原位杂交的基本方法
- 格式:doc
- 大小:24.50 KB
- 文档页数:2
原位杂交组织化学技术的基本方法一、核酸分子杂交技术1961年Hall开拓了液相核酸杂交技术的研究,其基本原理是利用核酸分子单链之间有互补的碱基顺序,通过碱基对之间非共价键的形成,出现稳定的双链区,形成杂交的双链。
自此以后,由于分子生物学技术的迅猛发展,特别是70年代末到80年代初,分子克隆">克隆、质粒和噬菌体DNA的构建成功,核酸自动合成仪的诞生,大大丰富了核酸探针的来源,新的核酸分子杂交类型和方法不断涌现。
按其作用方式可大致分为固相杂交和液相杂交两种:液相杂交是指参加反应的两条核酸链都游离在溶液中,而固相杂交是将参加反应的一条核酸链固定在固体的支持物上常用的有硝酸纤维素滤膜,其它如尼龙膜、乳胶颗粒和微孔板等),另一条参加反应的核酸链游离在溶液中。
固相杂交有菌落原位杂交(colony in situ hybri dization)、斑点杂交法(Dot blot)、Southern印迹杂交(Southern blot)、Northern印迹杂交( N orthern blot)和组织原位杂交(Tissue in situ hybridization),即原位杂交组织化学技术和原位杂交免疫细胞化学技术。
液相分子杂交技术包括吸附杂交、发光液相杂交、液相夹心杂交和复性速率液相分子杂交等。
二、原位杂交组织化学技术的由来及发展原位杂交组织(或细胞)化学技术简称原位杂交(In situ hybridization),如上所述,属于固相核酸分子杂交的范畴。
但它区别于固相核酸分子杂交中的任何一种核酸分子杂交技术。
菌落杂交系细菌裂解释放出DNA,然后进行杂交。
Southern印迹杂交法是以鉴定DNA中某一特定的基因片段,而Norhtern印迹杂交法是用以检测某一特定的RNA片段的。
它们都只能证明该病原体、细胞或组织中是否存在待测的核酸而不能证明该核酸分子在细胞或组织中存在的部位。
1969年美国耶鲁大学Gall和Pardue首先用爪蟾核糖体基因探针与其卵母细胞杂交,确定该基因定位于卵母细胞的核仁中。
单细胞荧光原位杂交技术基础分析单细胞荧光原位杂交技术(single-cell fluorescent in situ hybridization,scFISH)是研究个体细胞基因组结构和功能的重要手段。
它通过特定的荧光标记探针与细胞内核酸靶点的结合来实现对单个细胞的基因表达模式分析。
本文将对单细胞荧光原位杂交技术的基本原理、方法以及在研究领域的应用进行详细介绍。
一、基本原理单细胞荧光原位杂交技术利用高度特异的核酸探针与细胞内特定的目标序列结合,通过荧光信号的检测来观察细胞的基因表达模式。
其原理主要包括以下步骤:1. 探针设计:根据所研究的基因或序列,设计特异性的DNA或RNA探针。
探针通常标记有荧光染料或荧光素,以便在显微镜下直接观察。
2. 细胞固定:将待研究的细胞进行固定,以保持其形态结构不变。
固定方法可以使用化学物质如乙醇或乙酸乙酯,或者采用热处理方法。
固定后,细胞的DNA或RNA会在某种程度上变性,使得探针能够更好地与其结合。
3. 探针杂交:将设计好的探针与固定的细胞一起进行孵育反应,使其在一定的温度和盐度条件下与目标序列发生特异性结合。
探针可以是产生互补序列的DNA或RNA,以便与目标序列形成特异性的双链结构。
4. 检测信号:利用荧光显微镜或其他适当的检测设备观察探针与目标序列的结合情况。
荧光标记的探针在特定波长下会发出荧光信号,通过检测信号的强度和位置,可以确定基因的表达量和位置。
二、方法步骤单细胞荧光原位杂交技术的实施通常包括以下几个步骤:1. 细胞样品处理:获取待研究的细胞样品,并进行适当的处理,如培养、分离、固定等。
处理过程中需注意细胞的完整性和特定的实验条件。
2. 探针设计和制备:根据研究目的选择合适的目标序列和探针设计方法。
针对目标基因或序列,用合成的核酸片段进行探针标记或直接购买商业化的标记好的探针。
3. 探针反应:将待研究的细胞样品与探针进行孵育反应。
反应条件应根据探针设计和实验需求进行优化,包括反应温度、时间和缓冲液的选择等。
原位杂交技术原位杂交技术是一种基因分析技术,可以用来研究细胞内基因的表达模式和基因组的结构。
本文将介绍原位杂交技术的基本原理、应用领域以及未来发展方向。
原位杂交技术最早是在20世纪70年代发展起来的,主要用于研究DNA在细胞中的位置和分布情况。
其基本原理是利用亲和性标记的探针与目标DNA序列特异性结合,通过显色或荧光等方法来检测标记物的位置。
原位杂交技术的具体步骤包括控制组织或细胞的形态、固定样本、渗透处理、杂交、洗脱、显色和观察等。
其中最关键的步骤是杂交反应,需要合理设计探针的序列和标记方法,并进行适当的条件优化。
原位杂交技术广泛应用于生物医学领域,可以用于寻找新的基因、研究基因的表达调控机制、探索基因组的结构与功能等。
例如,科学家可以用这种技术来研究染色体异常、肿瘤基因的异常表达、发育过程中的基因调控等。
此外,原位杂交技术在遗传学、生物学、植物学、动物学和微生物学等领域也有广泛的应用。
在遗传学中,可以用原位杂交技术检测并分离具有特定基因型的个体;在植物学中,可以研究植物的组织分化和发育过程;在动物学中,可以研究胚胎发育和器官再生等。
虽然原位杂交技术在基因研究中起到了重要作用,但仍存在一些局限性和挑战。
首先,该技术的灵敏度和特异性受到探针选择、探针标记和杂交条件等多个因素的影响。
其次,原位杂交技术在细胞外不易实施,因为固定和渗透处理可能会对细胞和组织结构产生破坏。
未来,随着生物技术的不断发展,原位杂交技术也将得到进一步改进和完善。
例如,可以利用新型的标记物和探针来提高技术的敏感度和特异性,同时也可以开发新的杂交方法来降低对样本的破坏。
此外,结合其他高通量分析技术,如转录组学和蛋白质组学,可以更全面地揭示基因表达和调控的网络。
总之,原位杂交技术是一种重要的基因分析技术,可以揭示细胞内基因的表达模式和基因组的结构。
在今后的研究中,我们有理由相信原位杂交技术将发挥更大的作用,并帮助科学家们更好地理解生命的奥秘。
荧光原位杂交技术(FISH)的基本原理及应⽤我接触“FISH”也是刚刚两年多的时间,作为⼀个“初学者”刚开始接触“FISH”可能跟⼤多数⼈⼀样满脑⼦的疑惑:“FISH”是做什么的?有什么临床作⽤呢?那些红红绿绿的点都是些什么意思?……今天让我们慢慢的去揭开FISH的不太神秘的⾯纱。
1.FISH的前世今⽣在FISH技术问世之前,基于20世纪60年代,放射性核素探针的原位杂交⽅法,检测间期染⾊体和分裂期染⾊体上特定DNA和RNA序列的⽅法,该⽅法存在操做⽐较⿇烦、分辨率有限、探针不稳定、放射性同位素的危害较⾼等问题,故⽬前弃之不⽤。
20世纪80年代⽤⾮放射性半抗原如⽣物素进⾏核酸标记的技术逐渐开展后,探针也开始使⽤这种⾮放射性标记⽅法。
随后FISH技术逐渐开展起来,1986年以后该技术被应⽤于分析细胞分裂期染⾊体铺⽚的DNA序列。
相对于放射性来说,FISH具有稳定性好、操作安全、结果迅速、空间定位准确、⼲扰信号少、⼀张玻⽚可以标记多种颜⾊探针等优点。
这些优点逐渐使FISH成为⼀种研究分⼦细胞遗传学很好的⽅法。
FISH即染⾊体荧光原位杂交(Flourescence in situ hybridization,FISH)是通过荧光素标记的DNA探针与样本细胞核内的DNA靶序列杂交,从⽽获得细胞核内染⾊体或基因状态的信息。
FISH是将传统的细胞遗传学同DNA技术相结合,开创了⼀门新的学科——分⼦细胞遗传学。
(如下图所⽰)2.FISH信号解读-红红绿绿是什么⽬前临床上⽤于FISH检测的探针的荧光素⼤都是绿⾊的和橙红⾊标记,可⼤致分为:染⾊体计数(着丝粒)探针(centromere-enumerationprobes,CEP),位点特异性识别探针(locus-specific identifier probes,LSI),染⾊体涂染(paint,WCP)探针。
其中CEP和LSI探针中的计数探针、融合探针及分离重排探针,在⾎液病诊断与预后分型中最为常⽤。
荧光原位杂交法 pcr-荧光对比荧光原位杂交法(FISH)和PCR-荧光对比(PCR-FLP)都是分子生物学中常用的技术,可以用于基因定位、染色体结构和功能等方面的研究。
本文将分别介绍这两种技术的基本原理、应用场景和优缺点。
一、荧光原位杂交法1.基本原理荧光原位杂交法是一种基于DNA序列互补碱基配对原理的技术,利用荧光探针对染色体上的特定区域进行标记,以便于观察和分析。
该技术主要包括以下几个步骤:(1)制备探针:将已知序列的DNA片段与荧光标记分子连接,生成荧光标记的DNA探针。
(2)加热解离:将待检样品中的DNA加热,使其解离成两条单链DNA。
(4)荧光显色:利用显微镜观察染色体上的荧光标记,并确定标记位置及数目。
2.应用场景荧光原位杂交法可用于以下方面的研究:(1)核型分析:检测染色体数目、大小和形态等信息。
(2)染色体重排:观察染色体间的换位、倒位等结构改变。
(3)基因定位:确定特定基因在染色体上的位置。
(4)肿瘤诊断:检测肿瘤细胞染色体的数目和结构变化。
3.优缺点(1)高灵敏度:能够检测到细胞核中的单个分子。
(2)高特异性:探针与目标序列可以实现完全互补。
(3)数据可视化:能够直观地呈现染色体结构及荧光信号大小。
而其缺点主要包括:(1)长时间实验:需要多个步骤和时间,且荧光信号非常容易被淬灭。
(2)需要DNA标记:需要荧光标记作为探针,费用较高。
二、PCR-荧光对比PCR-荧光对比(PCR-FLP)是一种应用荧光标记测量PCR产物数量的技术,能够在短时间内准确、可靠地检测和测量DNA的含量和变异。
具体操作过程如下:(1)样品制备:将待测DNA标记荧光标记,与另一非标记探针PCR反应。
(2)荧光PCR扩增:通过PCR反应增生DNA分子。
(3)荧光观察:利用荧光标记观察PCR产物。
(1)定量PCR:准确检测PCR反应中模板DNA的数目。
(2)基因表达:测量基因在不同实验条件下的表达水平。
(3)点突变检测:定性判断DNA中的单个碱基是否发生变异。
细胞各种染色方法细胞染色方法是一种用于研究细胞结构和功能的重要技术。
通过对细胞进行染色,可以使细胞成分和结构可见,便于观察和研究。
下面将介绍几种常用的细胞染色方法。
1.基本染色方法-干燥染色法干燥染色法是最常见的染色方法之一,用于观察细胞的形态和结构。
在细胞表面涂上染色剂(如吉姆萨、范斯丁染料等),然后用胶片或显微镜进行观察。
这种方法方便快捷,适用于常规的细胞观察。
-神经元染色法神经元染色法主要用于研究神经系统的结构和功能。
常见的神经元染色方法包括尼氏染色法、戈登染色法和格尔染色法等。
这些方法可以染色神经元的胞体、突触和轴突等结构,以及神经元之间的连接方式。
2.核酸染色方法-核酸荧光染色法核酸荧光染色法是一种用于检测细胞核酸的方法。
常见的核酸染色剂包括达尔林紫、伊曼纽尔蓝和乳胶蓝等。
这些荧光染料可以与DNA或RNA 结合,生成荧光信号,便于观察和分析。
-原位杂交法原位杂交法是一种利用互补的单链DNA或RNA探针与目标细胞中的互补序列发生杂交反应的方法。
这种方法可以检测特定的基因表达情况或检测一些病毒的感染情况。
常见的原位杂交方法包括原位PCR、荧光原位杂交和非放射性原位杂交等。
3.蛋白质染色方法-共聚焦显微镜染色法共聚焦显微镜染色法是一种利用荧光染料标记特定蛋白质的方法。
常见的荧光染料包括荧光素、乳酸钙蓝和荧光蛋白等。
这种方法可以使用不同的荧光染料标记不同的蛋白质,通过共聚焦显微镜观察细胞中的蛋白质分布和相互作用。
-银染法银染法是一种用于检测蛋白质的方法,特别适用于低表达量的蛋白质。
该方法通过将目标蛋白质与银离子结合,形成黑色或棕色的颗粒,便于观察和分析。
银染法常用于检测蛋白质在凝胶电泳中的分子量和含量。
4.细胞器染色方法-非特异性染色法非特异性染色法是一种用于检测细胞器的方法,常用的非特异性染色剂包括宙斯金、吉姆萨和荧光素等。
这些染料可以与细胞器特有的成分结合,使其在显微镜下可见。
-特异性染色法特异性染色法是一种用于检测特定细胞器的方法,常见的特异性染色剂包括桡胞蛋白、核蛋白和线粒体染料等。
荧光原位杂交技术(fish)的基本原理和应用理论说明1. 引言1.1 概述荧光原位杂交技术(Fluorescence in situ Hybridization,简称FISH)是一种广泛应用于生物学研究的重要技术。
它通过在细胞或组织水平上定位和检测特定DNA或RNA序列的分布情况,可以提供关于基因组结构、功能和表达的有价值信息。
该技术最早于20世纪80年代被开发出来,并且经过不断改进与扩展,如今已成为分子生物学研究中不可或缺的工具之一。
1.2 文章结构本文将首先介绍荧光原位杂交技术的基本原理,包括DNA探针的选择与设计、杂交反应条件的优化以及检测与可视化方法。
然后,我们将深入探讨荧光原位杂交技术在生物医学研究领域、植物遗传研究领域和动物进化研究领域的应用实例。
接下来,我们将评述荧光原位杂交技术的优势与局限性,包括其高灵敏度、高分辨率等优势以及对样本处理要求高、无法确定基因功能等局限性。
最后,我们将给出结论并展望荧光原位杂交技术的未来发展方向。
1.3 目的本文的目的是系统地介绍荧光原位杂交技术的基本原理和应用领域,以帮助读者深入了解这一重要技术。
通过阅读本文,读者将能够全面了解荧光原位杂交技术在生物学研究中的作用和意义,并对该技术的优势与局限性有所了解。
此外,本文也将探讨该技术未来可能的发展方向,为读者提供展望与思考。
2. 荧光原位杂交技术基本原理:2.1 DNA探针的选择与设计:荧光原位杂交技术(FISH)是一种利用DNA或RNA分子作为探针,通过特异性互补配对识别和定位目标序列的方法。
在进行FISH实验时,首先需要选择合适的DNA探针。
DNA探针通常由由人工合成的寡聚核苷酸(oligonucleotide)或从天然来源提取得到的全长DNA片段构建而成。
选择DNA探针时,需要考虑以下因素:首先是目标序列的特异性,即该序列在待检测样品中是否具有较高的丰度,并且只存在于感兴趣的目标区域中。
其次是探针长度和两个主要互补区域之间核苷酸序列的碱基组成比例。
原位杂交和荧光定量
原位杂交是一种将特定标记的已知顺序核酸为探针与细胞或组织切片中核酸进行杂交,从而对特定核酸顺序进行精确定量定位的过程。
基本原理是两条核苷酸单链片段,在适宜的条件下,能过氢键结合,形成DNA-DNA、DNA-RNA或RNA-RNA双键分子的特点,应用带有标记的(放射性同位素、荧光素生物素、地高辛等非放射性物质)DNA或RNA片段作为核酸探针,与组织切片或细胞内待测核酸(RNA或DNA)片段进行杂交,然后可用放射自显影等方法予以显示,在光镜或电镜下观察目的mRNA或DNA 的存在并定位。
荧光定量原位杂交技术则是一种分子遗传学实验技术,将直接与荧光素结合的寡聚核苷酸探针或采用间接法标记的寡聚核苷酸探针与变性后的染色体、细胞或组织中的核酸按照碱基互补配对原则进行杂交,经变性-退火-复性-洗涤后即可形成靶DNA 与核酸探针的杂交体,直接检测或通过免疫荧光系统检测,最后在荧光显微镜下显影,即可对待测DNA进行定性、定量或相对定位分析。
总的来说,原位杂交和荧光定量原位杂交都是一种在细胞或组织切片中定位特定核酸序列的技术,其中荧光定量原位杂交技术可以提供更多的定量和定性信息。
原位杂交的基本方法
一、组织的取材
注意事项:刀要锋利、不能用力向下挤压组织;组织块不宜过大、及时固定。
二、固定
(一)原则:及时固定、避免RNA酶的污染
4%多聚甲醛(0.1M PBS PH7.4,可加1/1000的DEPC),动物实验标本最好先灌流固定。
(二)固定液的浓度、固定时间及温度要适宜
1 浓度越高组织结构保存的越好,但mRNA的保存越差;
2 固定时间越长,mRNA破坏的越多;做原位杂交组织固定时间不宜过长,一般24h,不能高温固定(微波可使组织内温度升高),低温可保护RNA不降解(4 ℃冰箱内固定)。
mRNA杂交:最好用冰冻切片
a. 4%多聚甲醛中固定1-2h,浸入15%蔗糖溶液中
4℃冰箱过夜,次日切片或保存在液氮中。
b. 取材后直接液氮冷冻,切片后4%多聚甲醛固定
10min,空气干燥后-70 ℃低温冰箱保存。
注意:a. 多聚甲醛与戊二醛混合固定的组织可同时用作光、
电镜检查,但不能用于原位杂交实验。
b. 石蜡切片蛋白质交联影响探针穿透,包埋降低
mRNA含量
三、玻片和组织切片的处理
玻片的处理:
洗涤:洗涤剂→水洗→洗液(24h)→水洗→双蒸水洗→60 ℃烤干→250 ℃烘烤4h,锡箔纸包裹无尘存放。
玻片硅化:将烘烤过的载玻片用2%APES丙酮液浸泡3min →用丙酮洗两次→用DEPC处理过的蒸馏水洗1~2次→40 ℃烘干→防尘保存待用。
(整个过程要戴消毒手套进行)
未经硅化的玻片可以涂粘附剂(多聚赖氨酸)
2.增强组织的通透性和核酸探针的穿透性:稀释的酸洗涤、去垢剂Triton X-100或消化酶(蛋白酶k、胃蛋白酶),用量及孵育时间视组织的种类、固定剂的种类及切片的厚薄而定。
为保持组织结构,可用4%多聚甲醛再固定。
3.降低背景染色:杂交后的酶处理和杂交后的洗涤。
预杂交:预杂交液不含探针和硫酸葡聚糖,可封闭非特异性杂交点。
杂交后用低浓度RNA酶溶液洗涤一次,以减少残留的内源性RNA。
4.防止RNA酶污染:整个杂交前处理过程都需戴消毒手套,所有实验用玻璃器皿和镊子于实验前一日200 ℃烘烤。
四、杂交
将杂交液滴于切片的组织上,加盖硅化的盖玻片以防止杂交液蒸发。
(放在湿盒中,37 ℃孵育)
五、杂交后处理
用不同浓度、不同温度的盐溶液漂洗,可有效地减低背景染色,RNA酶液的洗涤可将组织中非碱基配对的RNA除去。
原则:盐溶液的浓度由高到低,温度由低到高。
注:切勿使切片干燥。
六、显示
根据核酸探针标记物的种类可进行不同显色处理,原位杂交探针一般是用半抗原地高辛标记的,借助于间接加入的酶(酶标的抗地高辛抗体)使底物显色,常用的酶有辣根过氧化物酶(HRP)、碱性磷酸酶(AP)。
1.AP显色系统:-AP+BCIP→BCL-OH+Pi
BCL-OH+NBT →蓝紫色↓
2. HRP显色系统:-HRP+H2O2 →HRP.H2O2
HRP.H2O2 +ODA-NH2 →棕色↓
细胞或组织的原位杂交切片显色后可进行半定量检测,但
要注意严格控制实验条件的同一性,包括切片的厚度、核酸的
保存量等。
七、对照实验和结果的判断
对照实验的设计须根据核酸探针和靶核苷酸的种类以及
现有可能的条件选定:
1.将cDNA或cRNA探针进行预杂交(吸收实验)。
2.与非特异性序列和不相关探针杂交(置换实验)。
3.将切片用RNA酶或DNA酶进行预处理后杂交,应用同义RNA探针进行杂交。
4.以不加核酸探针杂交液进行杂交(空白实验)。
5.组织对照应用已确定为阳性或阴性的组织进行杂交对照。
6.应用未标记探针做杂交进行对照。
八、阳性信号的评定
1.阳性信号定位于胞浆,蓝色细颗粒状,信号越强颜色越深,阴性对照片中无阳性信号检出。
2.阳性细胞数:阳性细胞数≤10%、≤30%、≤70%和>70%分别计为1、2、3和4分。
3.阳性着色强度:可分为弱、中、强三级,分别计1、2、3分,上述两种计分相加,1~3分为阴性,4~5分为阳性,6~7分为强阳性。