传统。
2. 中世纪数学中世纪是数学发展的相对低谷期,但也有一些重要的进展。
阿拉伯数学家在中世纪期间将古希腊和古印度数学知识传入欧洲,并为后来的数学复兴奠定了基础。
阿拉伯人引入了印度的十进制数字系统,这个系统后来直接演变为我们现在使用的阿拉伯数字系统。
他们还介绍了代数中的一些概念和方法,如解一元二次方程的方法。
同时,中世纪欧洲也出现了一些重要的数学家。
例如,莱布尼兹和牛顿独立发现了微积分学,这一发现对于科学界和工程领域产生了深远的影响。
3. 现代数学现代数学的形成可以追溯到17世纪和18世纪,这一时期被称为数学的黄金时代。
数学家们在代数、几何、概率论等领域都取得了重要的进展。
欧拉是这个时期最杰出的数学家之一,他在数论、解析数论和图论等领域有许多开创性的贡献。
数学发展简史数学发展史大致可以分为四个阶段:一、数学起源时期二、初等数学时期三、近代数学时期四、现代数学时期一、数学起源时期(远古——公元前5世纪)这一时期:建立自然数的概念;认识简单的几何图形;算术与几何尚未分开。
数学起源于四个“河谷文明”地域:非洲的尼罗河;这个区域主要是埃及王国:采用10进制,只有加法。
埃及的主要数学贡献:定义了基本的四则运算,并推广到了分数;给出了求近似平方根的方法;他们的几何知识主要是平面图形和立体图形的求积法。
西亚的底格里斯河与幼发拉底河;这个区域主要是巴比伦:采用10进制,并发明了60进制。
巴比伦王国的主要数学贡献可以归结为以下三点:度量矩形,直角三角形和等腰三角形的面积,以及圆柱体等柱体的体积;计数上,没有“零”的概念;天文学上,总结出很多天文学周期,但绝对不是科学。
中南亚的印度河与恒河;东亚的黄河与长江在四个“河谷文明”地域,当对数的认识(计数)变得越来越明确时,人们感到有必要以某种方式来表达事物的这一属性,于是导致了记数。
人类现在主要采用十进制,与“人的手指共有十个”有关。
而记数也是伴随着计数的发展而发展的。
四个“河谷文明”地域的记数归纳如下:刻痕记数是人类最早的数学活动,考古发现有3万年前的狼骨上的刻痕。
古埃及的象形数字出现在约公元前3400年;巴比伦的楔形数字出现在约公元前2400年;中国的甲骨文数字出现在约公元前1600年。
古埃及的纸草书和羊皮书及巴比伦的泥板文书记载了早期数学的内容,年代可以追溯到公元前2000年,其中甚至有“整勾股数”及二次方程求解的记录。
二、初等数学时期(前6世纪——公元16世纪)这个时期也称常量数学时期,这期间逐渐形成了初等数学的主要分支:算术、几何、代数、三角。
该时期的基本成果,构成现在中学数学的主要内容。
这一时期又分为三个阶段:古希腊;东方;欧洲文艺复兴。
下面我们分别介绍:1.古希腊(前6世纪——公元6世纪)毕达哥拉斯——“万物皆数”欧几里得——几何《原本》阿基米德——面积、体积阿波罗尼奥斯——《圆锥曲线论》托勒密——三角学丢番图——不定方程2.东方(公元2世纪——15世纪)1)中国西汉(前2世纪)——《周髀算经》、《九章算术》魏晋南北朝(公元3世纪——5世纪)——刘徽、祖冲之:出入相补原理,割圆术,算术。
数学发展史时间轴
数学发展史可以追溯到人类文明的起源,几乎与人类思维和社会发展同步进行。
下面是一个简要的数学发展史时间轴:
1. 古代数学(约公元前3000年-公元5世纪):
古代数学主要集中在古巴比伦、古埃及、古希腊、古印度和古中国等地。
这个时期的数学主要涉及算术、几何和代数等基本概念和方法的发展。
2. 中世纪数学(公元5世纪-15世纪):
中世纪数学主要由阿拉伯数学家和欧洲学者推动。
阿拉伯人引入了印度-阿拉伯数字系统和代数的进一步发展。
欧洲学者则致力于恢复和传播古代数学知识,推动了几何学的发展。
3. 文艺复兴时期(15世纪-17世纪):
文艺复兴时期是数学发展的黄金时期,涌现出许多伟大的数学家。
代表性的有勒内·笛卡尔和伽利略·伽利雷,他们为代数和几何学的发展做出了重要贡献。
4. 近代数学(17世纪-19世纪):
近代数学的突破主要来自于微积分学的发展。
牛顿和莱布尼茨同
时独立发现了微积分的基本原理。
这一时期还涌现出许多其他重要的数学家,如欧拉、高斯和拉格朗日等。
5. 现代数学(20世纪至今):
现代数学涉及的领域非常广泛,包括数学分析、代数学、几何学、概率论、统计学、拓扑学等。
数学家们不断提出新的理论、方法和应用,推动着数学的不断发展和应用的扩展。
这只是一个简要的数学发展史时间轴,数学的发展一直在不断演进,影响着我们的生活和科学技术的进步。
西方数学发展史以下是各个时期的简要概述:1.古希腊数学(公元前600年-公元500年):o古典希腊时期是西方数学的黄金时代,伊奥尼亚学派的泰勒斯、毕达哥拉斯学派对数论和几何有重大贡献,比如毕达哥拉斯定理。
o欧几里得编写了《几何原本》,奠定了欧氏几何的基础,包括公理化方法。
o阿基米德在静力学与浮力原理、圆周率的计算等方面做出了杰出成就。
o阿波罗尼奥斯对圆锥曲线的研究也对后世产生了深远影响。
2.中世纪数学(公元500年-1500年):o在中世纪早期,欧洲数学的发展相对缓慢,但阿拉伯世界翻译并注解了大量的希腊数学著作,使得数学知识得以传承。
o中世纪晚期,欧洲开始出现复兴迹象,斐波那契的著作《算盘书》对商业计算和数学教育有着重要推动作用,他著名的“斐波那契数列”成为数论研究的一个经典课题。
3.文艺复兴与近代数学(1500年-1700年):o文艺复兴时期,科学和艺术的繁荣带动了数学的发展。
笛卡尔发明了解析几何,将代数方法应用于几何问题,开辟了新的数学领域。
o帕斯卡和费马分别在概率论和数论方面做出了开创性的工作,如帕斯卡定律和费马大定理。
o牛顿和莱布尼茨独立发明了微积分,这是数学史上的一个里程碑事件,为后续物理学和其他学科提供了强大的工具。
4.18世纪到现代数学(1700年至今):o18世纪启蒙时代的数学家如欧拉、拉格朗日和高斯等人在分析学、数论、代数学等领域取得了众多突破。
o19世纪初,随着非欧几何的发现(如黎曼几何),数学逐渐脱离了纯粹直观和经验的束缚,更加抽象和严谨。
o近代数学分支繁多,群论、拓扑学、集合论、逻辑学等新兴领域纷纷崛起,计算机科学的发展也促进了离散数学和计算数学的繁荣。
5.19世纪:o伽罗华提出了群论,为代数学开辟了新的研究方向,解决了根式解代数方程的可能性问题。
o库默尔在数论中引入理想数概念,发展了解析数论的雏形。
o戴德金和康托尔分别在实数理论与集合论方面取得了革命性进展,其中康托尔创立了现代无限集合论,并提出了著名的连续统假设。
数学史简介数学,作为人类智慧的结晶,自古以来就与人类文明的发展紧密相连。
从最初的计数和测量,到抽象的代数和几何,再到现代的计算机科学和量子力学,数学始终在各个领域发挥着重要作用。
本文将简要介绍数学的发展历程,以展示这一学科的无穷魅力。
一、古代数学数学的起源可以追溯到史前时期,当时的人们为了解决实际问题,如土地测量、天文观测等,开始研究数学。
古埃及和巴比伦是数学发展最早的地区之一,他们研究了几何学和算术,并制定了一些数学规则。
约公元前300年,古希腊数学家欧几里得发表了《几何原本》,这是一部系统地阐述了平面几何知识的著作,对后世产生了深远影响。
二、中世纪数学在中世纪,阿拉伯世界成为了数学研究的中心。
阿拉伯数学家对古希腊数学进行了翻译和传承,并在此基础上进行创新。
他们引入了印度数学中的数字系统,即阿拉伯数字,这一系统在当时比罗马数字更为先进。
阿拉伯数学家还研究了代数学,提出了方程的解法和代数符号。
三、文艺复兴时期数学文艺复兴时期,欧洲数学迅速发展。
这一时期的数学家开始研究更为复杂的数学问题,如三次方程的解法、无穷级数等。
意大利数学家伽利略和德国数学家开普勒在天文学领域取得了重要成果,为后来牛顿和莱布尼茨创立微积分奠定了基础。
四、现代数学17世纪,英国数学家牛顿和德国数学家莱布尼茨几乎同时发明了微积分。
这一学科的出现标志着现代数学的诞生。
此后,数学家们开始研究更为抽象的数学问题,如拓扑学、群论等。
19世纪,法国数学家庞加莱提出了拓扑学的基本概念,为现代几何学的发展奠定了基础。
20世纪,数学家们继续深入研究各个领域,如概率论、数论、计算机科学等,使数学得到了空前的发展。
五、数学在中国中国古代数学也有着悠久的历史。
早在商周时期,我国就有了甲骨文中的数学记载。
汉代,数学家赵爽提出了勾股定理的证明,被称为“赵爽定理”。
唐代,数学家李冶、秦九韶等人研究了高次方程的解法。
宋代,数学家贾宪、杨辉等人研究了几何学和算术。