概率论与数理统计 第七章 参数估计
- 格式:ppt
- 大小:2.16 MB
- 文档页数:63
概率论与数理统计教案-参数估计教案章节一:参数估计概述教学目标:1. 理解参数估计的定义及意义;2. 掌握参数估计的两种方法:最大似然估计和最小二乘估计;3. 了解参数估计的假设条件。
教学内容:1. 参数估计的定义及意义;2. 最大似然估计和最小二乘估计的方法及步骤;3. 参数估计的假设条件。
教学方法:1. 讲授法:讲解参数估计的定义、意义、方法及步骤;2. 案例分析法:分析实际案例,让学生更好地理解参数估计的方法及应用。
教学难点:1. 最大似然估计和最小二乘估计的方法及步骤;2. 参数估计的假设条件。
教学准备:1. 教学PPT;2. 相关案例资料。
教学过程:1. 引入参数估计的概念,讲解其意义;2. 讲解最大似然估计和最小二乘估计的方法及步骤;3. 分析实际案例,展示参数估计的应用;4. 讲解参数估计的假设条件;5. 课堂互动,回答学生问题。
作业布置:1. 复习parameter estimation 的定义及意义;2. 学习maximum likelihood estimation 和least squares estimation 的相关知识;3. 思考如何应用parameter estimation 解决实际问题。
教案章节二:最大似然估计教学目标:1. 理解最大似然估计的定义及意义;2. 掌握最大似然估计的计算方法;3. 了解最大似然估计的应用场景。
教学内容:1. 最大似然估计的定义及意义;2. 最大似然估计的计算方法;3. 最大似然估计的应用场景。
教学方法:1. 讲授法:讲解最大似然估计的定义、意义、计算方法;2. 案例分析法:分析实际案例,展示最大似然估计的应用。
教学难点:1. 最大似然估计的计算方法;2. 最大似然估计的应用场景。
教学准备:1. 教学PPT;2. 相关案例资料。
教学过程:1. 引入最大似然估计的概念,讲解其意义;2. 讲解最大似然估计的计算方法;3. 分析实际案例,展示最大似然估计的应用;4. 课堂互动,回答学生问题。
《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。
能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。
当然由于样本的随机性,这种推断只能具有⼀定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。
由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。
第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。
例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。
现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。
问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。
即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。
另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。
这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性⽔平05.0=α。
在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。
概率论与数理统计课后习题答案第七章 参数估计1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计)求总体均值μ及方差σ2的矩估计,并求样本方差S 2。
解:μ,σ2的矩估计是6122106)(1ˆ,002.74ˆ-=⨯=-===∑ni i x X n X σμ621086.6-⨯=S 。
2.[二]设X 1,X 1,…,X n 为准总体的一个样本。
求下列各总体的密度函数或分布律中的未知参数的矩估计量。
(1)⎩⎨⎧>=+-其它,0,)()1(cx x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。
(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ 其中θ>0,θ为未知参数。
(5)()p p m x p p x X P xm x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。
解:(1)Xθcθθc θc θc θdx x c θdx x xf X E θθcθθ=--=-===+-∞+-∞+∞-⎰⎰1,11)()(1令,得cX X θ-=(2),1)()(10+===⎰⎰∞+∞-θθdx xθdx x xf X E θ2)1(,1X X θX θθ-==+得令(5)E (X ) = mp 令mp =X, 解得mX p=ˆ3.[三]求上题中各未知参数的极大似然估计值和估计量。
解:(1)似然函数1211)()()(+-===∏θn θn n ni ix x x cθx f θL0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==ni ini i xc n n θθd θL d x θc θn θn θL∑=-=ni icn xnθ1ln ln ˆ (解唯一故为极大似然估计量)(2)∑∏=--=-+-===ni iθn nni ix θθnθL x x x θx f θL 112121ln )1()ln(2)(ln ,)()()(∑∑====+⋅-=ni ini ix n θxθθn θd θL d 121)ln (ˆ,0ln 2112)(ln 。
第七章 参数估计注意: 这是第一稿(存在一些错误)1、解 由θθθμθ2),()(01===⎰d x xf X E ,204103)(2221θθθ=-==X D v ,可得θ的矩估计量为X 2^=θ,这时θθ==)(2)(^X E E ,nnX D D 5204)2()(22^θθθ=⋅==。
3、解 由)1(2)1(2)1(2)(21θθθθμ-=-+-==X E ,得θ的矩估计量为:3262121^=-=-=X θ。
建立关于θ的似然函数:482232)1(4)1())1(2()()(θθθθθθθ-=--=L令0148))1ln(4ln 8()(ln =--=∂-+∂=∂∂θθθθθθθL ,得到θ的极大似然估计值:32^=θ 4、解:矩估计:()1012122μθλθλθλ=⋅+⋅+⋅--=--,()()()()2222222121νθλθθλλθλθλ=--++-++--, 11A =,234B =, 故()()()()222ˆˆ221,3ˆˆˆˆˆˆˆˆˆˆ222121.4θλθλθθλλθλθλ⎧--=⎪⎨--++-++--=⎪⎩解得1ˆ,43ˆ.8λθ⎧=⎪⎪⎨⎪=⎪⎩为所求矩估计。
极大似然估计:(){}()33214526837,0,2,11L P X X X X X X X X θλθλθλ==========--,()()(),ln ,3ln 2ln 3ln 1l L θλθλθλθλ==++--,()(),330,1,230.1l l θλθθθλθλλλθλ∂⎧=-=⎪⎪∂--⎨∂⎪=-=⎪∂--⎩解得3ˆ,81ˆ.4θλ⎧=⎪⎪⎨⎪=⎪⎩即为所求。
5、解 由33)1(3)1(3)(222+-=-+-+=p p p p p p X E ,所以得到p 的矩估计量为^394(3)34322X X p -----==建立关于p 的似然函数:3210)1()2)1(3()()2)1(()(22n n n n p p p p p p p L ---= 令0)(ln =∂∂pp L ,求得到θ的极大似然估计值:n n n n p 22210^++=6、解:(1)()1112EX x x dx θθθθ+=+=+⎰, 由ˆ1ˆ2X θθ+=+得21ˆ1X X θ-=-为θ的矩估计量。